California State University - Los Angeles

 Department of Mathematics and Computer Science Master's Degree Comprehensive ExaminationComplex Analysis Fall 2000
Chang, Hoffman*, Kolesnik

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Fall 2000 \#1. Suppose a and b are different real numbers. Do either (A) or (B)
(A) Show that the set $C=\left\{z \in \mathbb{C}:\left|\frac{z-a}{z-b}\right|=2\right\}$ is a circle. Find the center and radius of that circle.
(OR)
(B) Show that the set $C=\left\{z \in \mathbb{C}: \operatorname{Re}\left(\frac{z-a}{z-b}\right)=0\right\}$ is a circle (with one point deleted). Find the center and radius of that circle.

Fall $2000 \# 2$. For z in \mathbb{C}, let $z=x+i y$ with x and y real. For each of the following real valued functions $u(x, y)$, determine whether there is a real valued function $v(x, y)$ such that the function $f(z)=u(x, y)+i v(x, y)$ is analytic and $f(0)=1+i$. If there is such a function v, find one and explain how you know that f is analytic. If there is not, explain how you know that there is not.
a. $u(x, y)=x^{2}+e^{x} \cos y$
b. $u(x, y)=x+e^{x} \cos y$

Fall 2000 \#3. Evaluate the integral $\int_{\gamma} \frac{e^{z} d z}{z^{2}-2 z-15}$ Where γ is
(a) the circle of radius $\{z:|z|=2\}$ traveled once counterclockwise.
(b) the circle of radius $\{z:|z|=4\}$ traveled once counterclockwise.
(c) the circle of radius $\{z:|z|=6\}$ traveled once counterclockwise.
(d) The "figure eight" shown in the sketch.

The curve γ for Problem 3d

Fall $2000 \# 4$. Evaluate each of the following integrals. Explain contours and any estimates needed to justify your methods.
a. $\int_{-\pi}^{\pi} \frac{\cos \theta}{5-4 \cos \theta} d \theta$
b. $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} e^{-i t x} d x \quad t>0$.

Fall 2000 \#5. Let A be the annulus $A=\{z \in \mathbb{C}: 1 / 2<|z|<3 / 2\}$.
a. Find the Laurent series for the function $\frac{1}{(2 z-1)(2 z-3)}$ valid in A
b. Suppose $f(z)$ is analytic on A. For real θ, let $F(\theta)=f\left(e^{i \theta}\right)$. Show that

$$
F(\theta)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta} \quad \text { where } \quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(\theta) e^{-i n \theta} d \theta
$$

Fall $2000 \# 6$. a. Find a conformal map $f(z)$ which maps the disk $D=\{z \in \mathbb{C}$: $|z-1|<1\}$ one to one onto the upper half plane.
b. Find a confromal map $f(z)$ which maps the disk $D=\{z \in \mathbb{C}:|z-1|<1\}$ one to one onto the set $W=\{z \in \mathbb{C}: 0<\operatorname{Arg}(z)<\pi / 4\}$.

Fall $2000 \#$ 7. Prove that the equation $e^{z}=4 z^{4}+1$ has 4 solutions in the disk $D=\{z \in \mathbb{C}:|z| \leq 1\}$ (counting possible multiplicity).

End of Exam

