California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Complex Analysis Fall 2004
Chang, Cooper, Hoffman*, (Katz)

Do five of the following seven problems.
Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Fall 2004 \# 1. How many values are there for $(1+i)^{2 / 3}$? Write each in polar form $\left(r e^{i \theta}\right)$ and in rectangular form $(a+b i)$. Sketch their location(s) in the plane.

Fall 2004 \# 2. For each of the following real valued functins $u(x, y)$ determine whether it can be the real part of an analytic function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ with $\operatorname{Im}(f(z))=v(0,0)=0$. If it can be, find $v(x, y)$. If it cannot, explain how you know that.
a. $u(x, y)=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}$
b. $u(x, y)=4 x^{3} y+2 x y-1$

Fall 2004 \# 3. Evaluate each of the following integrals.
a. $\int_{\gamma} \frac{\sin \left(z^{2}\right)}{z^{7}} d z \quad \gamma$ is the circle of radius 1 centered at the origin and traveled once counterclockwise.
b. $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x \quad$ Show any contours and explain estimates needed to justify your method.

Fall 2004 \# 4. Let A be the disk $A=\{z \in \mathbb{C}:|z-1|<1\}$.
Let B be the half-disk $B=\{z \in \mathbb{C}:|z-1|<1$ and $\operatorname{Im}(z)>0\}$.
Let C be the half-plane $C=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$
Let D be the quarter-plane $D=\{z \in \mathbb{C}: \operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$
Let E be the half-plane $E=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$
a. Find $f: A \rightarrow C$ mapping A one-to-one analytically onto C
b. Find $g: B \rightarrow E$ mapping B one-to-one analytically onto E
(Hint: How might D figure into this problem?)
Fall 2004\#5. Let $p(z)=z^{10}-3 z^{3}+1$. Let A be the annulus $A=\{z \in \mathbb{C}: 1<|z|<2\}$
a. Counting possible multiplicity, how many zeros does the polynomial p have in A ?
b. Show that none of the zeros of p in A can have multiplicity larger than 1 .

Fall 2004 \# 6. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic on \mathbb{C} and that it is an isometry in the sense that $|f(z)-f(w)|=|z-w|$ for all z and w in \mathbb{C}. Show that there are constants a and b such that $f(z)=a z+b$ for all z in \mathbb{C}

Fall $2004 \#$ 7. Let $A=\{z \in \mathbb{C}: 1 \leq|z| \leq 2\}$.
Let C_{1} and C_{2} be the boundary circles, $C_{1}=\{z \in \mathbb{C}:|z|=1\}$ and $C_{2}=\{z \in \mathbb{C}:|z|=2\}$.
Suppose f is a complex valued function analytic on an open set containing A such that $|f(z)| \leq 3$ for all z on C_{1} and $|f(z)| \leq 12$ for all z on C_{2}.

Show that $|f(z)| \leq 3|z|^{2}$ for all z in A.

End of Exam

