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ABSTRACT

Finding Exact Values for the Parameter of the Lonely Runner Conjecture

By

Daniel Collister

Consider D to be a finite set of positive integers. This thesis focuses on two

parameters of D. The first parameter treats the elements of D as being the speeds

of runners. This parameter, denoted κ(D), is the value of the maximum possible

distance a runner can be from any other runner on a track, given that all the runners

have constant speeds and start at the same time from the same position. The second

parameter, denoted μ(D), deals with the density of integral sequences with missing

differences in D. This thesis studies the two parameters for the family of finite sets

of positive integers D = {2, 3, x, y}, and finds values for the parameters for many x

and y.
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CHAPTER 1

Introduction

Let D be a set of finite positive integers. In this thesis we focus on two

parameters of D. First is the parameter involved in the Lonely Runner Conjecture,

denoted κ(D). Second is the parameter used in defining the density of sequences with

missing differences, denoted μ(D). This thesis studies the values of κ(D) and μ(D)

for the family of sets D = {2, 3, x, y}.

The Lonely Runner Conjecture, as first given by Willis [18] and poetically

named by Goddyn [3], is stated as follows. Consider k runners on a circular track. At

t = 0, all runners are at the same position and start to run; the runner’s speeds are

pairwise distinct and all runners keep the same speed. A runner is said to be lonely

at time t if he is at a distance of at least 1
k
from every other runner at time t. The

lonely runner conjecture states that each runner is lonely at some time. That is, for

all finite sets D of positive integer speeds, the Lonely Runner Conjecture asserts that

κ(D) ≥ 1
|D|+1

. The assertion has been proven for |D| ≤ 6 ([1], [2], [4], [8], [9]).

The elements in a finiteD-set of integers can be treated as the speeds of objects

traveling around some circle with circumference c, with c ∈ Z. All of these elements

begin from some common point, which we refer to as the ”origin” of this circle. The

elements traverse the circle as time progresses, so we evaluate their positions, denoted

p, at any given time as being the remainder of their total distance traveled, denoted

d′, divided by c. This is in fact a modular calculation of their positions relative to the

origin, with p = d′ mod c, and as such, it is possible to find patterns in the positions

of all the elements for consecutive moments of time.

1



The parameter involved in the Lonely Runner Conjecture is defined as follows.

For any real number x, let ||x|| denote the minimum distance from x to an integer,

that is, ||x|| = min{�x� − x, x − �x	}. For a given finite set of integers, D, and any

real t, denote ||tD|| as the smallest value of ||td|| among all d ∈ D. κ(D), is the

supremum of ||tD|| among all real t. That is,

κ(D) = sup{α ∈ (0, 1/2) : ||td|| ≥ α for some t ∈ (0, 1), for all d ∈ D}.

For a finite set D of positive integers, the parameter κ(D) is closely related

to another parameter of D called the “density of integral sequences with missing

differences”. For a finite set D of positive integers, a sequence S of non-negative

integers is called a D-sequence if |x − y| 
∈ D for any x, y ∈ S. Denote S(n) as

|S ∩{0, 1, 2, · · · , n− 1}|. The upper density δ̄(S) and the lower density δ(S) of S are

defined, respectively, by δ̄(S) = limn→∞S(n)/n and δ(S) = limn→∞S(n)/n. We say

S has density δ(S) if δ̄(S) = δ(S) = δ(S).The parameter of interest is the density of

D, μ(D), defined by

μ(D) := sup { δ(S) : S is a D-sequence}.

It is known that for any set D [5]:

μ(D) ≥ κ(D).

The parameters κ(D) and μ(D) are closely related to coloring parameters of

distance graphs. Let D be a set of positive integers. The distance graph generated by

D, denoted as G(Z, D), has all integers Z as the vertex set. Two vertices are adjacent

whenever their absolute value difference falls in D. The chromatic number (minimum
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number of colors in a proper vertex-coloring) of the distance graph generated by D

is denoted by χ(D). It is known that χ(D) ≤ � 1
κ(D)

� for any set D [21].

The fractional chromatic number of a graph G, denoted by χf (G), is the

minimum ratio m
n
,m, n ∈ Z+ of an [m]

n
-coloring, where an [m]

n
-coloring is a function

of V (G) to n-element subsets of [m] = {1, 2, ...,m} such that if uv ∈ E(G), then

f(u) ∩ f(v) = ∅, where E(G) denotes the set of edges of the graph G, and V (G)

denotes the set of vertices of G. It is known that for any graph G, χf (G) ≤ χ(G)

[21].

Denote the fractional chromatic number of G(Z, D) by χf (G). Chang et al. [6]

proved that for any set of positive integers D, it holds that χf (D) = 1
μ(D)

. Together

with the fact that χf (G) ≤ χ(G), we have

1
μ(D)

= χf (D) ≤ χ(D) ≤ � 1
κ(D)

�.

The chromatic number of distance graphs G(Z, D) with D = {2, 3, x, y} was

studied by several authors. For prime numbers x and y, the values of χ(D) for this

family were first studied by Eggleton, Erdös [10] and was later completely solved by

Voigt and Walther [16]. For general values of x and y, Kemnitz and Kolberg [13] and

Voigt and Walther [17] determined χ(D) for some values of x and y. This problem

was completely solved for all values of x and y by Liu and Setudja [14], in which

κ(D) was utilized as one of the main tools. In particular, it was proved in [14] that

κ(D) ≥ 1
3
for many sets in the form D = {2, 3, x, y}. Hence, by [3], for those sets it

holds that χ(D) = 3.

In this thesis, the exact values of κ(D) and μ(D) are studied for the family of

sets D = {2, 3, x, y}. This thesis is organized as follows. In chapters 3, 4 and 5 we

3



find κ(D) for most x and y, of sets D = {2, 3, x, y}. chapters 6, 7 and 8 are dedicated

to finding exact values and upper bounds for μ(D) for D = {2, 3, x, y}.
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CHAPTER 2

Preliminary Concept and Examples

When investigating values of κ(D), it is first necessary to understand how κ(D)

is found. Therefore the beginning of this chapter demonstrates some basic calculations

that restrict possible values of κ(D). This will be useful later when proceeding to the

calculation portion of this chapter.

Let D be a finite set of positive integers and let κ(D) = d
c
, such that c, d ∈ R.

We prove that c is the sum of two numbers from D, and that κ(D) ∈ Q. Let the

elements of D be treated as objects traveling around a circle, starting at the same

time from some common point, which we call the origin. Let c be the circumference

of this circle, and let δ be the position d distance away from the origin while −δ is

the reflected position across the origin, with −δ = |c− d|.

Assume that κ(D) is the largest possible fraction such that all elements are

at least an absolute distance d away from the origin at some time t. The positions

of both δ and −δ must each be occupied by an element of the D-set traveling along

the circle at t, with all elements being at least d distance away from the origin. Note

that this means that all elements are in the interval [δ,−δ].

To see why both positions must be simultaneously occupied, assume that all

elements are at least an absolute distance of δ away from the origin, and that −δ is

not occupied by an element. All elements are in the interval between [δ,−δ] on the

circle by our assumption. −δ not being occupied implies that there is some interval

of distance in [δ,−δ] between −δ and the nearest element. Define the element closest

to −δ as k1 and the position of k1 in [δ,−δ] as being p. All elements are in [δ,−δ] at
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t by assumption, so there is some time t′, with t′ > t, where the distance between the

new position of k1 and −δ is |−δ−p|
2

, while all other elements remain in [δ,−δ]. If we

assess the positions of all of the elements at t′, we find that the absolute distances of

all of the other elements to the origin have increased, with the smallest of these values

being larger than κ(D), which contradicts our original assumption that κ(D) is the

largest possible fraction such that all elements are at least a distance of d away from

the origin. Thus −δ must be occupied. Similar arguments may be used to show that

δ must be occupied. Thus we know that both δ and −δ are occupied at the moment

when all elements are within the interval [δ,−δ].

Let the time of simultaneous occupation of both δ and −δ be called t, and

let the two elements occupying the δ and −δ be called k1 and k2. Furthermore, let

r1 and r2 represent the number of revolutions around the circle the elements k1 and

k2 make before occupying δ and −δ. Note that k1, k2, r1, r2 ∈ Z. Multiplying the

elements k1, k2 by this t, give the following equations.

(k1)(t) = (r1)(c) + δ

(k2)(t) = (r2)(c)− δ.

Adding these two equations results in

(k1 + k2)(t) = (r1 + r2)(c).

Solving for t results in t = (r1+r2)(c)
(k1+k2)

. Reapplying this t value to our original multipli-

cation of (k1)(t) gives us

(k1)(
(r1+r2)(c)
(k1+k2)

) = (k1)(r1+r2)(c)
(k1+k2)

.

Thus, in order to attain κ(D), where κ(D) = d
c
, it is necessary for c = k1 + k2. Also,

this gives κ(D) ∈ Q, as desired, and furthermore that t ∈ Z.

6



As we have established that the c = (k1 + k2), for the remainder of this paper,

it is only necessary to investigate bounds for κ(D) that are equal to some fractional

distance d
c
, setting c equal to the addition of two of the elements in the D-set. Fur-

thermore, it can be assumed that there is some element E not existing in D that has

a value equal to c, which is always at the origin for all t, thus normalizing the frame

of reference for the distances of all D-set elements.

Using the definition above, it is easy to calculate κ(D) for a D-set. The

procedure to finding κ(D) is straightforward, if not slightly tedious. Let D be a

finite set of positive integers. We create circles of circumference size c, where c is the

addition of two of the elements from the D-set. For each time t, let d
c
be a fraction

such that d is the minimum of the absolute distances for all elements to the origin

of that circle with circumference c. When comparing the fractions generated by all

t, there will always be a largest fraction generated for this circle. As there are many

possible circles, the collection of these largest fractions can be thought of as a set of

fractions, with each circle being represented by its single largest fraction. κ(D) is the

greatest element of this set.

For example, given D = {2, 3, 4, 5}, there are six possible denominator values

to investigate, namely {5, 6, 7, 8, 9}. As 5 is an element of the D-set in addition to

being a possible denominator, and as we know that we need only investigate t ∈ Z,

there is no need to calculate the minimum distance, as at every time iteration the

minimum distance from all of the elements to the origin is 0. As two separate ad-

ditions of elements within the D-set result in a value of 7, this circle and its largest

possible fraction must only be investigated once. This leaves only four possibilities for

7



examination. Investigating the circumference 6 gives the following table, where the

upper left-hand corner contains the value of the circumference, and each row follow-

ing the speed row contains the values of the time iteration and the resulting absolute

distance of the corresponding element to the origin. Each row will have a smallest

absolute distance to the origin, and the highlighted box represents the largest of these

smallest distances for all times t. Note that the times being investigated stop once

the time is equal to the circumference size, as at that point all elements have returned

to the origin, and thus would merely repeat the table created.

