Akis*, Gutarts, Shaheen

Do five of the following seven problems. If you attempt more than 5 , the best 5 will be used.

1. Evaluate

$$
\int_{\gamma} \frac{1}{e^{z}-1} d z
$$

where γ is the circle of radius 9 centered at 0 .
2. a. Show that $\left|e^{-2 z}\right|<1$, if and only if, $\operatorname{Re} z>0$.
b. Show that

$$
\left|\int_{\gamma} \frac{e^{-2 z}}{z} d z\right|<\frac{3}{\sqrt{5}}
$$

where γ is the line segment from $2+i$ to $5+i$.
3. For each of the following real valued functions of two variables $u(x, y)$, determine if there is a real valued function $v(x, y)$ such that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic. Either find $v(x, y)$, or explain why such function does not exist.
a. $\quad u(x, y)=\sin x-x y$
b. $u(x, y)=e^{-y} \sin x$
4. Find the Laurent series expansion for

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

valid on in each of the regions $0<|z|<1,1<|z|<\infty$, and find the residue of $f(z)$ at $z_{0}=0$.
5. Suppose n is a positive integer. Show there are exactly n solutions counting multiplicity, to the equation $e^{z}=4 z^{n}-1$ in the unit disk $|z|<1$.
6. Consider the arcs C_{1} defined by $z_{1}(t)=e^{i t}$ where $0 \leq t<\frac{3 \pi}{2}$, and C_{2} defined by $z_{2}(t)=t+i(t-1)$ where $0 \leq t \leq 1$.
a. Draw the contour $C=C_{1}+C_{2}$, and find its length.
b. Evaluate the integrals

$$
\int_{C_{1}} \frac{d z}{z}, \quad \int_{C_{2}} \frac{d z}{z}, \quad \int_{C} \frac{d z}{z}
$$

7. Evaluate the following integrals by using residues:
a. $\quad \int_{0}^{\infty} \frac{d x}{x^{4}+1}$
b. $\quad \int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}$
