California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination

Complex Analysis Spring 2008 Chang, Gutarts*, Hoffman, Katz

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. Arg z denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a)$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$
$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

1) .

(, 1)

$$\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

Spring 2008 # 1. For each of the following, describe and sketch the set of all complex numbers z for which the indicated relation is true.

a. $|z|^2 = \text{Re}(z^2)$ **b.** $|z|^2 = \text{Im}(z^2)$ **c.** $|z|^2 = (\arg z)^2$ (Here $0 \le \arg z < 2\pi$.) **Spring 2008 # 2.** Evaluate $\int_{\gamma} \left(\frac{e^{2z}}{z-2} + \frac{e^{3z}}{(z+5)^3}\right) dz$ for each of the following curves γ

a. The circle of radius 1 centered at 0 and travelled once counterclockwise.

- **b.** The circle of radius 3 centered at 0 and travelled once counterclockwise.
- c. The circle of radius 6 centered at 0 and travelled once counterclockwise.
- **d.** The path formed by following straight line segments from 6 + i to -6 i, from there to -6 + i, then to 6 - i, and finally back to 6 + i.

Spring 2008 # 3. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane.

- **a.** Find a function f which maps D one-to-one conformally onto the quarter plane $Q = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0 \text{ and } \operatorname{Im}(z) > 0\}.$
- **b.** Find a function g which maps D one-to-one conformally onto D with g(1/2) = 1/3.

Spring 2008 # 4. Show that all zeros of the polynomial $p(z) = z^6 - 5z^2 + 10$ lie in the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}.$

Spring 2008 # 5. Let $f(z) = \frac{1}{(z-1)(z-2)}$. Find the Laurent series for f valid in each of the following regions.

a. $\{z \in \mathbb{C} : |z| < 1\}$ **b.** $\{z \in \mathbb{C} : 1 < |z| < 2\}$ **c.** $\{z \in \mathbb{C} : |z| > 2\}$

Spring 2008 # **6. a.** Use complex analysis to prove the fundamental theorem of algebra: If p is a nonconstant polynomial with coefficients in \mathbb{C} , then there is at least one point w in \mathbb{C} with p(w) = 0.

b. Suppose $f: \mathbb{C} \to \mathbb{C}$ is analytic on all of \mathbb{C} , and $|f^{(5)}(z)| < 17$ for all z in \mathbb{C} . Show that f is a polynomial. What can you say about the degree of f?

Spring 2008 # 7. Evaluate each of the following integrals. Sketch any curves and discuss estimates needed to justify your method.

a. $\int_0^{2\pi} \frac{\sin^2 t}{5 + 4\cos t} dt$ **b.** $\int_0^\infty \frac{x^2 + 1}{x^4 + 1} dx$

End of Exam

 $\mathbf{2}$