California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Complex Analysis Spring 2005 Chang*, Cooper, Hoffman

Do five of the following seven problems.

If you attempt more than 5, the best 5 will be used.

Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.

 $\mathbb R$ denotes the set of real numbers.

 $\operatorname{Re}(z)$ denotes the real part of the complex number z.

Im(z) denotes the imaginary part of the complex number z.

 \overline{z} denotes the complex conjugate of the complex number z.

|z| denotes the absolute value of the complex number z.

 $\log z$ denotes the principal branch of $\log z$.

Arg z denotes the principal branch of arg z.

D(z;r) is the open disk with center z and radius r.

A *domain* is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$2\sin a \cos b = \sin(a+b) + \sin(a-b)$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a)$$

 $2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$

$$\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

Spring 2005 # 1. Sketch each of the following regions in the complex plane.

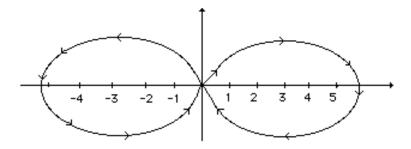
- (a) $\{z \in \mathbb{C} : \operatorname{Re}(z^2) > 1\}$
- (b) $\{z \in \mathbb{C} : \operatorname{Im}(z^2) > 1\}$
- (c) $\{z \in \mathbb{C} : |2z-1| < |2-z|\}$

Spring 2005 # 2. For each of the following real valued functions u(x, y) determine whether it can be the real part of an analytic function f(z) = f(x + iy) = u(x, y) + iv(x, y) with f(0) = 3i. If it can be, find v(x, y). If it cannot, explain how you know that.

a. $u(x, y) = x^2 + y^2$ **b.** $u(x, y) = x^3 - 3xy^2 + y$

Spring 2005 # 3. Evaluate the integral $\int_{\gamma} \frac{e^z dz}{z^2 - 2z - 15}$ Where γ is

- (a) the circle of radius $\{z : |z| = 2\}$ traveled once counterclockwise.
- (b) the circle of radius $\{z : |z| = 4\}$ traveled once counterclockwise.
- (c) the circle of radius $\{z : |z| = 6\}$ traveled once counterclockwise.
- (d) The "figure eight" shown in the sketch.



The curve γ for Problem 5d

Spring 2005 # 4. Let $f(z) = \frac{z^2 - 1}{\cos(\pi z/2)}$.

- **a.** Find all the singularities of f in \mathbb{C} and classify each as removable, a pole, or essential. For poles, give the order.
- **b.** Explain how you know that f(z) has a series expansion of the form $\sum_{n=0}^{\infty} a_n z^n$ valid for z near 0, and compute a_0, a_1 , and a_2 .
- c. Find the radius of convergence of the series in part (b) and explain how you know.

Spring 2005 # 5. Evaluate each of the following three quantities. Show any contours and explain any estimates needed to justify your method. The curve γ for part (c) is the circle of radius 1 centered at the origin and travelled once in the counterclockwise direction.

a.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx$$
 b. $\int_{0}^{2\pi} \frac{1}{3 + 2\cos\vartheta} d\vartheta$ **c.** $\int_{\gamma} z^5 \cos(1/z) dz$

Spring 2005 # 6. Let C_1 and C_2 be the circles (each with the origin deleted)

$$C_1 = \{ z \in \mathbb{C} : |z - 1| = 1 \} \setminus \{ 0 \} \quad , \quad C_2 = \{ z \in \mathbb{C} : |z - 2| = 2 \} \setminus \{ 0 \}$$

Let A be the region between these circles: $A = \{z \in \mathbb{C} : |z - 1| > 1 \text{ and } |z - 2| < 2\}$. Let f(z) = 4/z

a. Describe and sketch the image sets $f(C_1)$, $f(C_2)$, and f(A) justifying your answers.

b. With x = Re(z) and y = Im(z), find a real valued function $\phi(x, y)$ which satisfies all the following conditions

i. ϕ is harmonic on A

ii. $\phi(x,y) = 1$ for $z = x + iy \in C_2$

iii. $\phi(x,y) = 2$ for $z = x + iy \in C_1$.

Spring 2005 # 7. Let γ be the circle $\{z \in \mathbb{C} : |z| = 1\}$.

Suppose f is a function analytic on an open set contining γ and its interior and that |f(z)| < 1 for each z on γ .

Show that f has exactly one fixed point inside γ . (That is, there is exactly one z in the open unit disk with f(z) = z.)

End of Exam