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Urban runoff represents the primary cause of marine pollution in the Southern California
coastal oceans. This study focuses on water quality issues originating from the Tijuana
River watershed, which spans the southwest border of the United States and Mexico.
Frequent discharge events into the coastal ocean at this boundary include stormwater
and wastewater. This study focuses on differences in spectral features, as assessed
by RapidEye, Sentinel-2 A/B, and Landsat-8 satellite data, along with physical and
biological in situ data, to characterize and classify plumes into four key categories:
stormwater, wastewater, open ocean/no plume, and mixed (when both types of
plumes are present). Key spectral differences in the visible to NIR bands showed that
stormwater had elevated reflectance (0.02 to 0.09), followed by mixed (0 to 0.08),
wastewater (0 to 0.05), and open ocean/no plume (0 to 0.03) events. We also examined
biophysical parameters and found that stormwater events had the highest values in
remote sensing based estimates of colored dissolved organic matter (CDOM) (0.98
to 2.1 m−1) and turbidity (12.4 to 45.7 FNU) and also had a large range for in situ
variables of enterococcus bacteria and flow rates. This study also finds that the use of
spectral features in a hierarchical cluster analysis can correctly classify stormwater from
wastewater plumes when there is a dominant type. These results of this study will enable
improved determination of the transport of both types of plumes and transboundary
monitoring of coastal water quality across the Southern California/Baja California region.

Keywords: satellite remote sensing, marine pollution, water quality, RapidEye, wastewater, runoff plumes

INTRODUCTION

The coastal regions of Southern California are susceptible to coastal pollution from urban drainage.
With respect to stormwater, a buildup of pollutants on land during the dry summer months are
transported to coastal oceans during wet season events (Bay et al., 2003; DiGiacomo et al., 2004;
Svejkovsky et al., 2010; Holt et al., 2017). Stormwater runoff from a large urban coastal environment
contains sediments as well as bacteria, oil, fuel, and tire particles from automobiles, anthropogenic
components from sewage, and fertilizer from agriculture (Reifel et al., 2009; Svejkovsky et al., 2010).
This represents a hazard for the ecosystem and for public health in this coastal region, particularly
during the rainy season (Ackerman and Weisberg, 2003). Often, during these events, bacteria levels
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of fecal indicator bacteria (FIB) and enterococcus (ENT) are as
high as 15,000 CFU/100 mL in the ocean which can lead to
significant health issues for beachgoers and surfers (Ackerman
and Weisberg, 2003). EPA guidelines recommend FIB and ENT
should not be greater than 100 CFU/100 mL1. Recreational water
activities should be avoided for at least 3 days after a rain event
(Ackerman and Weisberg, 2003) since studies have shown an
increase risk of gastrointestinal or other acute illness in surfers
within that time period (Schiff et al., 2016; Arnold et al., 2017).

Analysis of stormwater runoff and wastewater plumes, for
purposes of managing and minimizing health impacts to beach
communities, with observational datasets are generally limited
to in situ data collections and fixed stations. Remote sensing
based assessments of plumes in Southern California have used
various multispectral sensors with varying resolution including
SeaWiFS optical radiometer (Nezlin and DiGiacomo, 2005),
MODIS (1 km), Landsat-8 (15 to 30 m), and NOAA’s Advanced
Very High-Resolution Radiometer (AVHRR) (1 km) (Nezlin
et al., 2007; Warrick et al., 2007; Lahet and Stramski, 2010;
Svejkovsky et al., 2010), all of which have significant limitations
in terms of spatial, temporal and spectral resolution and cloud
cover. In Holt et al. (2017), both SAR (5 to 150 m) and MODIS
imagery were used to study stormwater runoff in the Southern
California Bight. In Devlin et al. (2015), MODIS was also used to
investigate the impact of stormwater plumes on coral reefs in the
Great Barrier Reef.