Table 2.1: c = 6, D = {2, 3, 4, 5}

6

t 2 3 4 5

1 2 3 2 1

2 2 0 2 2

3 0 3 0 3

4 2 0 2 2

5 2 3 2 1

Note that the maximum of all of the minimum distances for each time iteration

is 1, thus making the maximum fractional value for this circumference 1
6
. The other

3 tables are calculated similarly, giving the following tables.

8



Table 2.2: c = 7, D = {2, 3, 4, 5}

7

t 2 3 4 5

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

4 1 2 2 1

5 3 1 1 3

6 2 3 3 2

Table 2.3: c = 8, D = {2, 3, 4, 5}

8

t 2 3 4 5

1 2 3 4 3

2 4 2 0 2

3 2 1 4 1

4 0 4 0 4

5 0 4 0 4

6 2 1 4 1

7 4 2 0 2
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Table 2.4: c = 9, D = {2, 3, 4, 5}

9

t 2 3 4 5

1 2 3 4 4

2 4 3 1 1

3 3 0 3 3

4 1 3 2 2

5 1 3 2 2

6 3 0 3 3

7 4 3 1 1

8 2 3 4 4

In the set of largest fractions for all circles, {1
6
, 2
7
, 2
8
, 2
9
}, we see that the greatest

is achieved with the circumference of 7, with the fraction being 2
7
. Thus, κ(D) = 2

7
.

Let D = {2, 3, x, y}. Note that in the above case, the x and y values were fixed

as x = 4 and y = 5. Finding κ(D) was not incredibly difficult with those values being

assigned. The challenge lies in trying to generalize this into formulas such that κ(D)

may be found without having to go through this process. As the process is nothing

more than an algorithm, the next logical step in the search for generalization is to

write the algorithm used above into a computer program so that the first κ(D) values

can be found, systematically fixing an x value and then allowing the y to increase

so that any patterns might make themselves apparent. The program generated κ(D)

D = {2, 3, x, y}, with 4 ≤ x ≤ 50 and x+ 1 ≤ y ≤ 50.

10
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The graphic above is a small sample of the printout that resulted from the

program, wtih 4 ≤ x ≤ 18 and x + 1 ≤ y ≤ 18. The first column indicates the value

assigned to x and the first row the values of y. The corresponding entry gives the κ(D)

values that were generated, with each triplet of numbers representing the time (free

floating), circumference (in parenthesis) and distance (in brackets) of that particular

κ(D) value. This led to conjectures about the values of κ(D) for a D-set of certain

special forms. For instance, the first pattern noticed was that if D = {2, 3, x, y} where

x = 2 mod 5 or 3 mod 5 and y = 2 mod 5 or 3 mod 5, then κ(D) = 2
5
.

Theorem 2.1. Let D = {2, 3, x, y} where x = 2 mod 5 or 3 mod 5 and y = 2

mod 5 or 3 mod 5. Then κ(D) = 2
5
.

Proof: Calculating the value of the maximum of minimum distances forD = {2, 3, x, y}

where x and y are allowed to equal 2 mod 5 or 3 mod 5 with the circumference of

5 (the addition of the elements 2 and 3 from our D-set) is easy, as t = 1 places all of

the elements a distance of 2 away from the origin as seen in the graphic below.

12



Figure 2.2: Movement of Runners for the First Time Iteration

This can also be visualized with a table as previously seen:

Table 2.5: c = 5, D = {2, 3, x, y}

5

t 2 3 2�mod5� 3�mod5�

2 2 2 2 2

: : : : :

: : : : :

: : : : :

: : : : :

It is obvious that if x and y are only allowed to either be 2 mod 5 or 3 mod 5

then at the first time iteration on the circle of circumference 5 all elements are at least

2
5
away from the origin. Thus, we know that κ(D) ≥ 2

5
, as κ(D) is the supremum of

the minimum distances, and the minimum distance for a circumference 5 is 2
5
. Fur-

thermore, it is known that κ(D′) = 2
5
for D′ = {2, 3}. As D′ ⊆ D, it is thus proved

that κ(D) = 2
5
, as κ(D) ≤ κ(D′).

With the 2 mod 5, 3 mod 5 cases completely solved, we must look for another pat-

tern in the generated κ(D) values. The most obvious place to begin an investigation

is to fix y − x. And indeed, a pattern was found and equalities proven.

13



CHAPTER 3

Finding κ(D) for D = {2, 3, x, x+ 1}

Let D = {2, 3, x, x + 1}. An algorithm in the previous chapter was used to

find κ(D) for the first 50 values of x, but now another equivalent definition of κ(D) is

used to prove conjectured values for all x-values. This continuous definition of κ(D)

is stated as follows.

Let α ∈ (0, 1
2
), where α = d

c
with c, d ∈ Z. For each positive integer i, define

Ii(α) = {t ∈ (0, 1) : ‖ ti ‖ ≥ α}.

That is [11],

Ii(α) = {t : n+ α ≤ ti ≤ n+ 1− α, 0 ≤ n ≤ i− 1},

or alternatively

Ii(α) = {t : n+α
i

≤ t ≤ n+1−α
i

, 0 ≤ n ≤ i− 1},

where n represents the number of revolutions the element goes around a circle, d

being the absolute minimum distance to the origin and c being the circumference of

the circle.

The following relationship will be used extensively throughout this paper to

establish a lower bound for κ(D):

κ(D) ≥ sup{α ∈ (0, 1
2
) :

⋂
i∈D Ii(α) 
= ∅}.

It is sufficient to show that given α = d
c
, if

Ii(α) =
⋃l

n=0[
d+(n)(c)

i
, c−d+(n)(c)

i
], l ∈ N with the max l being constrained by

c−d+(l)(c)
i

≤ c, and with
⋂
i∈D

Ii(α) 
= ∅,

then

κ(D) ≥ d
c
.

14



Furthermore, if it can be shown that {α ∈ (0, 1
2
) :

⋂
i∈D Ii(α)} consists only of

a set of isolated points, then this is sufficient to prove that the conjectured α = κ(D).

To this end, we introduce the notation I2,1(α) to indicate the first time interval from

the set of intervals generated by the element 2, so that we may identify specific time

intervals within the set of intervals an element generates over α for which it is at least

an absolute distance d away from the origin.

The continuous intervals, Ii, noted above can be thought of as the intervals

of time for which a runner is in [d, c − d]. The runners all start at the same time at

the origin, and can be thought to stop the first instant they find themselves to all

be back at the origin. Within that interval of time between the start and their first

coincidence at the start after beginning, the number of times a runner goes through

[d, c−d] depends directly on the speed of the runner, with faster participants passing

through more times than a slower, and thus having more intervals of time generated.

Figure 3.1: Illustration of the Continuous Interval in the Context of the Track Analogy
Circumference � c

Start

c � d d

Fix the fourth element in the D-set to be a distance of 1 away from the

15



third element. Thus we have D = {2, 3, x, x + 1}. When investigating the κ(D) for

iterations of x, starting at x = 4, a pattern emerges where all κ(D) for this D-set can

be described as follows.

Theorem 3.1. Suppose D = {2, 3, x, x+1}. Let x+3 = 5γ + r with 0 ≤ r ≤ 4,

then

κ(D) =

⎧⎨
⎩

2γ
y+2

if 0 ≤ r ≤ 3;

2γ+1
y+2

if r = 4.

We will prove this conjecture using the continuous definition of κ(D), meaning

that we will investigate individual time intervals from each of the sets generated by

the elements, and discover where these intervals intersect. As a reminder, if we can

demonstrate that all intersections of intervals contain only singleton points, then we

have in fact proven the conjectured equalities.

Case 1 x = 5k+2. Suppose x = 5k+2 for some k ∈ N. Then x ≡ 2 mod 5 and y ≡ 3

mod 5. As both x = 2 mod 5 and y = 3 mod 5, by Theorem 2.1 we know κ(D) = 2
5
.

Case 2 x = 5k + 3. Suppose x = 5k + 3 for some k ∈ N. Then y + 2 = 5k + 6,

γ = k + 1 and r = 1. We claim

κ(D) = 2k+2
5k+6

.

Let α = 2k+2
5k+6

. Using this value of α, the set of intervals is

Ii(α) =
⋃l

n=0[
2k+2+n(5k+6)

i
, 3k+4+n(5k+6)

i
] with l ∈ N with the maximum l being such

that 3k+4+l(5k+6)
i

≤ (5k + 6).

Calculating the intersection of intervals for I2,1(α) and I3,1(α) gives the following

16



result

⋂
i=2,3

Ii,1(α) = [2k+2
2

, 3k+4
3

] = [k + 1, 3k+4
3

].

As the intervals for 2 and 3 act symmetrically across the t = c
2
line, and further

that there is a single interval I2(α) before this line, we need only investigate the

intersection
⋂

i=2,3

Ii,1(α), as I3,2(α) does not intersect I2,1(α) at all.

Continuing our investigation, we look to see if we can identify single intervals

from the other elements in D that might intersect with
⋂

i=2,3

Ii,1(α). Letting n = k for

the Ix+1 interval generates

Ix+1,k(α) = [2k+2+(k)(5k+6)
5k+4

, 3k+4+(k)(5k+6)
5k+4

] = [5k
2+8k+2
5k+4

, k + 1].

The interval of intersection for 2, 3, and x+ 1 is thus

I2,1(α)
⋂

I3,1(α)
⋂

Ix+1,k(α) = {k + 1}.

As noted previouosly, I2,1(α)
⋂

I3,1(α) = [k + 1, 3k+4
3

] is the only interval which must

be investigated, excluding symmetrically identical intervals, which in turn restricts

the values of n for x+ 1 that need to be investigated. As we started with Ix+1, note

that letting n = k − 1 for the Ix+1 interval generates

Ix+1,k−1(α) = [2k+2+(k−1)(5k+6)
5k+4

, 3k+4+(k−1)(5k+6)
5k+4

] = [5k
2+3k−4
5k+4

, 5k
2+4k−2
5k+4

].

Comparing this to I2,1(α)
⋂

I3,1(α) immediately reveals that there is no value of k

that will ever be sufficient to create a non-empty intersection, which further gives

I2,1(α)
⋂

I3,1(α)
⋂

Ix+1,n≤k−1(α) = ∅, for all n ≤ k − 1.

Therefore we can eliminate n ≤ k − 1 from the possible values that might generate

an intersection.

Letting n = k + 1 for the Ix+1 interval generates

Ix+1,k+1(α) = [2k+2+(k+1)(5k+6)
5k+4

, 3k+4+(k+1)(5k+6)
5k+4

] = [5k
2+13k+8
5k+4

, 5k
2+14k+10
5k+4

].
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Once again we find that regardless of chosen k values, there will never be a non-empty

intersection, let alone an interval. This gives

I2,1(α)
⋂

I3,1(α)
⋂

Ix+1,n(α) = ∅, for all n ≥ k + 1.

Thus we must choose n = k for our Ix+1 interval such that I2(α)
⋂

I3(α)
⋂

Ix+1(α) 
=

∅, excluding symmetry.

