California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Spring 2012 Chang, Gutarts, Hoffman*

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$ Spring 2012 # 1. Sketch each of the following sets in \mathbb{C} .

a. $A = \left\{ z \in \mathbb{C} : \left| \frac{z+i}{z-3i} \right| \le 1 \right\}$ **b.** $B = \left\{ z \in \mathbb{C} : |z-i| \le \operatorname{Im}(z) \right\}$ **c.** $C = \left\{ z \in \mathbb{C} : |\operatorname{Arg}(z+1)| < \pi/4 \right\}$

Spring 2012 # 2. $f(z) = \frac{1}{z(z^2+1)}$.

- **a.** On what set is *f* analytic?
- **b.** Find the Laurent series for f valid for 0 < |z| < 1.
- **c.** Find the Laurent series for f valid for |z| > 1.
- **d.** Find the residue of f at 0.

Spring 2012 # 3. Let γ be the closed path consisting of straight line segments from 2 + 2i to -2 - 2i, from there to -2 + 2i, from there to 2 - 2i, and finally back to 2 + 2i. Evaluate $\int_{\gamma} f(z) dz$ for each of the following functions giving reasons for your answers.

a.
$$f(z) = \frac{1}{z^2 - 1}$$
 b. $f(z) = \frac{e^{2z}}{(z - 1)^2}$

Spring 2012 # 4. Let A be the closed unit disk $A = \{z \in \mathbb{C} : |z| \le 1\}$.

Suppose f is an entire function whose Taylor series centered at the origin is $\sum_{k=0}^{\infty} a_k z^k$, and that f maps A into A.

Show that $|a_k| \leq 1$ for each k.

Spring 2012 # 5. For each of the following real valued functions u(x, y), decide whether there is a real valued function v(x, y) such that f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic with f(0) = 2i. If so, find v(x, y). If not, explain how you know that there is no such function.

a.
$$u(x,y) = xy^3 - x^3y$$
 b. $u(x,y) = xy^3 + x^3y$

Spring 2012 # 6. Show that all the zeros of the polynomial $z^6 - 5z^2 + 10 = 0$ lie in the annulus 1 < |z| < 2.

Spring 2012 # 7. Use complex variable methods to evaluate two of the following integrals. Sketch any contours and discuss estimates needed to justify your methods.

$$\mathbf{a.} \quad \int_{-\infty}^{\infty} \frac{e^{-itx}}{1+x^2} \, dx \text{ for } t > 0 \qquad \mathbf{b.} \quad \int_{0}^{\pi} \frac{1}{3+\cos\theta} \, d\theta \qquad \mathbf{c.} \quad \int_{\gamma} \frac{\cos(z^2)}{z^9} \, dz$$

In part **c**, γ is the circle of radius 1 centered at 0 travelled once in the counterclockwise direction.

End of Exam