Publicly operated wastewater treatment facilities in Southern
California typically discharge treated wastewater offshore at
depth, with the effluent largely mixing at depth and remaining
below the thermocline. During limited occasions, maintenance
requirements to a facility’s discharge system required the
temporary diversion of treated wastewater closer to shore and at
shallower depths. During such diversions, significant collections
of both in situ and spaceborne remote sensing provided an
opportunity to improve understanding of wastewater plume
dynamics and impacts (Gierach et al., 2017; Trinh et al., 2017) as
well as the biological response to increased nutrient levels (Reifel
et al., 2009; Caron et al., 2017). The Tijuana River watershed is
about 1,750 square miles of area that spans across the California –
Mexico border (Figure 1). About 75 percent of the watershed
is in Mexico, while the remainder is on the California side
near Imperial Beach including the river mouth. Stormwater
runoff plumes have been observed after rain events at the
Tijuana River outlet. In addition, the frequent release of treated
and untreated wastewater into the Tijuana River watershed has
been documented to occur since the late 1990s. Both types of
coastal plumes have been shown to impact the San Diego, CA,
United States coastal region as well as the closely adjacent Mexico
region, causing health concerns for beachgoers and residents. The
two wastewater treatment plants of interest are the South Bay
International Wastewater Treatment Plant (SBIWTP) located in
San Diego, CA, United States and the San Antonio de los Buenos
Wastewater Treatment Plant located in Tijuana, Mexico shown
in Figure 1.

1https://www.epa.gov/sites/production/files/2015-10/documents/rwqc2012.pdf

Stormwater runoff is largely tied to rain events, often carrying
along multiple type of material and contaminants as mentioned
earlier, and is monitored by a flow gauge station. The Tijuana
River has raised particular attention due to the increasing
occurrence of untreated wastewater released up river closer to
the Tijuana population center that contains a high level of
FIB effluent into the coastal area2 as well as the reference of
human fecal markers. The transport of both type of plumes
is dependent on the nearshore circulation, with the San Diego
coastal population notably greater than on the Mexico coastal
side. For example, the San Diego Regional Water Quality
Control Board reported wastewater pollution in the Tijuana River
Watershed on February 6-23, 2017, where there was an incident
of an estimated 28 million gallons (MG) of untreated wastewater
released into the Tijuana River (see text footnote 2). This has
caused major water quality and health issues particularly when
transported northward into the large urban population in the San
Diego area that live near the coast. In another recent case, during
December 11–14, 2018, there was a wastewater spill of 7 million
gallons per day, totaling an estimated 28 million gallons (see text
footnote 2). More recently, from January 18–30, 2019, there were
610 million gallons that spilled in this region (see text footnote
1). In 2018, the San Diego Regional Water Quality Control Board
sent a letter of intent to sue the United States Section of the
International Boundary and Water Commission (USIBWC) for
violations of the Clean Water Act and seeking improvements to
the treatment of wastewater and reduction of accidental releases.
Both the United States and Mexico are working toward a solution
since the watershed is shared by both countries and continues to
be an ongoing transboundary water issue.

The studies on stormwater and wastewater focused on the
detection, extent, and impact of known separately occurring
events and resultanting plumes but did not differentiate between
plume types based on sensor responses. The only known studies
on the detection and possible classification of wastewater in a
coastal environment with remote sensing were in DiGiacomo
et al., 2004; Marmorino et al., 2010; Seegers et al., 2017;
Trinh et al., 2017; Gierach et al., 2017. In Gierach et al.
(2017), Moderate Resolution Imaging Spectrometer (MODIS)
and Satellite Aperture Radar (SAR) data were used to detect
wastewater plumes during two diversion events in Southern
California. The results showed that wastewater plumes could be
identified by a decrease in sea surface temperature (SST) from
MODIS and changes in the surface roughness from SAR. Another
study by Trinh et al. (2017) utilized Landsat 8 Operational
Land Imager (OLI) and MODIS imagery to derive SST and
chlorophyll-a to investigate wastewater impacts and transport
within Santa Monica Bay, California, after a third diversion
event. We know of no published study using remote sensing
that has successfully identified stormwater plumes from treated
wastewater or raw wastewater plumes.

