## California State University - Los Angeles Mathematics <br> Masters Degree Comprehensive Examination

Complex Analysis Fall 2018

Akis*, Chang, Hoffman

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used.

Please
(1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
(2) Write on one side of the paper only
(3) Begin each problem on a new page
(4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: $\mathbb{C}$ denotes the set of complex numbers.
$\mathbb{R}$ denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number $z$.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number $z$.
$\bar{z}$ denotes the complex conjugate of the complex number $z$.
$|z|$ denotes the absolute value of the complex number $z$.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center $z$ and radius $r$.
A domain is an open connected subset of $\mathbb{C}$.

## MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Fall 2018 \# 1. Describe and sketch the set of all complex numbers $z$ satisfying each of the following.
a. $\quad \operatorname{Im}\left(z^{2}\right)>1$
b. $\left|e^{\left(z^{2}\right)}\right|<e$
c. $\quad\left|\frac{z-4}{z-6}\right|=1$

Fall $2018 \# 2$. Suppose $u: A \rightarrow \mathbb{C}$ is harmonic on an open set $A$ and $v: A \rightarrow \mathbb{C}$ is a harmonic conjugate for $u$ on $A$. Let $h: A \rightarrow \mathbb{C}$ be given by $h(x, y)=(u(x, y))^{2}-(v(x, y))^{2}$.
a. Show that $h$ is harmonic on $A$.
b. Find a harmonic conjugate $g(x, y)$ for $h$ on $A$.

Fall 2018 \# 3. Let $f(z)=\frac{e^{1 / z}}{z+1}$
a. Find all singularities of $f$ in the complex plane $\mathbb{C}$ and classify each as removable, a pole, or essential. For poles, give the order.
b. Find the residue of $f$ at each of the singularities found in part (a).

Fall $2018 \# 4$. Let $f(z)=\frac{1}{z^{3}(z-1)(z-2)}$. Find the Laurent series for $f$ in each of the following regions.
a. $A=\{z \in \mathbb{C}: 0<|z|<1\}$
b. $B=\{z \in \mathbb{C}: 1<|z|<2\}$
c. $C=\{z \in \mathbb{C}: 2<|z|\}$

Fall $2018 \#$ 5. Evaluate the integral $\int_{0}^{\pi} \frac{d \theta}{3+\cos \theta}$. Show all work leading to your answer.

Fall $2018 \#$ 6. If possible, find an entire function $h: \mathbb{C} \rightarrow \mathbb{C}$ such that $h(z)=0$ on the set $\{z \in \mathbb{C}:|z|<1\}$ and $h(z)=z$ on the set $\{z \in \mathbb{C}: 2<|z|\}$. If this is not possible, explain why such a function does not exist.

Fall $2018 \# 7$. Let $A=\{z \in \mathbb{C}: 0<\arg z<\pi / 1000\}$. Determine whether there is a conformal map of $A$ onto the disk $B=\{z \in \mathbb{C}:|z|<\pi / 1000\}$. State completely and clearly any theorems you are using.

## End of Exam

