Cal State Los Angeles Department of Mathematics
Complex Analysis Comprehensive Examination
Spring 2022
Committee: Akis, Gutarts, Shaheen*
Directions: Do five of the following seven problems. If you turn in more than five, the best five will be used.

Spring 2022 \# 1.

(a) Where is the function $f(z)=\sqrt{z}$ analytic? Here the square root is defined using the principal branch of the logarithm.
(b) Where is the function $f(z)=\sqrt{z-2}$ analytic?

Spring 2022 \# 2. Calculate $\int_{\gamma} \frac{e^{z}}{z^{2}(z-1)^{3}} d z$ where γ is the circle centered at 0 with radius 2 , oriented counter-clockwise

Spring $2022 \#$ 3. Find the Laurent series for $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$ on the region $A=\left\{z|0<|z|<1\}\right.$. Calculate the residue at $z_{0}=0$.

Spring 2022 \# 4. Use Reside Theory to evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+16}
$$

Spring $2022 \#$ 5. Consider the domain $D=\{z| | z \mid<1$ or $2<|z|\}$. Let f be defined on D as follows

$$
f(z)=\left\{\begin{array}{lll}
1 & \text { if } & |z|<1 \\
z & \text { if } & 2<|z|
\end{array}\right.
$$

Find an entire function $g(z)$ such that $f(z)=g(z)$ for all $z \in D$, or show that such a function $g(z)$ does not exist.

Spring $2022 \#$ 6. Let $f(z)=\frac{1}{\sin (\pi / z)}$. Find the singularities of $f(z)$. For each singularity of $f(z)$ characterize it as isolated or non-isolated. For each isolated singularity characterize it as essential, removable, or a pole.

Spring 2022 \# 7. Suppose that $f(z)$ is analytic on

$$
A_{1}=\left\{z \left\lvert\, \operatorname{Im}(z)<\frac{1}{2}\right.\right\}
$$

and that $g(z)$ is analytic on

$$
A_{2}=\{z| | z-3 \mid>1\} .
$$

Let $h(z)=f(z) \cdot g(z)$.
Consider the Taylor series $\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$ of $h(z)$ centered at $z_{0}=1$.
(a) Draw a picture of A_{1} and a picture of A_{2}.
(b) Given the above information, what is the largest R such that we know for sure that $\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$ converges on $A=\{z| | z-1 \mid<R\}$?
(c) Give a formula for a_{2} in terms of f and g.
[Hint: How is a_{2} expressed in terms of $h(z)$?]

