California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Fall 2017 Akis*, Chang, Hoffman

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used. Please

- (1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of log z. $\operatorname{Arg} z$ denotes the principal branch of arg z. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$ Fall 2016 # 1. Evaluate TWO of the following three integrals. Draw any contours and show any estimates needed to justify your methods.

a.
$$\int_{|z|=3} \frac{e^{3z} dz}{(z-1)^2(z-2)}$$
 b. $\int_{-\pi}^{\pi} \frac{d\theta}{2-\cos\theta}$ **c.** $\int_{-\infty}^{\infty} \frac{x\sin x}{x^2+1} dx$

Fall 2017 # 2. How many zeros (counting multiplicity) does the polynomial $z^5 + 3z^3 + 7$ have in the region $\{z \in \mathbb{C} : 1 < |z| < 2\}$?

Show your work and state carefully what theorems you are using.

Fall 2017 # 3. Consider the series $\sum_{n=1}^{\infty} (n+1)z^n$.

a. For which complex numbers z does this series converge?

b. For those z, let f(z) be the sum of the series and Evaluate $f^{(5)}(0)$.

c. Find f(z).

(Suggestion: Think about derivatives or integrals.)

Fall 2017 # 4. a. [4 pts] Find a nonconstant function $p : \mathbb{C} \to \mathbb{C}$ which is analytic on all of \mathbb{C} with p(1) = 0 and p(2) = 0.

(This really is about as easy as it sounds. It is intended to get you started.)

b. [9 pts] Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in \mathbb{C} . Find a nonconstant function $f : D \to D$ which is analytic on all of D with f(1/4) = 0 and f(1/2) = 0. Justify your answer.

c.[7 pts] Can the function f in part (b) be a fractional linear (Möbius) transformation? (Why or why not)

Fall 2017 # 5. Suppose $f : \mathbb{C} \to \mathbb{C}$ is entire and that |f(z)| > 1 for all z in \mathbb{C} . Show that f must be constant on \mathbb{C} .

Fall 2017 # 6. If possible, give an example of an entire function $f : C \to C$ such that f'(0) = 0 and f(z) = z for all z with |z| > 1. If not possible, explain fully stating any relevant theorems supporting your answer

Fall 2017 # 7. a. State clearly and completely the Riemann Mapping Theorem

b. Which of the following sets are conformally equivalent to $\{z \in \mathbb{C} : |z| < 1\}$, the open unit disk in \mathbb{C} ? Fully justify your answers (why or why not).

i. \mathbb{C}

ii. $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}$

iii. $\{z \in \mathbb{C} : z \neq 0\}$

iv. $\{x + iy \in \mathbb{C} : 0 < x \text{ and } \sin(1/x) < y < 2\}$

v. $\mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Re} z \leq 0 \text{ and } \operatorname{Im} z = 0\}$

End of Exam