Now all that remains is to show that k + 1 ∈ Ix(α). Choosing n = k gives

Ix,k(α) = [2k+2+(k)(5k+6)
5k+3

, 3k+4+(k)(5k+6)
5k+3

] = [5k
2+8k+2
5k+3

, 5k
2+9k+4
5k+3

].

Since {k + 1} ∈ Ix,k(α), as is apparent when comparing k + 1 to the interval

Ix,k(α), the proof that

I2(α)
⋂

I3(α)
⋂

Ix(α)
⋂

Ix+1(α) 
= ∅

is complete, implying

κ(D) ≥ 2k+2
5k+6

.

The calculations above show that I2(α)
⋂

I3(α)
⋂

Ix(α)
⋂

Ix+1(α) contain only sin-

gleton points of intersection. Therefore we may then conclude that κ(D) = 2k+2
5k+6

, as

desired.

Computationally, this is quite arduous, so to expedite the process, we articulate

the steps that we did by hand in a Mathematica program, so that we may input

values for nx and ny, the number of revolutions x and y complete before generating

the desired interval, and investigate whether there are intersections without having

to perform the computations. The code for this is attached in Appendix A.2. When

writing this code, it is useful to note that we are comparing fractions, and thus may

use a computer to compute a cross-multiplication that will have the same effect for
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evaluating intersection intervals. Additionally, we observe that I2
⋂

I3 create two in-

tervals of intersection, which are symmetric about the line t = c
2
. As such we focus

on the left of these intervals
⋂

i=2,3

Ii,1 = [I2l, I3r], where I2l symbolizes the left side of

the interval I2,1, and I3r symbolizes the right side of I3,1. Let us use the next case to

show how these facts can be used to prove the claim of the next case.

Case 3 x = 5k + 4

One additional fact that we will use when employing the Mathematica pro-

gram is that when comparing fractions, we do so by creating an LCD, which implies

that we must only really investigate the overlapping or lack thereof of the numerators

when multiplied by the denominator of the intervals we are comparing it against.

For example, if we were comparing I2l to some Iy,n, we must only investigate the

numerator of I2l multiplied by y against the numerators of Iy,n multiplied by 2.

Let x = 5k + 4, setting y = 5k + 5, x + 3 = 5γ + 2, γ = k + 1 and r = 2. We

claim

κ(D) = 2k+2
5k+7

.

Let α = 2k+2
5k+7

. Using this value of α, the set of intervals is

Ii(α) =
⋃l

n=0[
2k+2+n(5k+7)

i
, 3k+5+n(5k+7)

i
] with l ∈ N such that 3k+5+l(5k+7)

i
≤ (5k + 7).

Calculating the I2,1(α)
⋂

I3,1(α) gives the following result

⋂
i=2,3

Ii,1(α) = [2k+2
2

, 3k+5
3

] = [k + 1, 3k+5
3

].

Let n = k for the Iy,k(α). Using Mathematica to compare this interval against I2l(α)

gives

[4 + 18k + 10k2, 10 + 20k + 10k2]
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as the numerators of the interval Iy,k(α) are multiplied by 2. As I2l(α) is multiplied

by 5k + 5, with y = 5k + 5, this gives the numerator

{10 + 20k + 10k2},

it is obvious that the right-most endpoint of Iy,k(α) is exactly equal to I2l(α), thus

demonstrating that there is a singleton point of intersection, namely k+1. This is also

convenient because it automatically shows that any n < k, Iy,n<k(α)
⋂

I2l(α) = ∅, as

any smaller k value would remove I2l from intersecting with Iy. All that remains is

to ensure n > t also eliminates the intersection, and additionally that Ix(α) contains

the same singleton point of intersection for some n. For Iy,k+1(α), we once again use

Mathematica, but this time to compare the interval against I3r(α) gives

[27 + 42k + 15k2, 36 + 45k + 15k2]

for the numerators of Iy,k+1(α) multiplied by 3. As I3r(α) multiplied by y gives the

numerator

{25 + 40k + 15k2},

we can easily conclude that Iy,n>k(α)
⋂

I2l(α) = ∅, proving that the intersection only

occurs when n = k.

Additionally, calculating Ix,k(α) multiplied by 2 gives the numerators

[4 + 18k + 10k2, 10 + 20k + 10k2]

and the I2l(α) multiplied by x gives the numerator

{8 + 18k + 10k2}.

It is immediately apparent that any k chosen will have an intersection, which shows

that I2l(α)
⋂

Ix,k(α) 
= ∅, proving that {k + 1} ∈ Ix,k(α). Thus the proof that

κ(D) = 2k+2
5k+7

is complete.
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Case 4 x = 5k + 5

Case 5 x = 5k + 6

The remaining proofs are identical in structure, and result in the same single-

ton points of intersections. Thus κ(D) is completely known with D = {2, 3, x, x+1},

as all values of x mod 5 have been considered.
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CHAPTER 4

Extending Patterns: Finding κ(D) for D = {2, 3, x, x+ i} with 2 ≤ i ≤ 5

As κ(D) has been completely established for D = {2, 3, x, x + 1}, in this

chapter κ(D) is found for D = {2, 3, x, y} with y = x+ 2, y = x+ 3, y = x+ 4, and

y = x+ 5.

Theorem 4.1. Let D = {2, 3, x, x + 2}. Let x + 4 = 6γ + r with 0 ≤ r ≤ 5.

Then

κ(D) =

⎧⎨
⎩

2γ
y+2

if 0 ≤ r ≤ 2;

4γ+r−4
x+y

if 3 ≤ r ≤ 5.

The proof is the same as in the x+ 1 case, and thus will be left to the reader.

The concept is the same as in Chapter 3, with intersections only happening at sin-

gleton points of intersection for any given n and t.

Increasing the difference between the third and fourth elements of the D-set

by amounts of 1 results in the following κ(D) values.

Theorem 4.2. Let D = {2, 3, x, x + 3}. Let 2x + 3 = 9γ + r with 0 ≤ r ≤ 8.

Then

κ(D) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4
15

if x = 10;

3γ
2x+3

if 0 ≤ r ≤ 5;

�x+5
3

�
x+6

if 6 ≤ r ≤ 8.
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Theorem 4.3. Let D = {2, 3, x, x + 4}. Let x + 4 = 5γ + r with 0 ≤ r ≤ 4.

Then

κ(D) =

⎧⎨
⎩

2γ+r
x+7

if 0 ≤ r ≤ 1;

2γ
x+2

if 2 ≤ r ≤ 4.

Theorem 4.4. Let D = {2, 3, x, x + 5}. Let x + 3 = 5γ + r with 0 ≤ r ≤ 4.

Then

κ(D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
5

if 0 ≤ r ≤ 1;

2γ
x+2

if 2 ≤ r ≤ 3;

2γ+1
x+3

if r = 4.

All of the proofs for these are similar to those performed in the y = x + 1

cases, and thus will be left to the reader.
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CHAPTER 5

Extending Results for y ≥ x+ 6

In this chapter, similar methods to those in the previous two chapters are

used to explore the values of κ(D) for more generalized families of D-sets. From the

previous chapter, κ(D) is known for |y−x| ≤ 5, where D = {2, 3, x, y}. The next step

is to proceed to the |y−x| = 6 case. This is when it first becomes apparent that there

is an even more general overarching behavior to the κ(D) values. It becomes clear

that all distances between x and y could be generalized into 5 main cases, labeled

x + 5β + i, 0 ≤ i ≤ 4, respectively. The results of κ(D) in these cases are presented

in the following tables.

In the following theorems, notation is used to simplify the tables. The mean-

ings for the symbols are as follows:

γ = term defined by the modulo relationship, used in creating the numerator of κ(D).

d = the numerator of κ(D).

c = the denominator of κ(D).

r = the modulo difference being used to define the specific values of x for the subcases

in the tables for κ(D).

nx = the number of revolutions the element x goes around the circle before generating

the interval which intersects all other intervals in κ(D).

ny = the number of revolutions the last element in the D-set goes around the circle

before generating the interval which intersects all other intervals in κ(D).

POI = the exact value of the singleton point of intersection generated by the two

elements which are added together to obtain the circumference of κ(D), when appli-
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cable.

κ(D) = the value of κ(D) within the given constraints.

5.1 y = x+ 5β, β ≥ 1

In the table, k, r and γ are determined by x = 2 mod 5 + r, x ≥ 4, with

0 ≤ r ≤ 4, and x+ 3 = 5γ + r.

Theorem 5.1. Let D = {2, 3, x, x+ 5β}, k ≥ 2β. Then the values of κ(D) given in

the tables are exact for k ≥ 2β and provide upper bounds when k < 2β.

Table 5.1: κ(D), D = {2, 3, x, x+ 5β}
y = x +5β, β ≥ 2k

x γ d c r

5k + 7 k+2 2γ x+3 0

5k + 8 k+2 2γ x+2 1

5k + 4 k+1 2γ x+2 2

5k + 5 k+1 2γ x+2 3

5k + 6 k+1 2γ+1 x+3 4
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Table 5.2: κ(D), D = {2, 3, x, x+ 5β} Continued

y = x +5β, β ≥ 2k

x nx ny POI κ(D)

5k + 7 k + 1 k+β+1 2 + k 2
5

5k + 8 k + 1 k+β+1 2 + 2k 2
5

5k + 4 k k + β 1 + k 2+2k
6+5k

5k + 5 k k + β 1 + k 2+2k
7+5k

5k + 6 k + 1 k+β+1 2 + k 3+2k
9+5k

5.2 y = x+ 5β + 1, β ≥ 1

In the table, k, r and γ are determined by x = 2 mod 5 + r, x ≥ 4, with

0 ≤ r ≤ 4, and x+ 3 = 5γ + r.

Theorem 5.2. Let D = {2, 3, x, x+5β+1}, k ≥ 2β. Then the values of κ(D) given

in the tables are exact for k ≥ 2β and provide upper bounds when k < 2β for x = i

mod 5, i = 0, 2, 3, 4. For x = 1 mod 5, the value of κ(D) given in the table begins at

k ≥ 3β and provides an upper bound when k < 3β.
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Table 5.3: κ(D), D = {2, 3, x, x+ 5β + 1}
y = x +5β +1

x γ d c r

5k + 7 k + 2+β 2γ y+2 0

5k + 8 k + 2+β 2γ y+2 1

5k + 4 k + 1+β 2γ y+2 2

5k + 5 k + 1+β 2γ y+2 3

5k + 6 k + 1+β 2γ y+2 4
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Table 5.4: κ(D), D = {2, 3, x, x+ 5β + 1} Continued

y = x +5β +1

x nx ny POI κ(D)

5k + 7 k + 1 k+β+1 2 + k+β 2
5

5k + 8 k + 1 k+β+1 2+2k+β 4+2k+2β
11+5k+5β

5k + 4 k k+β 1 + k+β 2+2k+2β
7+5k+5β

5k + 5 k k+β 1 + k+β 2+2k+2β
8+5k+5β

5k + 6 k k+β+1 1 + k+β 2+2k+2β
9+5k+5β

5.3 y = x+ 5β + 2, β ≥ 1

Let γ be defined by x+5β+4 = 6γ+5βγ+ r, 0 ≤ r ≤ 6+5m+4. Note that

in this section, by our definition of γ, there are necessarily 6 + 5β values of x that

must occur. Let us call the 5β cases the remainder cases. The amount of remainder

cases occurring are then added to the original 6 subcases. Thus, we will use m with

m = 0, 1, 2, ..., β − 1 to describe the additional cases added to the original 6.