The goal of this study is to determine if the wastewater
and stormwater plumes are optically distinct from each other,
by examining differences in spectral reflectance and derived

2http://www.waterboards.ca.gov/sandiego/water_issues/programs/tijuana_river_
valley_strategy/sewage_issue.html
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FIGURE 1 | The Tijuana River Watershed. The water quality sampling stations from The City of San Diego Public Utilities are denoted by red points and gray
triangles. Automatic water quality sampling stations from the NOAA National Estuarine Research Reserve System (NERRS) located in the estuary are symbolized as
a purple (Boca Rio Station) and light green star (Oneonta Slough Station). The Tijuana River mouth is symbolized as a yellow star and the flow gauge station is a
green star near the United States Mexico border. The precipitation station is the blue star located at the Brown Field Municipal Airport. The South Bay International
Wastewater Treatment Plant (SBIWTP) is located in San Diego, CA near the United States Mexico border. The San Antonio de los Buenos Wastewater Treatment
Plant is located in Tijuana, Mexico situated south of the watershed.

parameters, such as turbidity and colored dissolved organic
matter (CDOM), in combination with in situ data, such as
precipitation, enterococcus (ENT), and flow discharge rate. We
hypothesize that these two plume types will have distinct spectral
properties because stormwater plumes are likely to be dominated
by sediments (Corcoran et al., 2010) and that wastewater is likely
to be dominated by organic matter (DiGiacomo et al., 2004;
Nezlin et al., 2008; Marmorino et al., 2010). This hypothesis will
be evaluated within the context of a regional use case at the
southwest border of United States and Mexico, in the coastal
ocean downstream of the Tijuana River Watershed.

DATA AND METHODS

Identification and Selection of Plume
Events
A stormwater plume is identified by precipitation event(s)
that occurred at least 1–3 days prior to a remote sensing

observation with no reported concurrent wastewater events
occurring. Gauge data are used to identify high flow conditions
following precipitation events. A wastewater plume is identified
based on a reported wastewater spill from the San Diego Regional
Water Quality Control Board with no reported concurrent
precipitation events occurring within 3 days of precipitation prior
to the spill (dry event). Sewage reports indicate that these spills
are a combination of treated and untreated wastewater (see text
footnote 2). Mixed events are a combination of precipitation 1–
3 days prior and a reported wastewater spill. A no-plume event
is defined when there is no precipitation or wastewater spill for
the prior 2 weeks.

Optical Imagery and Surface Reflectance
Profiles
Data Sources
The primary remote sensing sensor used in this study is
RapidEye imagery available from Planet.com and complemented
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by European Space Agency Sentinel 2A/B and NASA/USGS
Landsat 8. While RapidEye has limited spectral information,
its revisit rate of 5 days and higher spatial resolution of 5 m
were critical to capturing plume events. This imagery has been
acquired over this region since 2009 through March 2020,
when sensor operations ended. RapidEye is made available by
Planet.com under the Education and Research Program for non-
commercial access to Planet and Rapid Eye imagery. Sentinel 2
A/B (high revisit rate) and PlanetScope (high spatial resolution)
sensors are key alternatives for future studies since RapidEye has
been discontinued. Revisit time, spatial resolution, swath width,
data source, and spectral characteristics of the sensors used in this
study are shown in Table 1.

The Copernicus Sentinel-2A and Sentinel-2B missions were
launched on June 23, 2015 and March 7, 2017, respectively,
and are operated by the European Space Agency (ESA). Each
instrument consists of 12 spectral bands and a swath width of
290 km, and a spatial resolution of 10 m. The Landsat 8 mission
carrying the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS) is operated by the USGS and was launched
on February 11, 2013. The OLI has 9 spectral bands and a swath
width of 185 km. The spatial resolution of Landsat 8 is 30 m for
the multispectral bands. Sentinel 2 A/B and Landsat 8 were used
to calculate CDOM since they have the required bands to apply
the Quasi-Analytical Algorithm (QAA) of Lee et al. (2002).

