California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Spring 2011 Chang, Cooper, Gutarts, Hoffman*, Shaheen

Do five of the following seven problems.

If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z; r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$ **Spring 2011 # 1.** Sketch (and describe as appropriately helpful) each of the following sets in \mathbb{C} .

a. $A = \{z \in \mathbb{C} : \operatorname{Re}(e^z) \le 0\}$ **b.** $B = \{z \in \mathbb{C} : \operatorname{Re}(z^2) \le 0\}$ **c.** $C = \{z \in \mathbb{C} : |z - 3| \le |z + 1|\}$

Spring 2011 # 2. Consider the function $f(z) = e^{z}/(z^{2}-1)$ and the curves γ and μ in the sketch. γ is the circle of radius 2 centered at the origin and travelled once on the counterclockwise direction. μ is a lemniscate "figure eight" travelled as indicated by the arrows.

Spring 2011 # 3. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane.

- **a.** Suppose that f and g are complex valued analytic functions on D such that $\operatorname{Re}(f(z)) = \operatorname{Re}(g(z))$ for all z in D. Show that f g is constant on D.
- **b.** Suppose that $f: D \to \mathbb{C}$ is analytic on D with f(0) = 0 and $\operatorname{Re}(f(x+iy)) = x^3 3xy^2 + y$ for all z = x + iy in D. Find a formula for $\operatorname{Im}(f(x+iy))$

Spring 2011 # 4. Use complex variable methods to evaluate each of the following integrals. Sketch any contours and discuss estimates needed to justify your methods.

a.
$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx$$
 b.
$$\int_{-\pi}^{\pi} \frac{1}{3+2\cos\theta} d\theta$$
 c.
$$\int_{\gamma} z^5 e^{i/z^2} dz$$

In part ${\bf c},\,\gamma$ is the circle of radius 1 centered at 0 travelled once in the counterclockwise direction.

Spring 2011 # 5. Suppose u(x, y) is a real valued function which is harmonic on the whole plane such that $|u(x, y)| \leq 17$ for every z = x + iy in \mathbb{C} . Use facts from complex analysis to show that u must be constant.

 $\mathbf{2}$

Spring 2011 # 6. Let $f(z) = e^z - 3z$ and *D* be the open unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$.

- **a.** Counting each zero with its multiplicity (order), how many zeros does f have in D?
- **b.** Can any of the zeros of f in D have multiplicity (order) larger than 1? (Justify your answer.)

(If part ${\bf b}$ seems a little strange, do not worry about it, just go ahead and answer it.)

Spring 2011 # 7. Let $f(z) = \frac{1}{(z-1)(z-2)}$.

a. Find the Laurent series for f in the region $\{z \in \mathbb{C} : 1 < |z| < 2\}$.

b. Find the Laurent series for f in the region $\{z \in \mathbb{C} : 0 < |z - 1| < 1\}$

c. Find the residue of f at 0 and the residue of f at 1.

End of Exam