Theorem 5.3. Let D = {2, 3, x, x + 5β + 2}. Then the values of κ(D) given in

the tables are exact for k ≥ 2β and provide upper bounds when k < 2β for all non-

remainder cases. For the remainder cases, the values of κ(D) provided in the table

give a lower bound for κ(D) when k ≥ 2β.
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Table 5.5: κ(D), D = {2, 3, x, x+ 5β + 2}
y = x +5β +2, 0 ≤ m ≤ β − 1

x γ d c r

6k + 5 β k+5β+8 k + 2 (2γ)(β + 1) y + 2 0

6k+5βk+5β+9 k + 2 (2γ)(β + 1) y + 2 1

6k + 5 β k+4 k+1 (2γ)(β + 1) y + 2 2

6k + 5 β k+5 k + 1 (2γ)(β + 1) y + 2 3

6k+5β k+6 k + 1 (4γ)(β + 1)− 3β x+ y 4

6k + 5 β k+7 k + 1 (4γ)(β + 1) + 1− 2β x+ y 5

6k+5β k + 8 + 5m k + 1 (2γ)(β + 1) + 2m y + 2 6 + 5m

6k+5β k + 9 + 5m k + 1 (2γ)(β + 1) + 2m y + 2 6+1+5m

6k+5β k+10+5m k + 1 (2γ)(β + 1) + 2m y + 2 6+2+5m

6k+5β k+11+5m k + 1 (2γ)(β + 1) + 2m y + 2 6+3+5m

6k+5β k+12+5m k + 1 (4γ)(β+1)+1−2β+3m x+ y 6+4+5m
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Table 5.6: κ(D), D = {2, 3, x, x+ 5β + 2} Continued

y = x +5β +2, 0 ≤ m ≤ β − 1

x nx ny POI κ(D)

6k+5β k+5β+8 (β + 1)(k + 1) (β + 1)(k + 1) + β (3 + 2k)(1 + β) 2+2β
6+5β

6k+5β k+5β+9 (β + 1)(k + 1) (β + 1)(k + 1) + β (2 + k)(1 + β) (2+2β)(2+k)
13+10β+k(6+5β)

6k+5β k+4 (β + 1)(k) (β + 1)(k) + β (1 + k)(1 + β) (2+2β)(1+k)
8+5β+k(6+5β)

6k+5β k+5 (β + 1)(k) (β + 1)(k) + β (1 + k)(1 + β) (2+2β)(1+k)
9+5β+k(6+5β)

6k+5β k+6 (β + 1)(k) + 1 (β)(k) + β + 1 (1 + k)(1 + β) 4+β+4k(β+1)
14+5β+2k(6+5β)

6k+5β k+7 (β + 1)(k) + 1 (β + 1)(k) + β + 1 3 + β + 2k(1 + β) 5+2β+4k(1+β)
16+5β+2k(6+5β)

6k+5β k+8+ 5m (β + 1)(k) +m (β + 1)(k) + β +m —- 2(1+k+m+β+kβ)
12+5m+5β+k(6+5β)

6k+5βk + 9 + 5m (β + 1)(k) +m (β + 1)(k) + β +m —- 2(1+k+m+β+kβ)
13+5m+5β+k(6+5β)

6k+5βk+10+5m (β + 1)(k) +m (β + 1)(k) + β +m —- 2(1+k+m+β+kβ)
14+5m+5β+k(6+5β)

6k+5βk+11+5m (β+1)(k)+m+1 (β+1)(k)+β+m+1 —- 2(1+k+m+β+kβ)
15+5m+5β+k(6+5β)

6k+5βk+12+5m (β+1)(k)+m+2 (β+1)(k)+β+m+2 —- 6+4m+2β+4k(1+β)
26+10m+5β+2k(6+5β)
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5.4 y = x+ 5β + 3, β ≥ 1

Let γ be defined by x+5β+5 = 9γ+5βγ+ r, 0 ≤ r ≤ 9+5m+4. Note that

in this section, by our definition of γ, there are necessarily 9 + 5β values of x that

must occur. Let us call the 5β cases the remainder cases. The amount of remainder

cases occurring are then added to the original 9 subcases. Thus, we will use m with

m = 0, 1, 2, ..., β − 1 to describe the additional cases added to the original 9.

Theorem 5.4. Let D = {2, 3, x, x + 5β + 3}, k ≥ 2β. Then the values of κ(D)

given in the tables are exact for k ≥ 2β and provide upper bounds when k < 2β for

all non-remainder cases. For the remainder cases, the values of κ(D) provided in the

table give a lower bound for κ(D) when k ≥ 2β
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Table 5.7: κ(D), D = {2, 3, x, x+ 5β + 3}
y = x +5β +3, 0 ≤ m ≤ β − 1, β ≥ 2k

x γ d c r

9k+5βk+4 k+1 (2γ)(3 + 2β)− 3(β + 1) x+ y 0

9k+5βk+5 k+1 (γ)(3 + 2β) -1 y+3 1

9k+5βk+6 k+1 (γ)(β + 1) y+3 2

9k+5βk+7 k+1 (γ)(β + 1) +1 y+3 3

9k+5β k+8 k+1 (2γ)(3 + 2β)− 2β x+ y 4

9k+5β k+9 k+1 (2γ)(3 + 2β)− 3β x+ y 5

9k+5β k+10 k+1 (γ)(3 + 2β) + 1 y+3 6

9k+5β k+11 k+1 (γ)(3 + 2β) + 2 y+3 7

9k+5β k+12 k+1 (γ)(3 + 2β) + 3 y+3 8

9k+5β k+13+ 5m k+1 (2γ)(3+2β)−2β+3m+3 x+ y 9+5m

9k+5β k+14+ 5m k+1 (γ)(3 + 2β) + 2m+ 2 y+3 9+5m+1

9k+5β k+15+5m k+1 (γ)(3 + 2β) + 2m+ 3 y+3 9+5m+2

9k+5β k+16+5m k+1 (γ)(3 + 2β) + 2m+ 4 y+3 9+5m+3

9k+5β k+17+ 5m k+1 (γ)(3 + 2β) + 2m+ 5 y+3 9+5m+4
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Table 5.8: κ(D), D = {2, 3, x, x+ 5β + 3} Continued
y = x +5β +3, 0 ≤ m ≤ β − 1, β ≥ 2k

x nx ny POI κ(D)

9k+5β k+4 2k + βk 2k + βk + β + 1 (1 + 2k)(2 + β) 3+β+k(6+4β)
11+5β+2k(9+5β)

9k+5β k+5 2k + βk + 1 2k + 2βk + β + 2 (1 + 2k)(2 + β) 2+3k+2β+2βk
11+9k+5β+5βk

9k+5β k+6 2k + βk + 1 2k + 2βk + β + 2 (1 + 2k)(2 + β) (1+k)(3+2β)
12+5β+k(9+5β)

9k+5β k+7 2k + βk + 1 2k + 2βk + β + 2 (1 + 2k)(2 + β) 1+(1+k)(3+2β)
13+5β+k(9+5β)

9k+5β k+8 2k + βk + 1 2k + 2βk + β + 2 (1 + 2k)(2 + β) 2(3+β+k(3+2β))
19+5β+2k(9+5β)

9k+5β k+9 2k + βk + 1 2k + 2βk + β + 2 (1 + 2k)(2 + β) 6+β+k(6+4β))
21+5β+2k(9+5β)

9k+5β k+10 2k + βk + 2 2k + 2βk + β + 3 (1 + 2k)(2 + β) 1+(1+k)(3+2β)
16+5β+k(9+5β)

9k+5β k+11 2k + βk + 2 2k + 2βk + β + 3 (1 + 2k)(2 + β) 2+(1+k)(3+2β)
17+5β+k(9+5β)

9k+5β k+12 2k + βk + 2 2k + 2βk + β + 3 (1 + 2k)(2 + β) 3+(1+k)(3+2β)
18+5β+k(9+5β)

9k+5β k+13+5m 2k + βk +m+ 2 2k+βk+m+β+3 —- 9+3m+2β+k(6+4β)
29+10m+5β+2k(9+5β)

9k+5β k+14+5m 2k + βk +m+ 3 2k+βk+m+β+4 —- 5+2m+2β+k(3+2β)
5(4+m+β)+k(9+5β)

9k+5β k+15+5m 2k + βk +m+ 3 2k+βk+m+β+4 —- 5+2m+2β+k(3+2β)
5(4+m+β)+k(9+5β)

9k+5β k+16+5m 2k + βk +m+ 3 2k+βk+m+β+4 —- 5+2m+2β+k(3+2β)
5(4+m+β)+k(9+5β)

9k+5β k+17+5m 2k + βk +m+ 3 2k+βk+m+β+4 —- 5+2m+2β+k(3+2β)
5(4+m+β)+k(9+5β)
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5.5 y = x+ 5β + 4, β ≥ 1

In the table, k, r and γ are determined by x = 2 mod 5 + r, x ≥ 4, with

0 ≤ r ≤ 4, and x+ 7 = 5γ + r.

Theorem 5.5. Let D = {2, 3, x, x + 5β + 4}, k ≥ 2β. Then the values of κ(D)

provided in the tables are exact for k ≥ 2β and provide upper bounds when k < 2β.

Table 5.9: κ(D), D = {2, 3, x, x+ 5β + 4}
y = x +5β +4, β ≥ 2k

x γ d c r

5k + 8 k + 3 2γ-2 x+ 2 0

5k + 4 k + 2 4γ+β-8 x+ y 1

5k + 5 k + 2 2γ+2β-3 y + 3 2

5k + 6 k + 2 2γ+2β-2 y + 3 3

5k + 7 k+2 2γ+2β-11 y + 3 4
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Table 5.10: κ(D), D = {2, 3, x, x+ 5β + 4} Continued

y = x +5β +4, β ≥ 2k

x nx ny POI κ(D)

5k + 3 k k+β+1 2+k 2
5

5k + 4 k k+β+1 2+2k+β 4+4k+β
12+10k+5β

5k + 5 k+1 k+β+2 3+k+β 3+2k+2β
12+5k+5β

5k+6 k+1 k+β+2 3+k+β 4+2k+2β
13+5k+5β

5k+7 k+1 k+β+2 3+k+β 5+2k+2β
14+5k+5β

5.6 Conclusions

In all of the results presented in this chapter, the same methods of proof

were used as in earlier chapters. β must be designated first in order to establish the

distance between x and y. Once this distance is established, k is allowed to go from

0 to ∞. Because of this choice ordering, there is a secondary pattern that emerges.

