California State University Los Angeles, Department of Mathematics

Complex Analysis Comprehensive Examination

Akis*, Gutarts, Shaheen
Do five of the following seven problems.

1. Describe and sketch each of the following sets of complex numbers:
a. $\quad A=\left\{z: 1<\left|z^{2}\right| \leq 4\right\}$
b. $\quad B=\left\{z: \operatorname{Im}\left(\frac{1}{z}\right)>1\right\}$
c. $\quad C=\left\{z: \operatorname{Re}\left(e^{z}\right)>0\right\}$
2. Let γ be a simple closed curve in the plane, oriented counterclockwise. Suppose that f is analytic inside and on γ and that $f(z)=2$ for all z on γ. Prove that $f(z)=2$ for all z inside γ.
3. Evaluate the integral $\int_{0}^{\infty} \frac{d x}{1+x^{6}}$.
4. Evaluate the integral $\int_{\gamma} \frac{d z}{z\left(e^{z}-1\right)}$, where γ is the unit circle oriented counterclockwise.
5. Give two Laurent series expansions for the function

$$
f(z)=\frac{1}{z^{2}(1-z)},
$$

and specify the regions in which those expansions are valid.
6. Show that the polynomial $z^{4}+z-1$ has one root in the set $\left\{z:|z|<\frac{1}{3}\right\}$ and the remaining three roots in $\left\{z: \frac{1}{3}<|z|<2\right\}$.
7. Consider the transformation $T(z)=\frac{z-a}{1-\bar{a} z}$, where a is a complex number of modulus less than 1 .
a. Show that $T^{-1}(z)=\frac{z+a}{1+\bar{a} z}$ is the inverse of T in the domain of definition of T.
b. Show that T maps the circle $|z|=1$ onto itself.
c. Show that T is a conformal map of $\mathbb{D}=\{z:|z|<1\}$ onto itself.

