California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Spring 2018 Akis, Chang*, Hoffman

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$

Spring 2018 # 1. For each of the following real valued functions of two real variables u(x, y), decide whether there is a real valued function v(x, y) such that f(z) = f(x+iy) = u(x,y) + iv(x,y) is analytic. If yes, find such a v. If not, explain how you know there is no such function.

a.
$$u(x,y) = \cos y - xy$$
 b. $u(x,y) = e^{3x} \cos(3y) - xy$

Spring 2018 # 2. a. Give a statement of the maximum modulus theorem. **b.** Let f(z) = f(x + iy) = u(x, y) + iv(x, y) be a continuous function on a closed bounded region R in $\mathbb C$ which is analytic and not constant on the interior of R. Show that The real valued function u(x, y) reaches its maximum on the boundary of R. Suggestion: Consider $e^{f(z)}$.

Spring 2018 # 3. Find the Laurent series expansions for $f(z) = \frac{1}{z^2(z^2-9)}$ around $z_o = 0$ valid in each of the following regions

a. $A = \{z \in \mathbb{C} : 0 < |z| < 3\}$ **b.** $B = \{z \in \mathbb{C} : |z| > 3\}$

c. Find the residue of f at $z_o = 0$. **Spring 2018 # 4.** Let $f(z) = \frac{z^2 e^{1/z}}{z+1}$.

Find all singularities of f in \mathbb{C} .

Classify each as removable, a pole (of what order), or essential.

Find the residue of f at each.

Spring 2018 # 5. Use complex variable methods to evaluate two of the following integrals. Show the integrals exist, sketch any contours and discuss any estimates needed to justify your method. In c, a is a real constant with a > 1.

a.
$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} \, dx$$
 b. $\int_{-\infty}^\infty \frac{1 + \cos x}{x^2 + 1} \, dx$ **c.** $\int_0^{2\pi} \frac{1}{a + \cos \theta} \, d\theta$

Spring 2017 # 6. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and H = $\{z \in \mathbb{C} : \text{Im } z < 0\}$ be open lower half plane. Determine if there exists a conformal mapping of D one-to-one onto H. If not, explain why not with appropriate reasons. If yes, give a full explanation by either displaying such a function and/or by stating and applying appropriate theorem or theorems.

Spring 2018 # 7. a. Determine the number of zeros, counting multiplicity, of the polynomial $f(x) = z^5 - 6z^2 + 2z + 1$ in the annulus $A = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$. Show your work.

b. Show that if n is an integer with n > 2, then all the solutions of $z^n - (z^2 + z + 1)/4 = 0$ lie inside the unit circle, |z| = 1.

End of Exam