In particular, when β is large and k is small, β becomes the dominant term in κ(D),

forcing smaller values for κ(D), thus making the obtained values an upper bounds

for κ(D). Thus we must restrict the equalities for the proven values of κ(D). Within

that restriction again we find only singleton points of intersection and thus κ(D) is

known.
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CHAPTER 6

Connections Between μ(D) and κ(D)

It is known that μ(D) ≥ κ(D) [19]. In this chapter known values and bounds

of μ(D) are stated, as well as techniques for finding values of μ(D).

For two-element sets D = {a, b}, Cantor and Gordon [5] proved that

κ(D) = μ(D) =
�a+b

2
	

a+ b

. For 3-element sets D, if D = {a, b, a+ b} it was proved that κ(D) = μ(D) and the

exact values were determined.

Theorem 6.1. [15] Suppose M = {a, b, a+ b} for some positive integers a and b with

gcd(a, b) = 1, where 0 < a < b. Then

κ(M) = μ(M) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3

if b− a = 3k;

a+k
3a+3k+1

if b− a = 3k + 1;

a+2k+1
3a+6k+4

if b− a = 3k + 2

For the general case D = {i, j, k}, various lower bounds of κ(D) were given by

Gupta, in which μ(D) was also studied.

Theorem 6.2. [11] If D = {i, j, k} with i ≥ j ≥ k and gcd(i, j) = d, then

μ(D) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k
2(j+k)

if i
d
≡ j

d
mod 2;

k(i+j−d)
2(2ij+(i+j)k)

if i
d

≡ j

d
mod 2 and k > j(j−i−d)

d
;

k
2(j+k)

if i
d

≡ j

d
mod 2 and k < j(j−i−d)

d
.

In addition, among other results it was shown in [11] that if D is an arithmetic

sequence then κ(D) = μ(D) and the value was determined.
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Theorem 6.3. [11] If D = {n, n+ d, n+ 2d, ..., n+ (k− 1)d} with gcd(n, d) = 1 and

k ≥ 1, then

μ(D) =

⎧⎨
⎩

2n+(k−1)(d−1)
2(2n+(k−1)d

if d is even;

1
2

if d is odd.

It should be noted that throughout the literature thus far, equalities have been

established primarily by utilizing arithmetic relationships in the D-set, or by using

κ(D) values, such as in [11], or by finding specific patterns within the relationships

of the D-set elements. For instance, Liu and Zhu proved the following.

Theorem 6.4. [15] If D = {x, y, y− x, y+ x}, where y > x, x = 2k+ 1, y = 2m+ 1

and gcd(x, y) = 1, then

μ(D) ≥ (k+1)m
4(k+1)m+1

,

although, they conjecture that this is in fact an equality.

Many of the above results used the following Lemma by Haralambdis. For a

D-sequence S, denote S[n] = |{0, 1, 2, . . . , n} ∩ S|.

Lemma 6.5. [19] Let D be a set of positive integers, and let α ∈ (0, 1]. If for every

D-sequence S with 0 ∈ S there exists a positive integer n such that S[n]/(n+1) � α,

then μ(D) � α. Alternatively, if μ(D) > α, then there is a D-sequence S such that

S[n] > α(n+ 1), for all non-negative integers n.

For a given D-sequence S, write the elements of S in increasing order, S =

(s0, s1, s2, . . .) with s0 < s1 < s2 < . . ., and denote its difference sequence by Δ(S) =

(δ0, δ1, δ2, . . .) where δi = si+1 − si. A subsequence of consecutive terms in Δ(S),

(δa, δa+1, . . . , δa+b−1), generate a periodic interval of k copies, k ≥ 1, if δj(a+b)+i = δa+i
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for all 0 ≤ i ≤ b− 1, 1 ≤ j ≤ k − 1. We denote such a periodic subsequence of Δ(S)

by (δa, δa+1, . . . , δa+b−1)
k. If the periodic interval repeats infinitely we simply denote

it by (δa, δa+1, . . . , δa+b−1). If Δ(S) is infinite periodic, except for a finite number of

terms, with the periodic interval (t1, t2, . . . , tk), then the density of S is (
k∑

i=1

ti)/k.

Observation 1. A sequence of non-negative integers S is a D-sequence if and only

if
b∑

i=a

δi 
∈ D for any a ≤ b.

Observation 2. Assume 2, 3 ∈ D. If S is a D-sequence, then δi + δi+1 ≥ 5 for

all i. Equality holds only when {δi, δi+1} = {1, 4}. Consequently, μ(D) ≤ 2/5. More

relevant to the connection between μ(D) and κ(D) is the fact that this results in

S[5t] ≤ 2t+ 1, S[5t+ 4] ≤ 2t+ 2 for any non-negative t, and S[5t+ 5] ≤ 2t+ 3.

Lemma 6.6. [7] Let D = {2, 3} ∪ A for some A ⊆ Z. Then κ(D) = 2/5 if and only

if A ⊆ {x : x ≡ 2, 3 mod 5}. Furthermore, if κ(D) = 2/5 then μ(D) = 2/5.

Proof. Let D = {2, 3} ∪ A. Assume A ⊆ {x : x ≡ 2, 3 mod 5}. Let t = 1/5. Then

||td|| ≥ 2/5 for all d ∈ D. Hence κ(D) ≥ 2/5. On the other hand, the density of the

infinite periodic D-sequence S with Δ(S) = (1, 4) is 2/5. By Observation 2, this is

an optimal D-sequence. Hence, μ(D) = 2/5, implying κ(D) = 2/5.

Conversely, assume κ(D) = 2/5. Then μ(D) ≥ 2/5. By Observation 2,

μ(D) = 2/5. By Observation 1, this implies that if d ∈ D, then d 
≡ 0, 1, 4 (mod 5).

Thus the result follows.

Note, in D = {2, 3, x, y}, if x = 1, then it is known [15] and easy to see that

μ(D) = κ(D) = 1/4 if y is not a multiple of 4 (with Δ(S) = (4)); otherwise y = 4k

and μ(D) = κ(D) = (k)/(4k + 1) (with Δ(S) = ((4)k−15)). Thus throughout the

remainder of this thesis it is assumed that x 
= 1.
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CHAPTER 7

Values of μ(D), D = {2, 3, x, x+ i}, 1 ≤ i ≤ 5

As that κ(D) is known for D = {2, 3, x, x+ i}, 1 ≤ i ≤ 5, and techniques have

been established to find values of μ(D), it is possible to connect the two parameters.

This Chapter is dedicated to stating the values of μ(D for D = {2, 3, x, x + i}, 1 ≤

i ≤ 5, where possible.

Theorem 7.1. [7]

Let D = {2, 3, x, x+ 1} with x ≥ 4, then κ(D) = μ(D).

Proof. Consider the following cases.

Case 1. x = 5k + 2. The result follows by Lemma 6.6.

Case 2. x = 5k+3. By Theorem 3.1, we have established κ(D) = (2k+2)/(5k+6).

Now we claim μ(D) ≤ (2k+2)/(5k+6). Assume to the contrary that μ(D) >

(2k + 2)/(5k + 6). By Lemma 6.5, there exists a D-sequence S with S[n]/(n + 1) >

(2k+2)/(5k+6) for all non-negative n. This implies, for instance, S[0] ≥ 1, so s0 = 0;

S[2] ≥ 2, so s1 = 1; S[5] ≥ 3, so s3 = 5 (as 2, 3 ∈ D). Moreover, S[5k + 5] ≥ 2k + 3.

By Observation 2, it must be (δ0, δ1, δ2, . . . , δ2k+1) = (1, 4, 1, 4, . . . , 1, 4). This implies

5k+5 ∈ S, which is impossible since 1 ∈ S and 5k+4 ∈ D. Therefore, μ(D) = κ(D).

Case 3. x = 5k+4. By Theorem 3.1, we have established κ(D) = (2k+2)/(5k+7).

Now we claim μ(D) ≤ (2k + 2)/(5k + 7). Assume to the contrary that μ(D) >

(2k + 2)/(5k + 7). By Lemma 6.5, there exists a D-sequence S with S[n]/(n + 1) >

(2k + 2)/(5k + 7) for all non-negative n. This implies, for instance, S[0] ≥ 1, so

s0 = 0; S[3] ≥ 2, so s1 = 1 (as 2, 3 ∈ D); and S[5k + 6] ≥ 2k + 3. By Observation 2,

either 5k + 5 or 5k + 6 is an element in S. This is impossible since 0, 1 ∈ S and
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5k + 4, 5k + 5 ∈ D. Thus μ(D) = κ(D).

Case 4. x = 5k+5. By Theorem 3.1, we have established κ(D) = (2k+2)/(5k+8).

Now we claim μ(D) ≤ (2k + 2)/(5k + 8). Assume to the contrary that μ(D) >

(2k + 2)/(5k + 8). By Lemma 6.5, there exists a D-sequence S with S[n]/(n + 1) >

(2k + 2)/(5k + 8) for all non-negative n. Similar to the proof from Case 3, one has

0, 1 ∈ S and S[5k + 7] ≥ 2k + 3. This implies that one of 5k + 5, 5k + 6, or 5k + 7

is an element in S, which is again impossible, as 0, 1 ∈ S and 5k + 5, 5k + 6 ∈ D.

Therefore, μ(D) = κ(D).

Case 5. x = 5k+1. By Theorem 3.1, we have established κ(D) = (2k+1)/(5k+4).

Now we claim μ(D) ≤ (2k+1)/(5k+4). Assume to the contrary that μ(D) >

(2k + 1)/(5k + 4). By Lemma 6.5, (s0, s1) = (0, 1), and S[5k + 3] ≥ 2k + 2. Because

S[5k] ≤ 2k + 1, so S ∩ {5k + 1, 5k + 2, 5k + 3} 
= ∅, which is impossible, as 0, 1 ∈ S

and 5k + 1, 5k + 2 ∈ D. Therefore, μ(D) = κ(D).

Notice that the denominators in the values of κ(D) for D = {2, 3, x, x + 1}

are always x+3. By the above proofs, one can extend the results to other families of

sets which contain D as follows:

Corollary 7.2. Let D = {2, 3, x, x+1}∪D′, where D′ ⊆ {y : y ≡ ±2,±3 mod x+

3}. Then μ(D) = κ(D) = μ({2, 3, x, x+ 1}).

Theorem 7.3. [7]

Let D = {2, 3, x, x + 2} with x ≥ 4. Then μ(D) = κ(D) for all x 
≡ 6k + 5

mod 6.

Proof. We prove the following cases.
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Case 1. x = 6k + 2. By Theorem 4.1 we have established κ(D) = 1/3. Now we

claim μ(D) ≤ 1/3. Let M ′ = {2, x, x + 2} = {2, 6k + 2, 6k + 4}. By Theorem 6.1

with M = {1, 3k + 1, 3k + 2}, we obtain μ(M ′) = μ(M) = 1/3. Because M ′ ⊆ D, so

κ(D) = μ(D) ≤ μ(M ′) = 1/3.

Case 2. x = 6k+3. By Theorem 4.1 we have established κ(D) = (2k+2)/(6k+7).

