California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Complex Analysis Spring 2004 Chang, Hoffman*, Katz

Do five of the following seven problems.

Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. Arg z denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a)$

$$2\cos a \cos b = \cos(a-b) + \cos(a+b)$$
$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

Spring 2004 # 1. Let $p(z) = 1 + z^2 + z^4 + z^6 + z^8 + z^{10}$ and f(z) = 1/p(z)

a. Identify and sketch the set of zeros of the polynomial p.

b. Find the radius of convergence of the Taylor series for f centered at 1. Suggestion: Consider $(1 - z^2)p(z)$.

Spring 2004 # 2. For positive integer n, let $(1 + z)^n = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$. Use standard complex analysis techniques to establish the binomial formula:

$$c_k = \binom{n}{k} = \frac{n!}{k! (n-k)!} \quad \text{for } 0 \le k \le n.$$

Spring 2004 # **3.** Let *D* be the open unit disk in \mathbb{C} . Prove or disprove each of the following statements.

- **a.** There is a function $f : \mathbb{C} \to D$ which is analytic on \mathbb{C} and which maps \mathbb{C} onto D.
- **b.** There is a function $g: D \to \mathbb{C}$ which is analytic on D and which maps D one-to-one onto \mathbb{C} .
- **c.** There is a function $h: D \to \mathbb{C}$ which is analytic on D and which maps D onto \mathbb{C} .

Spring 2004 # 4. Evaluate $\int_{\gamma} \frac{e^z}{(z-2)(z-4)} dz$ for each of the following paths γ .

- **a.** the circle of radius 1 centered at 0 traveled once counterclockwise
- **b.** the circle of radius 3 centered at 0 traveled once counterclockwise
- c. the circle of radius 5 centered at 0 traveled once counterclockwise
- **d.** the polygonal path following straight line segments from 3i to 6-3i to 6+3i to -3i and back to 3i.

Spring 2004 # 5. Evaluate each of the following integrals. Show any curves and explain estimates needed to justify your method.

a.
$$\int_0^{\pi} \frac{dt}{4 + \cos t}$$
 b. $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 2x^2 + 1}$

Spring 2004 # 6. Suppose n is an integer and $n \ge 3$.

Show that all of the solutions of the equation $nz^n = 1 + z + z^2 + \cdots + z^n$ lie in the disk $\{z \in \mathbb{C} : |z| < 3/2\}.$

Spring 2004 # 7. Let $D = \{z \in \mathbb{C} : |z| < 2\}$. Suppose $f : D \setminus \{1\} \to \mathbb{C}$ is analytic on D except for a pole of order 1 at 1 with residue b at that point. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for |z| < 1.

a. Show that $\lim_{n \to \infty} a_n = -b$.

(Suggestion: Write out the series for h(z) = (z - 1)f(z) centered at 0 in terms of the coefficients a_n and consider its partial sums evaluated at 1.)

a. Illustrate the result of part **a** using $f(z) = \frac{1}{z-2} - \frac{1}{z-1}$

(That is: Compute the series expansion for f(z) centered at 0. Compute the residue of f at 1, and show that the coefficients of that series converge to the negative of that residue.)

End of Exam