California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Complex Analysis Fall 2004 Chang, Cooper, Hoffman*, (Katz)

Do five of the following seven problems.

Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers. \mathbb{R} denotes the set of real numbers. $\operatorname{Re}(z)$ denotes the real part of the complex number z. $\operatorname{Im}(z)$ denotes the imaginary part of the complex number z. \overline{z} denotes the complex conjugate of the complex number z. |z| denotes the absolute value of the complex number z. $\operatorname{Log} z$ denotes the principal branch of $\log z$. Arg z denotes the principal branch of $\arg z$. D(z;r) is the open disk with center z and radius r. A domain is an open connected subset of \mathbb{C} .

MISCELLANEOUS FACTS

 $2\sin a \sin b = \cos(a-b) - \cos(a+b)$ $2\sin a \cos b = \sin(a+b) + \sin(a-b)$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\sin^2 a = \frac{1}{2} - \frac{1}{2}\cos(2a)$

 $2\cos a \cos b = \cos(a-b) + \cos(a+b)$ $2\cos a \sin b = \sin(a+b) - \sin(a-b)$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$

$$\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

Fall 2004 # 1. How many values are there for $(1+i)^{2/3}$? Write each in polar form $(re^{i\theta})$ and in rectangular form (a+bi). Sketch their location(s) in the plane.

Fall 2004 # **2.** For each of the following real valued functions u(x, y) determine whether it can be the real part of an analytic function f(z) = f(x + iy) = u(x, y) + iv(x, y) with Im(f(z)) = v(0, 0) = 0. If it can be, find v(x, y). If it cannot, explain how you know that.

a. $u(x,y) = x^3 + 3x^2y - 3xy^2 - y^3$ **b.** $u(x,y) = 4x^3y + 2xy - 1$

Fall 2004 # 3. Evaluate each of the following integrals.

- **a.** $\int_{\gamma} \frac{\sin(z^2)}{z^7} dz \quad \gamma$ is the circle of radius 1 centered at the origin and traveled once counterclockwise.
- **b.** $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx$ Show any contours and explain estimates needed to justify your method.

Fall 2004 # 4. Let A be the disk $A = \{z \in \mathbb{C} : |z - 1| < 1\}$. Let B be the half-disk $B = \{z \in \mathbb{C} : |z - 1| < 1 \text{ and } \operatorname{Im}(z) > 0\}$. Let C be the half-plane $C = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ Let D be the quarter-plane $D = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0 \text{ and } \operatorname{Im}(z) > 0\}$ Let E be the half-plane $E = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$

- **a.** Find $f: A \to C$ mapping A one-to-one analytically onto C
- **b.** Find $g: B \to E$ mapping B one-to-one analytically onto E

(Hint: How might D figure into this problem?)

Fall 2004 # 5. Let $p(z) = z^{10} - 3z^3 + 1$. Let A be the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$

a. Counting possible multiplicity, how many zeros does the polynomial p have in A?

b. Show that none of the zeros of *p* in *A* can have multiplicity larger than 1.

Fall 2004 # 6. Suppose $f : \mathbb{C} \to \mathbb{C}$ is analytic on \mathbb{C} and that it is an isometry in the sense that |f(z) - f(w)| = |z - w| for all z and w in \mathbb{C} . Show that there are constants a and b such that f(z) = az + b for all z in \mathbb{C}

Fall 2004 # 7. Let $A = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$. Let C_1 and C_2 be the boundary circles, $C_1 = \{z \in \mathbb{C} : |z| = 1\}$ and $C_2 = \{z \in \mathbb{C} : |z| = 2\}$. Suppose f is a complex valued function analytic on an open set containing A such that $|f(z)| \le 3$ for all z on C_1 and $|f(z)| \le 12$ for all z on C_2 . Show that $|f(z)| \le 3 |z|^2$ for all z in A.

End of Exam