We utilize these sensors to examine and characterize the
optical properties of both types of coastal plumes with the intent
of separately classifying each type of plume. Since these plumes
disperse after a day or two, a sensor that has a high spatial and
temporal resolution is crucial (DiGiacomo et al., 2004).

A total of 40 RapidEye images were identified during
these periods and separated into four groups (10 stormwater,

10 wastewater, 10 mixed (a combination of both), and 10
open ocean/no plume) and were then analyzed for differences
in surface reflectance in five bands and other biochemical
parameters such as turbidity and CDOM. We also utilize
in situ data such as flow rate, precipitation, ENT, and plume
color to differentiate between these groups. Supplementary
Table 1 provides more detailed information on each RapidEye
image and its output. RapidEye was used for all the outputs
of spectral reflectance for consistency. Information on how
the spectral reflectances values were extracted are in section
“Spectral Profiles.”

Atmospheric Correction
For RapidEye, Sentinel-2, and Landsat-8 data, an atmospheric
correction scheme was applied using ACOLITE software. The
open-source program ACOLITE (Vanhellemont and Ruddick,
2018) was used to process these images with atmospheric
corrections (Eq. 1) and to generate output parameters including
remote sensing reflectance (Rrs), chlorophyll-a concentration
(chla), CDOM (a443), suspended matter concentration, and
turbidity (Vanhellemont, 2019a). ACOLITE can be downloaded
from the GitHub repository for RapidEye imagery3 and Sentinel-
2 and Landsat-8 imagery4. Atmospheric correction was calculated
for all imagery using the following:

REF (i) =
RAD (i) πd2

ESI(i) cos θs
(1)

where REF is the reflectance value for the top of atmosphere
(TOA) reflectance, RAD is the radiance value, i is the number

3https://github.com/acolite/acolite_mr/
4https://github.com/acolite/acolite

TABLE 1 | Optical satellite specifications for RapidEye, Sentinel-2 A/B, and Landsat 8.

RapidEye Sentinel 2 A/B Landsat 8

OLI and TIRS

Revisit time (days) 5 5 16

Spatial resolution (m/pixel) 5 10 30

Swath width (km) 77 290 290

Data access Planet Labs (https://planet.com) Copernicus
(https://sentinels.copernicus.eu/web/
sentinel/sentinel-data-access)

USGS (https://earthexplorer.usgs.gov)

Spectral band info (lists of Band 1: Blue (440–510 nm) Band 1: Coastal aerosol (443–452 nm) Band 1: Coastal aerosol (433–453 nm)

bands used in this study) Central wavelength: 475 nm Central wavelength: 443 nm Central wavelength: 440 nm

Band 2: Blue (458–523 nm) Band 2: Blue (450–515 nm)

Central wavelength: 490 nm Central wavelength: 480 nm

Band 2: Green (520–590 nm) Band 3: Green (543–578 nm) Band 3: Green (525–600 nm)

Central wavelength: 555 nm Central wavelength: 560 nm Central wavelength: 560 nm

Band 3: Red (630–685 nm) Band 4: Red (650–680 nm) Band 4: Red (630–680 nm)

Central wavelength: 658 nm Central wavelength: 665 nm Central wavelength: 655 nm

Band 4: Red Edge (690–730 nm)

Central wavelength: 710 nm

Band 5: Near-infrared (760–850 nm)

Central wavelength: 805 nm

Central wavelength corresponds to the peak wavelength for each band in nanometers.
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of the spectral band, d is the earth-sun distance at the day of
acquisition in astronomical units (AU), ESI is the extraterrestrial
solar irradiance, and θs is the solar zenith angle in degrees (90◦ –
sun elevation). More information on calculating TOA reflectance
and ESI values for each band can be found on the Planet Labs
website5. REF is corrected using the Dark Spectrum Fitting (DSF)
algorithm for the five RapidEye bands (Vanhellemont, 2019b).
The DSF algorithm is an aerosol correction algorithm and is used
to estimate surface reflectance (see text footnote 3). All imagery
was atmospherically corrected using the DSF algorithm.

