Cal State Los Angeles Department of Mathematics Complex Analysis Comprehensive Examination Spring 2021 Committee: Akis, Gutarts, Shaheen^{*}

Directions: Do five of the following seven problems. If you turn in more than five, the best five will be used.

Spring 2021 # **1**. Describe and sketch each of the following sets of complex numbers.

(a) $\left\{ z \mid \overline{z} = \frac{1}{z} \right\}$ (b) $\left\{ e^{z} \mid z = x + iy \text{ and } 1 < x < 2 \text{ and } \frac{3\pi}{4} < y \le \frac{5\pi}{4} \right\}$ (c) $\left\{ z \mid |z - i| \le \operatorname{Im}(z) \right\}$

Spring 2021 # 2. Compute the following integrals.

(a) $\int_{\gamma} \frac{e^{z^2}}{z^3} dz$ where γ is the unit circle oriented counter-clockwise (b) $\int_{0}^{\infty} \frac{x^2}{1+x^4} dx$

Spring 2021 # 3. Let $f(z) = \frac{\sin(z)}{(e^z - 1)^2}$

- (a) Classify the singularity of f at $z_0 = 0$. That is, is it a removable singularity, a pole of order m, or an essential singularity?
- (b) Compute the integral $\int_{\gamma} f(z)dz$ where γ is the unit circle oriented counter-clockwise

Spring 2021 # 4. Let $p(z) = z^4 + 3z^3 + 6$.

- (a) Show that p(z) has three zeros (counting multiplicity) in the set $\{z \mid |z| < 2\}$
- (b) Show that p(z) has one zero (counting multiplicity) in the set $\{z \mid 2 \le |z| < 4\}$

Spring 2021 # 5. Prove that a sequence of complex numbers $\{z_n\}$ converges if and only if $\{z_n\}$ is Cauchy.

Note: You may use the fact that \mathbb{R} is complete.

Spring 2021 # 6. We say a function $f : \mathbb{R} \to \mathbb{R}$ preserves orientation if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$, and reverses orientation if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

If possible, find an entire function $g: \mathbb{C} \to \mathbb{C}$ such that

Im
$$[g(x+i0)] = 0 = \operatorname{Re} [g(0+iy)],$$

and $f_1 : \mathbb{R} \to \mathbb{R}$ defined by $f_1(x) = g(x + i0)$ preserves orientation, while $f_2 : \mathbb{R} \to \mathbb{R}$ defined by $f_2(y) = g(0 + iy)$ reverses orientation. If not possible, prove that no such function g exists.

Spring 2021 # 7. If possible, find an entire function $g: \mathbb{C} \to \mathbb{C}$ such that

$$g'(z) = \begin{cases} z & \text{if } |z| < 1\\ 2z & \text{if } |z| > 2 \end{cases}$$

If not possible, prove that no such function g exists.