California State University - Los Angeles Department of Mathematics and Computer Science Master's Degree Comprehensive Examination
 Complex Analysis Spring 2001
 Hoffman, Katz*, Kolesnik

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

Spring 2001 \# 1. Describe or sketch each of the following sets in \mathbb{C}.
a. $A=\{z \in \mathbb{C}:|z-2|>|z-3|\}$
b. $B=\{z \in \mathbb{C}: 1 / z=\bar{z}\}$
c. $C=\left\{z \in \mathbb{C}:\left|z^{2}\right|=\operatorname{Im}(z)\right\}$
d. $D=\left\{z \in \mathbb{C}:\left|z^{2}-1\right|<1\right\} \quad$ Suggestion: In part (d), $z^{2}=w$ lies in some disk. What disk? First sketch that disk, then sketch the set of all z which square into it.

Spring 2001 \# 2. Suppose Ω is an open connected subset of \mathbb{C}. For z in Ω, let $z=x+i y$ with x and y real. For $f: \Omega \rightarrow \mathbb{C}$, let $u(x, y)=\operatorname{Re}(f(x+i y))$ and $v(x, y)=\operatorname{Im}(f(x+i y))$.
a. Show that if f is analytic on Ω, then u and v must satisfy the Cauchy-Riemann equations. (Derive those equations.)
b. Use the Cauchy-Riemann equations to show that if f is analytic on Ω and the image $f(\Omega)$ is contained in the diagonal line $v=u$, then $f(z)$ is constant on Ω.

Spring $2001 \#$ 3. For real t with $-1<t<1$ and z in \mathbb{C}, let $f(t, z)$ be defined by $f(t, z)=\left(1-2 t z+z^{2}\right)^{-1}$.
a. Explain why $f(t, z)$ has an expansion of the form

$$
f(t, z)=\frac{1}{1-2 t z+z^{2}}=\sum_{n=0}^{\infty} U_{n}(t) z^{n}
$$

b. Compute $U_{0}(t), U_{1}(t)$, and $U_{2}(t)$ in terms of t.
c. Recalling that t is a real number smaller than 1 in absolute value, show that the radius of convergence of this power series in z is 1 . (Hint: where are the singularities of $f(t, z)$ as a function of $z ?$)

Spring 2001 \# 4. Evaluate $\int_{\gamma} \frac{z d z}{z^{2}-4 z+3}$ for each of the curves γ indicated.
a γ the circle of radius 1 centered at 1 travelled counterclockwise.
b $\quad \gamma$ the circle of radius 2 centered at 2 travelled counterclockwise.
c γ the polygonal path produced by following stright line segments from $-2 i$ to $2 i$ to $4-2 i$ to $4+2 i$, and finally back to $-2 i$.

Spring 2001 \# 5. Evaluate each of the following integrals
a. $\int_{0}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$
b. $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x$

Show contours and indicate estimates needed to justify your method.
Spring $2001 \#$ 6. a. Find the number of zeros (counting multiplicity) for the function $f(z)=z^{6}+3 z+1$ in the annulus $A=\{z \in \mathbb{C}: 1 \leq|z| \leq 2\}$.
b. Can any of these zeros have multiplicity larger than one? (Hint: What is true of f at a point which is a multiple zero?)

Spring 2001\#7. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial and that $f^{\prime}(z)$ is never equal to 0 . Show that f must be one-to-one on \mathbb{C}. Is this true for an arbitrary entire function? (Prove or give a counterexample.)

End of Exam