Remote Sensing Based Analyses
Spectral Profiles
We utilize a region of interest polygon (circle) to define the area
of interest (AOI) for all RapidEye images with a size of 1.28 km2

(51,076 pixels) to maintain consistency when examining spectral
properties for different plume events. An example of the AOI is
symbolized as a white circle in Figure 2. The surface reflectance
values, after the atmospheric correction, were extracted from
the AOI and were spatially averaged to obtain the mean surface
reflectance value for each band in the AOI. The same process was
done for all 10 events for each of the four groups.

Derived Turbidity
Turbidity is the measure of water clarity in a body of water.
High turbidity is often due to high concentrations of suspended
particles from sediments, CDOM, or algae and has units
of Formazine Nephelometric Units (FNU) or Nephelometric
Turbidity Unit (NTU). The bands that can detect turbidity are
red, red-edge, or near-infrared (NIR) since turbidity has the
optical properties of scattering light in these bands (Dogliotti
et al., 2015; Hafeez et al., 2018). Turbidity is computed using the
following equation (Nechad et al., 2009):

T =
A ρw

1− ρw
C

(2)

where T is the algorithm derived turbidity, ρw is the surface
reflectance after atmospheric correction, and A and C are
constant coefficients associated with inherent optical properties.
Vanhellemont (2019b) shows excellent agreement from using
RapidEye’s red and red-edge bands after comparing seven sites
(sites in Northern California, North Sea, and the Irish Sea)
of in situ turbidity with derived turbidity. We decided to use
RapidEye’s red band for ρw since it gave the best results according
to the Vanhellemont (2019b) study. We used the default A and C
values, 247.10 and 0.1697, respectively, for the red band based on
recommendations from Nechad et al. (2009) and Vanhellemont
(2019b).

Derived Colored Dissolved Organic Matter
Colored dissolved organic matter is a yellow substance, gelbstoff,
from the mixing of organic matter such as remains of plants
and animals. High concentrations of CDOM arise from the
breakdown of dead organisms and organic matter. The color of

5https://www.planet.com/products/satellite-imagery/files/160625-RapidEye%
20Image-Product-Specifications.pdf

CDOM can range from yellow to brown in nearshore waters
(Aurin et al., 2018). To calculate CDOM, we implement the
Quasi-Analytical Algorithm (QAA) from Lee et al. (2002). Bands
that are needed to calculate CDOM (a443) have a wavelength
of 443, 490, 560, and 665 nm. Sentinel-2 A/B and Landsat
8 were used since they have all the required bands to derive
CDOM. RapidEye has only one band from 410 to 510 nm
(blue band) and may not give an estimate for CDOM. From
the multistep process (shown in Supplementary Table 4), we
obtain absorption outputs: a443, a490, a560, and a665. CDOM
absorption can also be observed in the blue band since it
absorbs in the UV and visible (blue light) spectrum range.
The most recent updates to the QAA algorithm are in both
version 5 (Lee et al., 2009) and version 6 (Lee et al., 2014)
which incorporate Rrs (670 nm) (remote sensing reflectance in
band 670 nm) since most sensors (MODIS, Sentinel-2, Landsat
8) have a band near this wavelength. ACOLITE applies either
version 5 or version 6 depending on if Rrs (670nm) is less
than 0.0015. Supplementary Table 4 displays the equations to
calculate a443 (CDOM). CDOM is calculated for 5 stormwater,
5 wastewater, 5 mixed, and 5 open ocean/no plume events
from the AOI using Landsat 8 and Sentinel 2 A/B imagery
(Supplementary Table 3).

Water Quality in situ Data
The NOAA National Estuarine Research Reserve System
(NERRS)6, a long-term monitoring program to protect estuarine
ecosystems, has 28 stations across the United States collecting
water quality, meteorological, nutrient, and pigment data. Each
station is located near an estuary with an automatic sampler
that collects data every 15 min (every 30 min prior to 2007).
Two NOAA stations are used in this study, with one located
at the mouth of the Tijuana River (Boca Rio: purple star in
Figure 1) and the other inside the estuary (Oneonta Slough:
light green star in Figure 1). Water quality parameters of interest
are turbidity (FNU/NTU) and chlorophyll fluorescence (ug/L).
The visual observations are also reported at each shore station
including water color, water clarity, and human or animal activity
(Supplementary Table 2). We used these visual observations to
validate the plume color and water clarity observed from the true
color imagery.