By Theorem 6.1 with M = {2, x, x+ 2} = {2, 6k + 3, 6k + 5}, we get μ(M) =

(2k + 2)/(6k + 7). Because M ⊆ D, so μ(D) ≤ μ(M) = (2k + 2)/(6k + 7). Thus, the

result follows that μ(D) = κ(D).

Case 3. x = 6k+4. By Theorem 4.1 we have established κ(D) = (2k+2)/(6k+8).

By Theorem 6.1 with M = {2, x, x + 2} = {2, 6k + 4, 6k + 6} which can be

reduced to M ′ = {1, 3k + 2, 3k + 3}, we obtain μ(M) = (k + 1)/(3k + 4). Therefore,

μ(D) ≤ μ(M) = (2k + 2)/(6k + 8). So the result follows that μ(D) = κ(D).

Case 4. x = 6k+6. By Theorem 4.1 we have established κ(D) = (4k+4)/(12k+14).

By Theorem 6.1 with M = {2, x, x + 2} = {2, 6k + 6, 6k + 8} which can be

reduced to M ′ = {1, 3k+3, 3k+4}, we get μ(M) = κ(M) = (2k+2)/(6k+7). Hence,

μ(D) ≤ μ(M) = (2k + 2)/(6k + 7) and μ(D) = κ(D).

Case 5. x = 6k+7. By Theorem 4.1 we have established κ(D) = (4k+5)/(12k+16).

By Theorem 6.1 with M = {2, x, x + 2} = {2, 6k + 7, 6k + 9}, we obtain

μ(M) = κ(M) = (4k + 5)/(12k + 16).

Therefore, μ(D) ≤ (4k + 5)/(12k + 16) and μ(D) = κ(D).

Theorem 7.4. [7] Let D = {2, 3, x, x + 3} with x ≥ 4. Then μ(D) = κ(D), x 
≡

1, 2, 4, 5 mod 9.
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Proof. Consider the following cases:

Case 1. x = 9k + 3. By Theorem 4.2 we have κ(D) = (6k + 3)/(18k + 9) = 1/3.

By Theorem 6.1, M = {3, x, x + 3} = {3, 9k + 3, 9k + 6}, which can be reduced to

M ′ = {1, 3k + 1, 3k + 2}. This results in μ(M) = κ(M) = 1/3. Because M ⊆ D, so

κ(D) = μ(D) = μ(M) = 1/3.

Case 2. x = 9k + 6. By Theorem 4.2 we have κ(D) = (k + 1)/(3k + 4). By

Theorem 6.1, M = 3, x, x+ 3 = {3, 9t + 6, 9t + 9}, which can be reduced to M ′ =

{1, 3t+2, 3t+3}. Because M ⊆ D, κ(D) ≤ μ(D) ≤ μ(M) ≤ κ(M) = (k+1)/(3k+4),

which results in μ(D) = κ(D) = (k + 1)/(3k + 4).

Case 3. x = 9k+7. By Theorem 4.2 we have κ(D) = (3k+4)/(9k+13). By Theorem

6.1 with M = {3, x, x+ 3} = {3, 9t+ 7, 9t+ 10}, we get κ(M) = (3k + 4)/(9k + 13).

Because M ⊆ D, so κ(D) ≤ μ(D) ≤ μ(M) = κ(M) = (3k + 4)/(9k + 13).

Case 4. x = 9k + 8. By Theorem 4.2 we have κ(D) = (6k + 6)/(18k + 19). By

Theorem 6.1 with M = {3, x, x + 3}, we get κ(M) = (6k + 6)/(18k + 19). Hence,

μ(D) = κ(D) = (6k + 6)/(18k + 19).

Case 5. x = 9k. By Theorem 4.2 we have κ(D) = (2k)/(6k + 1). By Theorem 6.1

with M = {3, x, x+ 3} = {3, 9k, 9k + 3}, μ(M) = κ(M) = (2k)/(6k + 1). Hence, the

result follows that μ(D) = κ(D).

Theorem 7.5. Let D = {2, 3, x, x+ 4} with x ≥ 4. Then μ(D) = κ(D).

Proof. Consider the following cases:

Case 1. x = 5k + 8. By Lemma 6.6 we know that κ(D) = μ(D) = 2
5
.

Case 2. x = 5k + 4. By Theorem 4.3 we have established κ(D) = 2k+2
5k+6

.

Now we claim μ(D) ≤ 2k+2
5k+6

. Assume to the contrary that μ(D) > 2k+2
5k+6

. Then
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by Lemma 6.5, there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+6

, for all non-negative

integers n. Thus S[2] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and 2 ∈ D. This also

results in S[5k + 3] ≥ 2k + 2. By Observation 2, S[5k + 3] ≤ S[5k + 4] ≤ 2k + 2,

which in turn gives the equality S[5k + 3] = 2k + 2. Continuing this investigation,

we find that S[5k + 5] ≥ 2k + 3, implying that S ∩ {5k + 4, 5k + 5} 
= ∅, which is

impossible as 0, 1 ∈ S, and 5k + 4 ∈ D. Thus μ(D) ≤ 2k+2
5k+6

, which further results in

μ(D) = κ(D), as desired.

Case 3. x = 5k + 5. By Theorem 4.3 we have established κ(D) = 2k+2
5k+7

.

Now we claim μ(D) ≤ 2k+2
5k+7

. Assume to the contrary that μ(D) > 2k+2
5k+7

. By

Lemma 6.5, there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+7

, for all non-negative

integers n. Thus S[3] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and 2, 3 ∈ D. This also

results in S[5k + 4] ≥ 2k + 2. By Observation 2, S[5k + 4] ≤ 2k + 2, which in turn

gives the equality S[5k + 4] = 2k + 2. Continuing this investigation, we find that

S[5k + 6] ≥ 2k + 3, implying that S ∩ {5k + 5, 5k + 6} 
= ∅, which is impossible as

0, 1 ∈ S, and 5k + 5 ∈ D. Thus μ(D) ≤ 2k+2
5k+7

, which further results in μ(D) = κ(D),

as desired.

Case 4. x = 5k + 6. By Theorem 4.3 we have established κ(D) = 2k+4
5k+13

.

Now we claim μ(D) ≤ 2k+4
5k+13

. Assume to the contrary that μ(D) > 2k+4
5k+13

.

Then by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+4
5k+13

, for all non-

negative integers n. Thus S[3] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and 2, 3 ∈ D.

This also results in S[5k + 7] ≥ 2k + 3. By Observation 2, S[5k + 5] ≤ 2k + 3, this

gives the equality S[5k+5] = 2k+3. Indeed, as we know from the same Observation

that S[5k+4] ≤ 2k+2, we obtain 5k+5 ∈ S. Continuing this investigation, we find
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that S[5k+10] ≥ 2k+4, implying that 5k+9 ∈ S, as S∩{5k+8, 5k+9, 5k+10} 
= ∅,

and both 0, 5k + 5 ∈ S and 3, 5k + 10 ∈ D. Finally, S[5k + 12] ≥ 2k + 5 implying

that S ∩ {5k + 11, 5k + 12} 
= ∅, which is impossible as 5k + 9 ∈ S, and 2, 3 ∈ D.

Thus μ(D) ≤ 2k+4
5k+13

, which further results in μ(D) = κ(D), as desired.

Case 5. x = 5k + 7. By Theorem 4.3 we have established κ(D) = 2k+5
5k+14

.

Now we claim μ(D) ≤ 2k+5
5k+14

. Assume to the contrary that μ(D) > 2k+5
5k+14

. Then

by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+5
5k+14

, for all non-negative

integers n. Thus S[2] ≥ 2 and S[5] ≥ 3, which shows that 1, 5 ∈ S, as 0 ∈ S and

2, 3 ∈ D. This also results in S[5k+4] ≥ 2k+2. By Observation 2, S[5k+4] ≤ 2k+2,

which in turn gives the equality S[5k + 4] = 2k + 2. Continuing this investigation,

we find that S[5k + 6] ≥ 2k + 3, implying that {5k + 5, 5k + 6} ∩ S 
= ∅. This option

does not present a problem. As S[5k + 8] ≥ 2k + 4, and as 0, 1 ∈ S and 5k + 7 ∈ D,

this means that both 5k + 5, 5k + 6 ∈ S. Additionally, S[5k + 11] ≥ 2k + 5, giving

5k+10 ∈ S, as 3, 5k+11 ∈ D and 0, 5k+6 ∈ S. Finally, S[5k+13] ≥ 2k+6 implying

that S ∩ {5k + 12, 5k + 13} 
= ∅, which is impossible as 2, 3 ∈ D, and 5k + 10 ∈ S.

Thus μ(D) ≤ 2k+5
5k+14

, which further results in μ(D) = κ(D), as desired.

Theorem 7.6. Let D = {2, 3, x, x+ 5}. Then μ(D) = κ(D).

Proof. Consider the following cases:

Case 1. x = 5k + 2. By Lemma 6.6, we know that κ(D) = μ(D) = 2
5
.

Case 2. x = 5k + 3. By Lemma 6.6, we know that κ(D) = μ(D) = 2
5
.

Case 3. x = 5k + 4. By Theorem 4.4 we have established κ(D) = 2k+2
5k+6

.

Now we claim μ(D) ≤ 2k+2
5k+6

. Assume to the contrary that μ(D) > 2k+2
5k+6

. Then
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by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+6

, for all non-negative

integers n. Thus S[2] ≥ 2, which shows that 1 ∈ S, as 0 ∈ S and 2 ∈ D. By our

assumption, S[5k + 3] ≥ 2k + 2. By Observation 2, S[5k + 3] ≤ S[5k + 4] ≤ 2k + 2,

which in turn gives the equality S[5k + 3] = 2k + 2. Continuing this investigation,

we find that S[5k + 5] ≥ 2k + 3, implying that S ∩ {5k + 4, 5k + 5} 
= ∅, which is

impossible as 0, 1 ∈ S, and 5k + 4 ∈ D. Thus μ(D) ≤ 2k+2
5k+6

as desired, which further

results in μ(D) = κ(D).

Case 4. x = 5k + 5. By Theorem 4.4 we have established κ(D) = 2k+2
5k+7

.

Now we claim μ(D) ≤ 2k+2
5k+7

. Assume to the contrary that μ(D) > 2k+2
5k+7

. Then

by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+7

, for all non-negative

integers n. Thus S[2] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and 2 ∈ D. By our

assumption, S[5k+4] ≥ 2k+2. By Observation 2, S[5k+4] ≤ 2k+2, which in turn

gives the equality S[5k + 4] = 2k + 2. Continuing this investigation, we find that

S[5k + 6] ≥ 2k + 3, implying that S ∩ {5k + 5, 5k + 6} 
= ∅, which is impossible as

0, 1 ∈ S, and 5k + 5 ∈ D. Thus μ(D) ≤ 2k+2
5k+7

, which further results in μ(D) = κ(D),

as desired.

Case 5. x = 5k + 6. By Theorem 4.4 we have established κ(D) = 2k+3
5k+9

.

