California State University - Los Angeles

 Department of MathematicsMaster's Degree Comprehensive Examination
Complex Analysis Fall 2001
Chang, Hoffman*, Katz
Retyped with corrections: 2/24/02 Hoffman

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Fall $2001 \#$. a Let $f(z)=1 / z$. Show that the image of the set $\{z \in \mathbb{C}: \operatorname{Re}(z)=$ $1 / 2\}$ under the function f is a circle with one point missing. Find the center and radius of that circle. What is the missing point?
b. Express $\cos ^{5} \theta$ as a linear combination of $\cos k \theta$ with $k=0,1,2,3,4,5$.

Fall $2001 \# 2$. For which complex values of z do each of the following series converge? Give reasons for you answers.

$$
\text { a. } \sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} \quad \text { b. } \quad \sum_{n=1}^{\infty} \frac{e^{n z}}{n^{2}}
$$

Fall $2001 \# 3$. Show that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{2 \pi}{2^{2 n}}\binom{2 n}{n}=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n} 2 \pi
$$

Fall $2001 \# 4$. Do two of the following three integrals. Show any contours and explain any estimates needed to justify your method.
a. Evaluate $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$
b. Show that $\int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x=\frac{\pi \ln 2}{4}$.

CORRECTION: This is wrong.
It should have been either $\int_{0}^{\infty} \frac{\ln x}{4+x^{2}} d x=\frac{\pi \ln 2}{4}$ or $\int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x=0$. The first is probably better.
c. Evaluate $\int_{0}^{\pi} \frac{1}{5+3 \cos \theta} d \theta$.

Fall 2001 \#5. a. Determine the coefficients of the power series expansion $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ which satisfies the differential equation

$$
z f^{\prime \prime}(z)+f^{\prime}(z)+z f(z)=0 \quad \text { with } f(0)=1
$$

(Note that a second initial condition, $f^{\prime}(0)=0$ comes automatically from the equation.)
b. Show that the resulting series converges to a function analytic on all of \mathbb{C}.

Fall 2001 \#6. a. Show that if $f: \Omega \rightarrow \mathbb{C}$ is analytic on an open set Ω, then the real and imaginary parts of f must satisfy the Cauchy-Riemann equations.
b. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be analytic on all of \mathbb{C} and suppose that $f(z+w)=f(z)+f(w)$ for all z and w in \mathbb{C}. Show that there is a constant a such that $f(z)=a z$ for all z in \mathbb{C}.
(There are many ways to do this. Suggestion: What is $f(n z)$ for integer n ?)

Fall 2001\#7. Let $A=\{z \in \mathbb{C}:|z-1|<1$ and $|z-2|<2\}$. Let C_{1} and C_{2} be the boundary circles $C_{1}=\{z \in \mathbb{C}:|z-1|=1\}$ and $C_{2}=\{z \in \mathbb{C}:|z-2|=2\}$.
a. (4 pts) Sketch the region A
b. (8 pts) Describe and sketch the image of the set A under the function $f(x)=1 / z$ giving reasons for your answer.
c. (8 pts) Find a function $u(x, y)$ which is harmonic except at $(0,0)$ with $u(x, y)=2$ when $x+i y \in C_{1} \backslash\{0\}$ and $u(x, y)=1$ when $x+i y \in C_{2} \backslash\{0\}$

SEMI-CORRECTION: This all right as written, but at least part a looks a little silly. The first inequality in the definition of A was typed backwards. It was intended to read $A=\{z \in \mathbb{C}:|z-1|>1$ and $|z-2|<2\}$.

End of Exam