Wastewater spill data is from the City of San Diego (see
text footnote 2) under Spill Reports, which provides the amount
of wastewater spills and when the spills occurred. We also
incorporate enterococcus (ENT) (CFU/100 mL) from The City
of San Diego Public Utilities7 to check the bacteria levels during
a wastewater or stormwater event. Bacteria levels of ENT that go
above 100 CFU/100mL are deemed harmful by the EPA standards
(see text footnote 1). ENT is commonly used as an indicator of
harmful bacteria and viruses that can cause illnesses in swimmers
and surfers (Schiff et al., 2016). These data are used to characterize
and compare the impact of wastewater and stormwater plumes
with respect to turbidity and ENT.

6http://cdmo.baruch.sc.edu
7https://www.sandiego.gov/public-utilities/sustainability/ocean-monitoring/
data/south-bay
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FIGURE 2 | Surface Reflectances for (A) Wastewater, (B) Stormwater, (C) Mixed, and (D) No event/No Plume. Images are the true color imagery from RapidEye
with AOI circled. Box plots are the surface reflectance values for each plume type (10 events per type). A yellow star denotes the Tijuana River mouth.
(A) Wastewater Plume Events: on 1/24/19 (left image): 610 million gallons (MG) of raw wastewater (occurred on 1/18 and ended on 1/30). 12/11/18 (right image):
147.7 MG of raw wastewater (occurred on 12/11 and ended on 12/24). (B) Stormwater Plume Events: 12/7/18 (left image): precipitation amount was 1.07 inches
(2.7 cm) on 12/6/18 and flow rate hourly mean was 158.3 cms. 1/28/10 (right image): precipitation amount was 0.07 inches (0.18 cm) on 1/26/10 and no data
available for flow rate. (C) Mixed Plume Events: 2/9/17 (left image): 143 MG of raw wastewater (occurred on 2/6/17 and ended on 2/23/2017), precipitation amount
on 2/7 was 0.19 inches (0.48 cm), and flow rate hourly mean was 2.4 cms. 1/24/16 (right image): 23.7 MG of raw wastewater (occurred on 1/16/16 and ended on
1/24/16), precipitation amount on 1/23/16 was 0.4 inches (1 cm), and flow rate hourly mean was 0.2 cms. (D) No Plume Events: 3/23/17 (top image) and 12/16/15
(bottom image): no wastewater or precipitation events for at least a month. The AOI is extracted offshore due to natural sedimentation near the coast, which may
influence surface reflectance values. For each box plot, the median is shown by the red mark, the whiskers correspond to the maximum and minimum values, the
red plus signs show the outliers outside of the 25–75 percentile range shown by the box.

Precipitation and Flow Gauge Data
Precipitation data are acquired from NOAA8 from 2010 to 2019,
which is collected at the precipitation station at the Brown
Field Municipal Airport marked as the blue star in Figure 1.
Precipitation values for all stormwater events were plotted using

8https://www.ncdc.noaa.gov/orders/qclcd/

MATLAB and are shown in Supplementary Figure 2. The units
for the daily precipitation amount are in inches. Flow gauge
data is from the International Boundary & Water Commission
(IBWC)9, whose station is marked as the green star in Figure 1.
The units for flow rate are in cubic meters per second (cms) and
the flow rate is the hourly mean of 12 h prior to the satellite

9https://www.ibwc.gov/Water_Data/Index.html
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acquisition time. We use the hourly mean for the 12-h window
since the flow gauge station is located upstream on the river
approximately 6.4 km from the river mouth.

