Cal State Los Angeles Department of Mathematics
Complex Analysis Comprehensive Examination
Spring 2021
Committee: Akis, Gutarts, Shaheen*
Directions: Do five of the following seven problems. If you turn in more than five, the best five will be used.

Spring 2021 \# 1. Describe and sketch each of the following sets of complex numbers.
(a) $\left\{z \left\lvert\, \bar{z}=\frac{1}{z}\right.\right\}$
(b) $\left\{e^{z} \mid z=x+i y\right.$ and $1<x<2$ and $\left.\frac{3 \pi}{4}<y \leq \frac{5 \pi}{4}\right\}$
(c) $\begin{cases}z & |\quad| z-i \mid \leq \operatorname{Im}(z)\}\end{cases}$

Spring 2021 \# 2. Compute the following integrals.
(a) $\int_{\gamma} \frac{e^{z^{2}}}{z^{3}} d z$ where γ is the unit circle oriented counter-clockwise
(b) $\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x$

Spring $2021 \#$ 3. Let $f(z)=\frac{\sin (z)}{\left(e^{z}-1\right)^{2}}$
(a) Classify the singularity of f at $z_{0}=0$. That is, is it a removable singularity, a pole of order m, or an essential singularity?
(b) Compute the integral $\int_{\gamma} f(z) d z$ where γ is the unit circle oriented counter-clockwise

Spring $2021 \# 4$. Let $p(z)=z^{4}+3 z^{3}+6$.
(a) Show that $p(z)$ has three zeros (counting multiplicity) in the set $\{z||z|<2\}$
(b) Show that $p(z)$ has one zero (counting multiplicity) in the set $\{z|2 \leq|z|<4\}$

Spring 2021 \# 5. Prove that a sequence of complex numbers $\left\{z_{n}\right\}$ converges if and only if $\left\{z_{n}\right\}$ is Cauchy.
Note: You may use the fact that \mathbb{R} is complete.
Spring $2021 \#$ 6. We say a function $f: \mathbb{R} \rightarrow \mathbb{R}$ preserves orientation if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, and reverses orientation if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
If possible, find an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\operatorname{Im}[g(x+i 0)]=0=\operatorname{Re}[g(0+i y)]
$$

and $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=g(x+i 0)$ preserves orientation, while $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{2}(y)=g(0+i y)$ reverses orientation. If not possible, prove that no such function g exists.

Spring 2021\#7. If possible, find an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
g^{\prime}(z)= \begin{cases}z & \text { if }|z|<1 \\ 2 z & \text { if }|z|>2\end{cases}
$$

If not possible, prove that no such function g exists.

