California State University – Los Angeles Mathematics Masters Degree Comprehensive Examination

Complex Analysis Fall 2009 Chang*, Gutarts, Hoffman

Do five of the following eight problems. If you attempt more than 5, the best 5 will be used. Please

- (1) Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only
- (3) Begin each problem on a new page
- (4) Assemble the problems you hand in in numerical order

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. $\operatorname{Arg} z$ denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2 \sin a \sin b = \cos(a - b) - \cos(a + b)$ $2 \cos a \cos b = \cos(a - b) + \cos(a + b)$ $2 \sin a \cos b = \sin(a + b) + \sin(a - b)$ $2 \cos a \sin b = \sin(a + b) - \sin(a - b)$ $\sin(a + b) = \sin a \cos b + \cos a \sin b$ $\cos(a + b) = \cos a \cos b - \sin a \sin b$ $\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2} \cos(2a)$ $\cos^2 a = \frac{1}{2} + \frac{1}{2} \cos(2a)$

1

Fall 2009 # 1. Describe and sketch each of the following sets of points in \mathbb{C} . a. $A = \{z \in \mathbb{C} : |z - 1| = 2 |z|\}.$ b. $\operatorname{Re}(z^2) \ge 0$ c. $\operatorname{Im}(z^2) \ge 2$

Fall 2009 # 2. Suppose f is an entire function and that $\operatorname{Re}(f(z)) = \operatorname{Im}(f(z))$ for every z in \mathbb{C} . Show that f must be constant.

Fall 2009 # 3. Suppose w(x, y) is a real valued function of two real variables x and y such that w(1, 2) = 3 and the function

$$f(z) = f(x + iy) = 2x - 4xy + 3y + iw(x, y)$$

is an analytic function of z. Find w(2,3).

Fall 2009 # 4. Consider the function $f(z) = \frac{z^5 + \sin(2z)}{z^6}$.

- **a.** Find all singularities of f in \mathbb{C} and classify each as removable, a pole (specify the order), essential, or other. (Give reasons for your answer.)
- **b.** Evaluate $\int_{\gamma} f(z) dz$ where γ is the circle of radius 1 centered at 0 travelled once in the counterclockwise direction.

Fall 2009 # 5. Evaluate two of the following three integrals. Show contours and discuss estimates needed to justify your method.

a.
$$\int_{-\infty}^{\infty} \frac{1}{x^6 + 1} dx$$
 b. $\int_{-\infty}^{\infty} \frac{e^{x/2}}{1 + e^x} dx$ **c.** $\int_{0}^{\infty} \frac{\cos 2x}{1 + x^4} dx$

(In part **b** you might want to use the rectangle proceeding from -R to R along the real axis, then up to $R + 2\pi i$, from there to $-R + 2\pi i$, and finally back to -R.)

Fall 2009 # 6. Let $f(z) = z^5 + 3z + 1$ and $A = \{z \in \mathbb{C} : 1 < |z| < 2\}.$

- **a.** Counting each zero with its multiplicity (order), how many zeros does f have in the annulus A?
- **b.** Can any of the zeros of f in A have multiplicity (order) larger than 1? (Justify your answer.)

Fall 2009 # 7. What is wrong with the following argument other than the absurd conclusion. You should be able to discuss at least one error in each numbered line.

For complex z consider the function $f(z) = \frac{\sin z}{z^2 + 1}$

) If
$$|z| \ge 2$$
, then $|z^2 + 1| \ge |z|^2 - 1 \ge 3$ so that
 $|f(z)| = \frac{|\sin z|}{|z^2 + 1|} \le \frac{|\sin z|}{3} \le \frac{1}{3}.$

- (2) Since $|f(z)| \le 1/3$ on the circle of radius 2 centered at the origin, we also have $|f(z)| \le 1/3$ for |z| < 2 by the maximum modulus principle.
- (3) We now have $|f(z)| \leq 1/3$ for all z in \mathbb{C} , so f must be constant on \mathbb{C} by Liouville's theorem.

Since f is constant and $f(\pi) = (\sin \pi)/(\pi^2 + 1) = 0$, we have f(z) = 0 for all z in \mathbb{C} . In particular, $\sin x = 0$ for all real x.

Fall 2009 # 8. Consider the regions

(1

 $H = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\} \\ Q = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0 \text{ and } \operatorname{Re}(z) > 0\} \\ D = \{z \in \mathbb{C} : |z| < 1\}$

For each of the following, decide whether an analytic function $f : A \to B$ taking A one-to-one onto B is possible. If it is, find such a function. If it is not, explain how you know it is not possible.

a. $f_a : \mathbb{C} \to D$ **b.** $f_b : D \to H$ **c.** $f_c : H \to Q$ **d.** $f_d : \mathbb{C} \to H$

(Hint: two are possible and two are not.)

End of Exam