Analyses and Comparison of Plumes
Plume Comparison Using Spectral Data and in situ
Data
To compare spectral reflectance information for each plume
type, we created a box plot for each band using all 10 events
shown in Figure 2. Figure 2A is an example of two wastewater
plumes coming out of the Tijuana River Mouth on January 24,
2019 (147 million gallons of wastewater) and December 7, 2019
(610 million gallons of wastewater). Figure 2B is an example of
two stormwater plumes on December 7, 2018 (1.07 inches of
precipitation) and January 28, 2010 (0.07 inches of precipitation).
Figure 2C is an example of two mixed plumes on February 9,
2017 (0.19 inches of precipitation and 143 million gallons of
wastewater) and January 24, 2016 (0.4 inches of precipitation and
23.7 million gallons of wastewater). Figure 2D is an example
of no plume events on March 23, 2017 and December 16,
2015. For both events, there is no wastewater or precipitation
amounts. We compared the ranges of the reflectance values
for each band to observe spectral differences across all bands.
A line graph of these surface reflectance values was plotted
with ±1 standard deviation from the average spectral value
for each plume type shown in Figure 3. Box plots of mean
derived CDOM and turbidity from the AOI, and the in situ mean
hourly flow rate and ENT (Supplementary Table 2) values were
generated for each plume group. We implemented a one-way
analysis of variance (ANOVA) test to determine if the means are
different for each group.

Hierarchical Cluster Analysis and Principal
Component Analyses
Two approaches were utilized to investigate how spectral data
can be used to assess coastal plume classes. First, we applied a
principal component analysis (PCA) (Jolliffe and Cadima, 2016)
to our dataset of surface reflectance and derived turbidity values
from the defined AOI. This was done directly on raw data (with
the exception of averaging over an area of interest) to preserve
variability in the dataset and account for interrelatedness of
surface reflectance values between bands and because turbidity is
derived from spectral information. PCA has been conducted on
numerous studies of the natural and built environment in various
capacities (Gašparović and Jogun, 2018; Judice et al., 2020) and is
especially used for simplifying high dimensionality datasets and
for classification applications. The principal components (PC1
and PC2) were then plotted to see whether groups of coastal
plume classes were clearly clustered or not.

The second methodology applied here was the hierarchical
cluster analysis (HCA) in a complete-linkage clustering approach
(Revelle, 1979). The purpose of utilizing an alternate approach
was to see if both modes of analysis would reinforce the observed
spectrally dependent differentiation of coastal plume types. HCA
performed in this study uses an agglomerative scheme that
considers each sample as its own individual cluster. Clusters
that are considered more similar (i.e., shortest distance) are then

used to generate larger clusters. Previous work has demonstrated
the utility of HCA on water quality classifications and aquatic
properties (Brezonik et al., 2005; Kamble and Vijay, 2011;
Reynolds and Stramski, 2019).

Both HCA and PCA utilized input data from 30 separate
coastal plume events – 10 were considered “no plume” or
open ocean, 10 were considered sewage spill plumes, and 10
were considered stormwater plumes. Pixels for the AOI were
averaged for each of these events, the events are summarized in
Supplementary Table 1.

RESULTS

Plume Comparison Using Spectra Data
of AOI (Surface Reflectance, Turbidity,
and CDOM)
Figure 2A shows wastewater plume reflectance values ranged
from low-medium reflectance in the blue to green bands and
low reflectance in the red-NIR bands. Stormwater plumes had
medium reflectance in the blue band, medium-high reflectance
in the green to red-edge bands, and low-medium reflectance
in the NIR shown in Figure 2B. The results show that the
stormwater plumes have the highest reflectance in the green-red
region (500–700 nm) which could potentially be due to increased
sediment loading. Figure 2C shows there is considerable overlap
of mixed plumes in the green and red bands, especially with both
the stormwater and wastewater plumes only, indicating varying
concentrations and extent of both wastewater and sediments
shown. Wastewater and mixed plumes reflect mostly in the
green band (500–600 nm) which may be due to CDOM or
chlorophyll. Open ocean/no plume has the lowest reflectance
across all wavelengths considered as shown in Figure 2D.
Wastewater plumes are clearly separated from stormwater
plumes in all five bands.

