Cal State Los Angeles Department of Mathematics Complex Analysis Comprehensive Examination Spring 2022 Committee: Akis, Gutarts, Shaheen^{*}

Directions: Do five of the following seven problems. If you turn in more than five, the best five will be used.

Spring 2022 # 1.

- (a) Where is the function $f(z) = \sqrt{z}$ analytic? Here the square root is defined using the principal branch of the logarithm.
- (b) Where is the function $f(z) = \sqrt{z-2}$ analytic?

Spring 2022 # 2. Calculate $\int_{\gamma} \frac{e^z}{z^2(z-1)^3} dz$ where γ is the circle centered at 0 with radius 2, oriented counter-clockwise

Spring 2022 # 3. Find the Laurent series for $f(z) = \frac{z+1}{z^3(z^2+1)}$ on the region $A = \{z \mid 0 < |z| < 1\}$. Calculate the residue at $z_0 = 0$.

Spring 2022 # 4. Use Reside Theory to evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + 16}$$

Spring 2022 # 5. Consider the domain $D = \{z \mid |z| < 1 \text{ or } 2 < |z|\}$. Let f be defined on D as follows

$$f(z) = \begin{cases} 1 & \text{if } |z| < 1\\ z & \text{if } 2 < |z| \end{cases}$$

Find an entire function g(z) such that f(z) = g(z) for all $z \in D$, or show that such a function g(z) does not exist.

Spring 2022 # 6. Let $f(z) = \frac{1}{\sin(\pi/z)}$. Find the singularities of f(z). For each singularity of f(z) characterize it as isolated or non-isolated. For each isolated singularity characterize it as essential, removable, or a pole.

Spring 2022 # 7. Suppose that f(z) is analytic on

$$A_1 = \left\{ z \mid \operatorname{Im}(z) < \frac{1}{2} \right\}$$

and that g(z) is analytic on

$$A_2 = \{ z \mid |z - 3| > 1 \}.$$

Let $h(z) = f(z) \cdot g(z)$. Consider the Taylor series $\sum_{n=0}^{\infty} a_n (z-1)^n$ of h(z) centered at $z_0 = 1$.

- (a) Draw a picture of A_1 and a picture of A_2 .
- (b) Given the above information, what is the largest R such that we know for sure that $\sum_{n=0}^{\infty} a_n (z-1)^n$ converges on $A = \{z \mid |z-1| < R\}$?
- (c) Give a formula for a_2 in terms of f and g. [Hint: How is a_2 expressed in terms of h(z) ?]