California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Complex Analysis Spring 2004 Chang, Hoffman*, Katz

Do five of the following seven problems.
Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Spring 2004 \# 1. Let $p(z)=1+z^{2}+z^{4}+z^{6}+z^{8}+z^{10}$ and $f(z)=1 / p(z)$
a. Identify and sketch the set of zeros of the polynomial p.
b. Find the radius of convergence of the Taylor series for f centered at 1 .

Suggestion: Consider $\left(1-z^{2}\right) p(z)$.
Spring $2004 \#$ 2. For positive integer n, let $(1+z)^{n}=c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}$. Use standard complex analysis techniques to establish the binomial formula:

$$
c_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { for } 0 \leq k \leq n
$$

Spring $2004 \# 3$. Let D be the open unit disk in \mathbb{C}. Prove or disprove each of the following statements.
a. There is a function $f: \mathbb{C} \rightarrow D$ which is analytic on \mathbb{C} and which maps \mathbb{C} onto D.
b. There is a function $g: D \rightarrow \mathbb{C}$ which is analytic on D and which maps D one-to-one onto \mathbb{C}.
c. There is a function $h: D \rightarrow \mathbb{C}$ which is analytic on D and which maps D onto \mathbb{C}.

Spring 2004 \# 4. Evaluate $\int_{\gamma} \frac{e^{z}}{(z-2)(z-4)} d z$ for each of the following paths γ.
a. the circle of radius 1 centered at 0 traveled once counterclockwise
b. the circle of radius 3 centered at 0 traveled once counterclockwise
c. the circle of radius 5 centered at 0 traveled once counterclockwise
d. the polygonal path following straight line segments from $3 i$ to $6-3 i$ to $6+3 i$ to $-3 i$ and back to $3 i$.

Spring 2004 \# 5. Evaluate each of the following integrals. Show any curves and explain estimates needed to justify your method.

$$
\text { a. } \int_{0}^{\pi} \frac{d t}{4+\cos t} \quad \text { b. } \int_{-\infty}^{\infty} \frac{d x}{x^{4}+2 x^{2}+1}
$$

Spring 2004 \# 6. Suppose n is an integer and $n \geq 3$.
Show that all of the solutions of the equation $n z^{n}=1+z+z^{2}+\cdots+z^{n}$ lie in the disk $\{z \in \mathbb{C}:|z|<3 / 2\}$.

Spring 2004\#7. Let $D=\{z \in \mathbb{C}:|z|<2\}$. Suppose $f: D \backslash\{1\} \rightarrow \mathbb{C}$ is analytic on D except for a pole of order 1 at 1 with residue b at that point. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $|z|<1$.
a. Show that $\lim _{n \rightarrow \infty} a_{n}=-b$.
(Suggestion: Write out the series for $h(z)=(z-1) f(z)$ centered at 0 in terms of the coefficients a_{n} and consider its partial sums evaluated at 1.)
a. Illustrate the result of part a using $f(z)=\frac{1}{z-2}-\frac{1}{z-1}$
(That is: Compute the series expansion for $f(z)$ centered at 0 . Compute the residue of f at 1 , and show that the coefficients of that series converge to the negative of that residue.)

End of Exam

