California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Spring 2015 Akis, Chang*, Hoffman

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$ Spring 2015 # 1. Consider the fractional linear (Möbius) transformation

$$w = f(z) = \frac{4z - 4}{z - 2}$$

Describe and sketch the image set f(A) if A is the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$.

Spring 2015 # 2. Evaluate each of the following integrals

a.
$$\int_{\gamma} \frac{\overline{z}}{z-4} dz$$
 b. $\int_{0}^{2\pi} \frac{d\theta}{3+\sin\theta}$ **c.** $\int_{0}^{\infty} \frac{dx}{(x^2+1)^2}$

In \mathbf{a} , γ is the circle of radius 3 centered at 0 travelled once counterclockwise. (Read part \mathbf{a} carefully!)

In \mathbf{c} , show the integral exists, sketch any contours, and discuss any estimates needed to justify your method.

Spring 2015 # 3. a. State Liouville's theorem.

b. Is there an entire function f such that f(0) = 0 and f(z) = 1 whenever |z| > 1? (Justify your answer.)

Spring 2015 # 4. Consider the function $f(z) = \frac{1}{(z-1)(z-2)}$

- **a.** Write the Laurent series expansion of f(z) converging in the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}.$
- **b.** Write the Laurent series expansion of f(z) converging in the punctured disk $\{z \in \mathbb{C} : 0 < |z| < 1\}.$

Spring 2015 # **5.** For **two** of the following three functions find the isolated singularities in \mathbb{C} . Determine whether each is removable, essential, or a pole. Determine the order of each pole and find the principal part at each pole.

a.
$$\frac{z}{(z^2-1)^2}$$
 b. $\exp\left(\frac{1}{z^2+1}\right)$ **c.** $z^2\sin(1/z)$

Spring 2015 # 6. Give a statement of Rouche's theorem, and use it to find the number of zeros of the polynomial $p(z) = z^6 + (1+i)z + 1$ in the annulus $\{z \in \mathbb{C} : 1/2 < |z| < 5/4\}.$

Spring 2015 # 7. Let f and g be complex valued functions each analytic on an open set containing the closed disk $B = \{z \in \mathbb{C} : |z| \le 1\}$ and suppose that neither has any zeros in B. Show that if |f(z)| = |g(z)| for all z with |z| = 1, then there is a real number θ such that $f(z) = e^{i\theta}g(z)$ for all z in B. (Suggestion: It might be helpful to consider f(z) and g(f))

(Suggestion: It might be helpful to consider f/g and g/f)

End of Exam

 $\mathbf{2}$