Now we claim μ(D) ≤ 2k+3
5k+9

. Assume to the contrary that μ(D) > 2k+3
5k+9

. Then

by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+3
5k+9

, for all non-negative

integers n. Thus S[2] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and 2 ∈ D. This also

results in S[5k + 4] ≥ 2k + 2. By Observation 2, S[5k + 4] ≤ 2k + 2, which in turn

gives the equality S[5k + 4] = 2k + 2. Continuing this investigation, we find that

S[5k+6] ≥ 2k+3, implying that 5k+5 ∈ S, as 0 ∈ S and 5k+6 ∈ D. Furthermore,
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S[5k + 8] ≥ 2k + 4, implying that S ∩ {5k + 7, 5k + 8} 
= ∅, which is impossible as

5k + 5 ∈ S, and 2, 3 ∈ D. Thus μ(D) ≤ 2k+3
5k+9

, which further results in μ(D) = κ(D),

as desired.
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CHAPTER 8

Generalized Results on μ(D) and κ(D)

After examining patterns between μ(D) and κ(D) for the first few fixed dis-

tances between the x and y elements of theD-set, namely theD-sets {2, 3, x, x+i}, 1 ≤

i ≤ 5, it remains to be seen if these results may be extended to the generalized κ(D)

values from Chapter 5. In this Chapter we show that these results can currently be

extended to y = x+ 5β and y = x+ 5β + 1.

Theorem 8.1. Let D = {2, 3, x, x+ 5β}, β ≥ 1. Then

μ(D) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5

if x = 5k + 7 or x = 5k + 8;

2k+2
5k+6

if x = 5k + 4;

2k+2
5k+7

if x = 5k + 5;

2k+3
5k+9

if x = 5k + 6.

Furthermore, μ(D) = κ(D) when k ≥ 2β.

Proof. Consider the following cases:

Case 1. x = 5k + 7. By Lemma 6.6, we know that κ(D) = μ(D) = 2
5
.

Case 2. x = 5k + 8. By Lemma 6.6, we know that κ(D) = μ(D) = 2
5
.

Case 3. x = 5k + 4. By Theorem 5.1, we have established κ(D) = 2k+2
5k+6

when

k ≥ 2β.

Now we claim μ(D) ≤ 2k+2
5k+6

. Assume to the contrary μ(D) > 2k+2
5k+6

. Then by

Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+6

, for all non-negative

integers n. Thus S[0] ≥ 1 and S[2] ≥ 2, making 0, 1 ∈ S. Additionally, S[5k + 4] ≥

2k + 2. By Observation 2, S[5k + 4] ≤ 2k + 2, so combined with S[5k + 4] ≥ 2k + 2,
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we know that S[5k + 4] = 2k + 2. S[5k + 5] ≥ 2k + 3, forcing 5k + 5 ∈ S, which

creates a contradiction, as 1 ∈ S and 5k + 4 ∈ D. Thus μ(D) is bounded above by

2k+2
5k+6

and furthermore, κ(D) = μ(D), when k ≥ 2β as desired.

Case 4. x = 5k + 5. By Theorem 5.1, we have established κ(D) = 2k+2
5k+7

when

k ≥ 2β.

We claim μ(D) ≤ 2k+2
5k+7

. Assume to the contrary μ(D) > 2k+2
5k+7

. Then by

Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2
5k+7

, for all non-negative

integers n. Thus S[0] ≥ 1 and S[2] ≥ 2, making 0, 1 ∈ S, as 2 ∈ D. Additionally,

S[5k + 4] ≥ 2k + 2. By Observation 2, S[5k + 4] ≤ 2k + 2, so combined with

S[5k + 4] ≥ 2k + 2, we know that S[5k + 4] = 2k + 2. S[5k + 6] ≥ 2k + 3, implying

that S∩{5k+5, 5k+6} 
= ∅ which creates a contradiction, as 0, 1 ∈ S and 5k+5 ∈ D.

Thus μ(D) is bounded above by 2k+2
5k+7

and furthermore, μ(D) = κ(D), when k ≥ 2β,

as desired.

Case 5. x = 5k + 6. By Theorem 5.1, we have established κ(D) = 2k+3
5k+9

when

k ≥ 2β.

In general, we claim μ(D) ≤ 2k+3
5k+9

. Assume to the contrary μ(D) > 2k+3
5k+9

. Then

by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+3
5k+9

, for all non-negative

integers n. Thus S[0] ≥ 1 and S[2] ≥ 2, making 0, 1 ∈ S, as 2 ∈ D. Additionally,

S[5k+6] ≥ 2k+3. By Observation 2, S[5k+4] ≤ 2k+2, forcing 5k+5 ∈ S, as 0 ∈ S

and 5k + 6 ∈ D. Finally, S[5k + 8] ≥ 2k + 4, implying that S ∩ {5k + 7, 5k + 8} 
= ∅,

which is impossible as 5k+5 ∈ S and 2, 3 ∈ D. Thus μ(D) is bounded above by 2k+3
5k+9

and furthermore μ(D) = κ(D) = 2k+3
5k+9

, when k ≥ 2β, as desired.

Observation 3. Note that for Case 3 we have shown that there is an upper bound
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of μ(A) ≤ 2k+2
5k+6

when A = {2, 3, 5k + 4}, and thus μ(D) ≤ μ(A) = 2k+2
5k+6

for any D

where A ⊂ D. Similarly, upper bounds of μ(A) ≤ 2k+2
5k+7

when A = {2, 3, 5k + 5} and

μ(A) ≤ 2k+3
5k+9

when A = {2, 3, 5k + 6} have been established through Cases 4 and 5,

and by extension, μ(D) ≤ μ(A) = 2k+3
5k+9

, for any D-set with A ⊂ D.

Theorem 8.2. Let D = {2, 3, x, x+ 5β + 1}. Then

μ(D) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5

if x = 5k + 7;

2k+2β+4
5k+5β+11

if x = 5k + 8;

2k+2β+2
5k+5β+7

if x = 5k + 4;

2k+2
5k+7

if x = 5k + 5;

2k+3
5k+9

if x = 5k + 6.

Furthermore, when k ≥ 2β, then the first three cases of the above theorem become

equalities, and μ(D) = κ(D).

Proof. Consider the following cases:

Case 1. x = 5k + 7. By Lemma 6.6, we know that κ(D) = μ(D) = 2
5
.

Case 2. x = 5k + 8. By Theorem 5.2, κ(D) = 2k+2β+4
5k+5β+11

when k ≥ 2β.

Now we claim μ(D) ≤ 2k+2β+4
5k+5β+11

. Assume to the contrary that μ(D) > 2k+2β+4
5k+5β+11

.

Then by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2β+4
5k+5β+11

, for all

non-negative integers n. Thus S[2] ≥ 2 which shows that 1 ∈ S, as 0 ∈ S and

2 ∈ D. This also results in S[5k + 5β + 8] ≥ 2k + 2β + 4. By Observation 2,

S[5k + 5β + 8] ≤ S[5k + 5β + 9] ≤ 2k + 2β + 4, as 2, 3 ∈ D, which in turn gives the

equality S[5k + 5β + 8] = 2k + 2β + 4. Continuing this investigation, we find that
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S[5k + 5β + 10] ≥ 2k + 2β + 5, implying that S ∩ {5k + 5β + 9, 5k + 5β + 10} 
= ∅,

which is impossible as 0, 1 ∈ S, and 5k + 5β + 9 ∈ D. Thus μ(D) ≤ 2k+2β+4
5k+5β+11

as

desired, which further results in μ(D) = κ(D) when k ≥ 2β.

Case 3. x = 5k + 4. By Theorem 5.2, we have established κ(D) = 2k+2β+2
5k+5β+7

when

k ≥ 2β.

Now we claim μ(D) ≤ 2k+2β+2
5k+5β+7

. Assume to the contrary μ(D) > 2k+2β+2
5k+5β+7

.

Then by Lemma 6.5 there exists a D-sequence S such that S[n]
n+1

> 2k+2β+2
5k+5β+7

, for all non-

negative integers n. Thus S[0] ≥ 1 and S[2] ≥ 2, making 0, 1 ∈ S. Also, we observe

that S[5k+5β+4] ≥ 2k+2β+2. By Observation 2, S[5k+5β+4] ≤ 2k+2β+2, so

combined with S[5k+5β+4] ≤ 2k+2β+2, we know that S[5k+5β+4] = 2k+2β+2.

Finally, S[5k+5β+6] ≥ 2k+2β+3, implying that S∩{5k+5β+5, 5k+5β+6} 
= ∅,

which creates a contradiction, as 0, 1 ∈ S and 5k+5β+5 ∈ D. Thus μ(D) is bounded

above by 2k+2β+2
5k+5β+7

and μ(D) = κ(D), when k ≥ 2β, as desired.

Case 4. x = 5k + 5. By Observation 3, μ(D) ≤ μ({2, 3, 5k + 5}) = 2k+2
5k+7

, as desired.

Case 5. x = 5k + 6. By Observation 3, μ(D) ≤ μ({2, 3, 5k + 6}) = 2k+3
5k+9

, as desired.
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CHAPTER 9

Interesting Properties and Questions for Future Study

When looking at the tables from Chapter 5 for the overarching generalized

behaviors, we can see that lim
β→∞

κ(D) = 2
5
or lim

β→∞
κ(D) = 1

3
. One of the next questions

to be answered is what are the interactions dominating the first of the generalized

cases, where k < 2β. The value of κ(D) seems to initially drop dramatically towards a

lower fractional value that is closer to 1
4
, but then resumes its asymptotic rise towards

2
5
. We conjecture that there is another modulo pattern at work in these initial cases,

dominant only so long as k < 2β, and further ask whether or not there are perhaps

interesting dynamics within the initial κ(D) values that may shed light on how to

extend these results to more inclusive D-sets, such as ones that do not require the

first two elements to be 2 and 3. Finally, it remains to be seen if asymptotic upper

bounds may be found for the μ(D) of other D-sets, and whether this may, in turn,

be extended to generalize the complete behavior for all 4-element D-sets.
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APPENDIX A

