California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Complex Analysis Spring 2003 Chang, Hoffman*, Katz

Do five of the following eight problems.
Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Spring $2003 \# 1 . \quad$ a. Show that if z and w are in \mathbb{C}, then

$$
|z-w|^{2}=|z|^{2}+|w|^{2}-2 \operatorname{Re}(z \bar{w})
$$

b. Use the result of part a to obtain the "law of cosines" for triangles.

Spring 2003\#2. Let $f(z)=\frac{1}{(z-1)(z-2)}$ and $g(z)=\frac{z}{(z-1)(z-2)}$.
Let γ be the circle of radius 4 centered at the origin and traveled once in the counterclockwise direction. Let $A=\{z \in \mathbb{C}:|z|>3\}$.
a. Evaluate $\int_{\gamma} f(z) d z$
b. Evaluate $\int_{\gamma} g(z) d z$.
c. Show there is no analytic function $G: A \rightarrow \mathbb{C}$ such that $G^{\prime}(z)=g(z)$ for all z in A.
d. Show there is an analytic function $F: A \rightarrow \mathbb{C}$ such that $F^{\prime}(z)=f(z)$ for all z in A. (You do not need to actually display such a function, but if you can, that would be one way to answer the problem.)

Spring 2003\#3. Let $A=\{z \in \mathbb{C}: 0<|z|<1\}$, and suppose that $f: A \rightarrow \mathbb{C}$ is analytic on A. For $0<r<1$, define $m(r)$ by $m(r)=\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta$.

Show that $m(r)$ is constant on the inteval $0<r<1$.
Spring 2003\#4. Suppose $\left\{p_{k}\right\}_{k=1}^{\infty}$ is a sequence of polynomials and that $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function such that $p_{k}(z) \rightarrow f(z)$ as $k \rightarrow \infty$ with the convergence uniform on each closed disk $D_{R}=\{z \in \mathbb{C}:|z| \leq R\}$.
a. Show that if there is a finite constant M such degree $\left(p_{k}\right) \leq M$ for each k, then f must be a polynomial.
b. Give an example to show that if there is no such constant M, then f might not be a polynomial.

Spring 2003\#5. How may solutions are there (counting possible multiplicity) to the equation $e^{z}=4 z+1$ in the disk $D=\{z \in \mathbb{C}:|z| \leq 1\}$?

Spring $2003 \#$ 6. For each of the following regions, give reasons why there can be no analytic function from \mathbb{C} one-to-one onto that region. (Do not use Picard's Theorem.)
a. $A=\{z \in \mathbb{C}:|z|<1\}$
b. $B=\{z \in \mathbb{C}: \operatorname{Re}(z)>1\}$
c. $C=\mathbb{C} \backslash\{$ the non-positive real axis $\}=\mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Im}(z)=0$ and $\operatorname{re}(z) \leq 0\}$
d. $D=\mathbb{C} \backslash\{0\}$

Spring 2003 \# 7. Evaluate each of the following integrals. Show any contours and explain any estimates needed to justify your method.
a. $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+16} d x$
b. $\int_{0}^{2 \pi} \frac{1}{2+\cos \theta} d \theta$

Spring 2003 \# 8. For each positive real number t, define $g_{t}(z)$ by $g_{t}(z)=(1+t z)^{t}$.
a. Why doe $g_{t}(z)$ have an expansion of the form $g_{t}(z)=\sum_{n=0}^{\infty} P_{n}(t) z^{n}$ valid for z at least in some disk around $z=0$?
b. Find $P_{0}(t), P_{1}(t)$, and $P_{2}(t)$.
c. What is the radius of convergence of the series in a? (Be sure to consider the possibilties that t is an integer and that t is not an integer.)

End of Exam

