California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Fall 2012 Chang, Gutarts, Hoffman*

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b) \qquad 2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b) \qquad 2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a) \qquad \cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$ Fall 2012 # 1. Suppose a and z are in \mathbb{C} with |z| = 1 and |a| < 1. Show that

$$\left|\frac{z-a}{1-\bar{a}z}\right| = 1.$$

Fall 2012 # 2. a. (4 points) Find a nonconstant function $f : \mathbb{C} \to \mathbb{C}$ which is analytic on all of \mathbb{C} with f(1/2) = 0 and f(1/3) = 0.

(This really is about as easy as it sounds. It is intended to get you started.)

b. (10 points) Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. Find a nonconstant function $g: D \to D$ which is analytic on all of D with g(1/2) = 0 and g(1/3) = 0. Justify you answer.

c. (6 points) Can the function g in part (b) be a fractional linear (Möbius) transformation? (Why or why not)

Fall 2012 # 3. Consider the function
$$f(z) = e^{2z} \left(\frac{1}{(z+4)} + \frac{1}{(z-2)^2} \right)$$
. Evaluate $\int_{\gamma} f(z) dz$ for each of the following curves.

a. γ_a = the circle of radius 1 centered at the origin and travelled once in the counterclockwise direction.

- **b.** γ_b = the circle of radius 3 centered at the origin and travelled once in the counterclockwise direction.
- c. γ_c = the circle of radius 5 centered at the origin and travelled once in the counterclockwise direction.
- **d.** γ_d = the curve in the sketch below oriented as indicated.

Fall 2012 # 4. Evaluate each of the following integrals. (Sketch curves and discuss any estimates needed to justify your answer.)

a.
$$\int_{-\infty}^{\infty} \frac{4}{x^4 + 1} dx$$
 b. $\int_{0}^{\pi} \frac{\cos \theta}{2 + \cos \theta} d\theta$

Fall 2012 # 5. Consider the series $\sum_{n=1}^{\infty} (n+1)z^n$.

a. For which complex numbers z does this series converge?

- **b.** For those z, let f(z) be the sum of the series and find f(z).
- **c.** Evaluate $f^{(5)}(0)$

(Suggestion: Think about derivatives or integrals.)

 $\mathbf{2}$

Fall 2012 # 6. For each positive real number t and complex number z, let

$$f(t,z) = f_t(z) = e^{2tz - z^2}$$

a. Explain why f(t, z) has a representation of the form

$$f(t,z) = \sum_{n=0}^{\infty} \frac{H_n(t)}{n!} z^n$$

valid for z near 0.

- **b.** Find $H_0(t)$, $H_1(t)$, and $H_2(t)$.
- **c.** For which complex z is this expansion valid?

Fall 2012 # 7. Let $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2-4)}$.

- **a.** Find all the singularities of f in \mathbb{C} , and classify each as removable, a pole (specify the order), or essential.
- **b.** Find the residue of f at each of these singularities.

End of Exam