Java Program Code for Generating κ(D) Values
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package colortheory; 
 
public class TimeCircumDistanceSingle { 
 
 public static void main(String[] args) { 
//  //System.out.print("   y: "); 
//  for (int columnCounter = 5; columnCounter < 99; columnCounter++) { 
//   if (columnCounter < 10) { 
//    System.out.print(columnCounter + "             "); 
//   } else { 
//    System.out.print(columnCounter + "            "); 
//   } 
////  }   
  final int a = 2, b = 3; 
  final int distanceBetweenXandY = 51; 
  int C = 171, D = C + distanceBetweenXandY; 
  int[][] timeMatrix = new int[C+1][C+1+distanceBetweenXandY]; 
  int[][] circumMatrix2 = new int[C+1][C+1+distanceBetweenXandY]; 
  int[][] distMatrix = new int[C+1][C+1+distanceBetweenXandY]; 
  for (int cVariable = 4; cVariable <= C; cVariable++) { 
   int c = cVariable; 
   for (int variable = c + 1; variable <= D; variable++) { 
    int d = variable; 
    int[] circumf = new int[6]; 
    double[] maxKappa = new double[6]; 
    int[] timeKeeper = new int[6]; 
    int[] circumMatrix = new int[6]; 
    int[] dist = new int[6]; 
    circumf[0] = a + b; 
    circumf[1] = a + c; 
    circumf[2] = a + d; 
    circumf[3] = b + c; 
    circumf[4] = b + d; 
    circumf[5] = c + d; 
    for (int counter = 0; counter < 6; counter++) { 
     int circum = circumf[counter]; 
     int[][] distance = new int[4][circum]; 
     for (int time = 1; time <= circum; time++) { 
      int min; 
      min = (time * a) % circum; 
      if (min <= circum / 2) { 
       // System.out.println("min is " + min); 
       distance[0][time - 1] = min; 
       continue; 
      } else { 
       min = (circum - min) % circum; 
       distance[0][time - 1] = min; 
      } 
      // System.out.println("min is " + min); 
      continue; 
     } 
     for (int time = 1; time <= circum; time++) { 
      int min; 
      min = (time * b) % circum; 
      if (min <= circum / 2) { 
       // System.out.println("min for b is " + min); 
       distance[1][time - 1] = min; 
       continue; 
      } else { 
       min = (circum - min) % circum; 
       distance[1][time - 1] = min; 
      } 



      // System.out.println("min for b is " + min); 
     } 
     for (int time = 1; time <= circum; time++) { 
      int min; 
      min = (time * c) % circum; 
      if (min <= circum / 2) { 
       // System.out.println("min for c is " + min); 
       distance[2][time - 1] = min; 
       continue; 
      } else { 
       min = (circum - min) % circum; 
       distance[2][time - 1] = min; 
      } 
      // System.out.println("min for c is " + min); 
     } 
     for (int time = 1; time <= circum; time++) { 
      int min; 
      min = (time * d) % circum; 
      if (min <= circum / 2) { 
       // System.out.println("min for d is " + min); 
       distance[3][time - 1] = min; 
       continue; 
      } else { 
       min = (circum - min) % circum; 
       distance[3][time - 1] = min; 
      } 
      // System.out.println("min for d is " + min); 
     } 
     for (int bob = 0; bob < 4; bob++) { 
      for (int min = 0; min < circum; min++) { 
       if (distance[bob][min] > 99) { 
        // System.out.print(distance[bob][min] + " "); 
       } else if (distance[bob][min] < 100 
         && 9 < distance[bob][min]) { 
        // System.out.print(" " + distance[bob][min] + 
        // "  "); 
       } else { 
        // System.out.print(" " + distance[bob][min] + 
        // "   "); 
       } 
      } 
      // System.out.println(); 
     } 
 
     int[] minDist = new int[circum]; 
     for (int column = 0; column < circum; column++) { 
      minDist[column] = distance[0][column]; 
      if (distance[1][column] < distance[0][column]) { 
       minDist[column] = distance[1][column]; 
       if (distance[2][column] < distance[1][column]) { 
        minDist[column] = distance[2][column]; 
        if (distance[3][column] < distance[2][column]) { 
         minDist[column] = distance[3][column]; 
         continue; 
        } else 
         continue; 
       } else if (distance[3][column] < distance[1][column]) { 
        minDist[column] = distance[3][column]; 
        continue; 
       } else 
        continue; 
      } else if (distance[2][column] < distance[0][column]) { 



       minDist[column] = distance[2][column]; 
       if (distance[3][column] < distance[2][column]) { 
        minDist[column] = distance[3][column]; 
        continue; 
       } else 
        continue; 
      } else if (distance[3][column] < distance[0][column]) { 
       minDist[column] = distance[3][column]; 
       continue; 
      } 
     } 
 
     /* 
      * System.out.println(); for (int minPlaceHolder = 0; 
      * minPlaceHolder < circum; minPlaceHolder++) { if 
      * (minDist[minPlaceHolder] < 10) { System.out.print(" " + 
      * minDist[minPlaceHolder] + "  "); } else { 
      * System.out.print(" " + minDist[minPlaceHolder] + " "); } 
      * } 
      */ 
 
     // System.out.println(); 
     int maxMinValue = minDist[0], timeCounter = 1; 
     for (int findingMaxMinValue = 0; findingMaxMinValue < circum; findingMaxMinValue++) { 
      if (minDist[findingMaxMinValue] > maxMinValue) { 
       maxMinValue = minDist[findingMaxMinValue]; 
       timeCounter = findingMaxMinValue + 1; 
       continue; 
      } else 
       continue; 
     } 
     // System.out.println(); 
     double kappa = (double) maxMinValue / circum; 
     /*System.out.println("The maximum minimum distance is " + 
     maxMinValue 
     + " for circum " + circum); 
     System.out.println("This gives the kappa value of " + 
     kappa);*/ 
     // System.out.println("The first time giving this distance is " 
     // + timeCounter); 
     // System.out.println(); 
     maxKappa[counter] = kappa; 
     timeKeeper[counter] = timeCounter; 
     circumMatrix[counter] = circum; 
     dist[counter] = (int) (kappa*circum); 
    } 
    int dist2 = 0; 
    int time = 0; 
    double kappa = 0; 
    int circum = 0; 
    for (int counter = 0; counter < 6; counter++) { 
     if (maxKappa[counter] <= kappa) { 
      continue; 
     } else { 
      kappa = maxKappa[counter]; 
      time = timeKeeper[counter]; 
      circum = circumMatrix[counter]; 
      dist2 = dist[counter]; 
      continue; 
     } 
    } 
    //System.out.println(circumReference + " is the circum"); 



     
     /*System.out.println("The circum that results in kappa is " + 
     circum + "  The final Kappa value  for {" + a + ", " + b + ", " 
     + c + ", " + d + "} is " + kappa + " ."); 
     System.out.println(time + " {"+ a + "," + b + "," + c + "," + 
     d + "}");*/ 
    timeMatrix[c][d] = time; 
    circumMatrix2[c][d] = circum; 
    distMatrix[c][d] = dist2; 
   } 
  } 
  for (int place = 5; place < D; place++) { 
 
  } 
  System.out.println("x,  y"); 
  for (int row = 4; row < C; row++) { 
   if (row < 10) { 
    System.out.print(row + ", " + (row+distanceBetweenXandY) + "  || "); 
   } else if (row < 100 && 10 <= row) { 
    System.out.print(row + ", " + (row+distanceBetweenXandY) + " || "); 
   } else { 
    System.out.print(row + ", " + (row+distanceBetweenXandY) + "|| "); 
   } 
 
   for (int column = row+distanceBetweenXandY; column == row+distanceBetweenXandY; column++) { 
    if (timeMatrix[row][column] < 10) { 
     if (circumMatrix2[row][column] <10){ 
      if (distMatrix[row][column]<10){ 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ")  [" + distMatrix[row][column] + "]    "); 
       continue;} 
      else if (distMatrix[row][column]>=10 && distMatrix[row][column]<100){ 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]   "); 
       continue;} 
      else { 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]  "); 
       continue;}} 
     else if (10 <= circumMatrix2[row][column] && circumMatrix2[row][column]<100){ 
      if (distMatrix[row][column]<10){ 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]    "); 
       continue;} 
      else if (distMatrix[row][column]>=10 && distMatrix[row][column]<100){ 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]   "); 
       continue;} 
      else { 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]  "); 
       continue;}} 
     else { 
      System.out.print(timeMatrix[row][column] + " (" + circumMatrix2[row][column] + ")[" 
+ distMatrix[row][column] + "]  "); 
     } 
    } else if (10 <= timeMatrix[row][column]&& timeMatrix[row][column] < 100) { 
     if (circumMatrix2[row][column] <10){ 
      if (distMatrix[row][column]<10){ 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]  "); 
       continue;} 



      else if (distMatrix[row][column]>=10 && distMatrix[row][column]<100){ 
       System.out.print(timeMatrix[row][column] + "(" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]   "); 
       continue;} 
      else { 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "] "); 
       continue;}} 
     else if (10 <= circumMatrix2[row][column] && circumMatrix2[row][column]<100){ 
       if (distMatrix[row][column]<10){ 
        System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]  "); 
        continue;} 
       else if (distMatrix[row][column]>=10 && distMatrix[row][column]<100){ 
        System.out.print(timeMatrix[row][column] + "(" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]   "); 
        continue;}  
       else { 
        System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]"); 
        continue;}} 
     else { 
       System.out.print(timeMatrix[row][column] + "(" + 
circumMatrix2[row][column] + ")[" + distMatrix[row][column] + "]   "); 
      } 
      continue; 
    } else { 
     if (circumMatrix2[row][column] <10){ 
      System.out.print(timeMatrix[row][column] + " (" + circumMatrix2[row][column] + ") [" 
+ distMatrix[row][column] + "]  "); 
      continue;} 
      else if (10 <= circumMatrix2[row][column] && circumMatrix2[row][column]<100){ 
       System.out.print(timeMatrix[row][column] + "(" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]   "); 
      } 
      else { 
       System.out.print(timeMatrix[row][column] + " (" + 
circumMatrix2[row][column] + ") [" + distMatrix[row][column] + "]"); 
      } 
     continue; 
    } 
   } 
   System.out.println(); 
  } 
 } 
} 



APPENDIX B

Mathematica Program Code for Checking Intersection Intervals
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k= ; 
"Clear[k]"; 
Clear[a]; 
x =5k+6; 
y = x+5 +1; 
=k+1+ ; 

r=0; 
c=y+x 
d =4 -5 
Kappa = Simplify[d/c] 
c; 
d; 
Simplify[d]; 

Simplify[Expand[twoLeft=d/2]]; 
Simplify[Expand[threeRight = 1/3(c-d)]]; 
set = Simplify[{twoLeft,threeRight}]; 
xn =k+0; 
yn=xn + ; 
xl=Simplify[  1/x(d + xn* c)]; 
xr= 1/x(c-d+xn * c); 
yl=Simplify[Expand[ 1/y(d + yn *c)]]; 
yr= 1/y(c-d+yn * c); 
Expand[{Simplify[xl*2*x],Simplify[xr*2*x]}] 
Expand[{twoLeft*2*x,threeRight*3*x}] 
Expand[{Simplify[xl*3*x],Simplify[xr*3*x]}] 
"-------------------" 
Expand[{Simplify[yl*2*y],yr*2*y}] 
Expand[{twoLeft*2*y,threeRight*3*y}] 
Expand[{Simplify[yl*3*y],yr*3*y}] 
"-------------------" 
"   Left X Interval         Right X Interval" 
Expand[{Simplify[xl*x*y],Simplify[xr*x*y]}] 
Expand[{Simplify[yl*x*y],Simplify[yr*x*y]}] 
"   Left Y Interval         Right Y Interval" 

 

Simplify[xl] 
Simplify[yr] 

Simplify[xr] 
Simplify[yl] 


