California State University – Los Angeles Department of Mathematics and Computer Science Master's Degree Comprehensive Examination Complex Analysis Spring 2001 Hoffman, Katz*, Kolesnik

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. Arg z denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

Spring 2001 # 1. Describe or sketch each of the following sets in \mathbb{C} .

a. $A = \{z \in \mathbb{C} : |z - 2| > |z - 3|\}$

b.
$$B = \{z \in \mathbb{C} : 1/z = \overline{z}\}$$

c.
$$C = \{z \in \mathbb{C} : |z^2| = \operatorname{Im}(z)\}$$

d. $D = \{z \in \mathbb{C} : |z^2 - 1| < 1\}$ Suggestion: In part (**d**), $z^2 = w$ lies in some disk. What disk? First sketch that disk, then sketch the set of all z which square into it.

Spring 2001 # 2. Suppose Ω is an open connected subset of \mathbb{C} . For z in Ω , let z = x + iy with x and y real. For $f: \Omega \to \mathbb{C}$, let u(x, y) = Re(f(x + iy)) and v(x, y) = Im(f(x + iy)).

a. Show that if f is analytic on Ω , then u and v must satisfy the Cauchy-Riemann equations. (Derive those equations.)

b. Use the Cauchy-Riemann equations to show that if f is analytic on Ω and the image $f(\Omega)$ is contained in the diagonal line v = u, then f(z) is constant on Ω .

Spring 2001 # 3. For real t with -1 < t < 1 and z in \mathbb{C} , let f(t, z) be defined by $f(t, z) = (1 - 2tz + z^2)^{-1}$.

a. Explain why f(t, z) has an expansion of the form

$$f(t,z) = \frac{1}{1 - 2tz + z^2} = \sum_{n=0}^{\infty} U_n(t) z^n$$

b. Compute $U_0(t)$, $U_1(t)$, and $U_2(t)$ in terms of t.

c. Recalling that t is a real number smaller than 1 in absolute value, show that the radius of convergence of this power series in z is 1. (Hint: where are the singularities of f(t, z) as a function of z?)

Spring 2001 # 4. Evaluate $\int_{\gamma} \frac{z \, dz}{z^2 - 4z + 3}$ for each of the curves γ indicated.

a γ the circle of radius 1 centered at 1 travelled counterclockwise.

b γ the circle of radius 2 centered at 2 travelled counterclockwise.

c γ the polygonal path produced by following stright line segments from -2i to 2i to 4-2i to 4+2i, and finally back to -2i.

Spring 2001 # 5. Evaluate each of the following integrals

a.
$$\int_0^\infty \frac{\cos 2x}{x^2 + 1} \, dx$$
 b. $\int_0^\infty \frac{x^2}{x^4 + 1} \, dx$

Show contours and indicate estimates needed to justify your method.

Spring 2001 # 6. a. Find the number of zeros (counting multiplicity) for the function $f(z) = z^6 + 3z + 1$ in the annulus $A = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$.

b. Can any of these zeros have multiplicity larger than one? (Hint: What is true of f at a point which is a multiple zero?)

Spring 2001 # 7. Suppose $f : \mathbb{C} \to \mathbb{C}$ is a polynomial and that f'(z) is never equal to 0. Show that f must be one-to-one on \mathbb{C} . Is this true for an arbitrary entire function ? (Prove or give a counterexample.)

End of Exam