The line graph in Figure 3 shows the surface reflectances of
10 stormwater plumes, 10 wastewater plumes, 10 mixed plumes,
and 10 open ocean/no plume events. Each plot represents the
average reflectance value and the bounding bars indicate ±1
standard deviation. These surface reflectance values are shown in
Supplementary Figure 1.

We conducted an HCA and a PCA on 30 independent
plume images, where 10 images were associated with stormwater,
10 for wastewater, and 10 for open ocean/no plume events.
Mixed plumes were excluded from this analysis because their
spectral signature overlapped with wastewater plumes. As seen
in Figure 4A, there are three primary branches that correspond
with each of the coastal plume classes evaluated in this analysis: O
(Open Ocean/No Plume – in red); WW (Wastewater – in green);
and SW (Stormwater – in blue). Three of the open ocean samples
(O8, O9, and O10) were clustered into the wastewater plumes
branch, indicating that 27 out of 30 events were classified into
their matching plume class (90% correct classification).

In the PCA analysis, (Figure 4B) we see two distinct groups
[(1) Open Ocean/Wastewater and (2) Stormwater], differentiated
across PC1, the component that accounts for the majority of the
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FIGURE 3 | Line graph of surface reflectances for 10 stormwater plumes, 10
wastewater plumes, 10 mixed plumes, and 10 open ocean events. The y-axis
indicates the surface reflectance values and the x-axis is the wavelength. The
bounding bars are the ±1 standard deviation from the average spectral value.

variance (89.1%) and less clear distinction across the y-axis/PC2
for open ocean and wastewater, with PC2 explaining about 6.8%
of the variance. While O9 and O10 are in closest proximity to the
WW samples, O3 a slightly closer than O8 is, which is a slight
difference between HCA and PCA evaluations. PC1 and PC2 are
plotted here to help evaluate the similarities and distributions in
sample types relative to their classes.

We utilize the a443 parameter (Lee et al., 2002) from
ACOLITE that derives CDOM to compare the CDOM
concentrations between plume types. Figure 5A is the derived
CDOM (a443) parameter from 5 stormwater, 5 wastewater, 5
mixed, and 5 open ocean/no plume events (Supplementary
Table 3). Since CDOM can only be calculated using Landsat 8
and Sentinel 2 imageries, we were only able to acquire a limited
number of these events for comparison. From Figure 5A, the
mean CDOM values for our AOI ranged from 0.06 to 0.32 m−1

(low CDOM) for open ocean/no plume, 0.3 to 0.59 m−1

(low-medium CDOM) for wastewater, 0.39 to 0.96 m−1

(medium-high CDOM) for mixed, and 0.98 to 2.1 m−1 (high
CDOM) for stormwater. The P-value from ANOVA test is 8.96e-
6 for CDOM. CDOM has the 2nd highest variance compared
to turbidity, ENT, and flow rate. Overall, we observed that the
wastewater plumes have less CDOM compared to the stormwater
plumes (Supplementary Table 3).

Figure 5B shows derived turbidity (mean of AOI) from Eq. 2
for all four groups. The turbidity mean values ranges from 0.5
to 3.1 FNU (low turbidity) for open ocean/no plume, 1.83 to
8 FNU (low-medium turbidity) for wastewater, 3.5 to 17.1 FNU
(medium-high turbidity) for mixed, and 12.38 to 45.65 FNU
(high turbidity) for stormwater. In Figure 5B, we observed that
turbidity existed for all 3 types of plume events. The P-value from
ANOVA test is 3.24e-10 for turbidity. Turbidity has the highest
variance compared to CDOM, ENT, and flow rate.

Plume Comparison Using in situ Data
(Plume Color, Flow Rate, and ENT)
In situ water quality data was acquired from the water quality
station monitoring reports for 7 stormwater, 6 mixed, 5
wastewater, and 2 open ocean/no plume events that match with
our RapidEye imagery. There are several sampling locations for
each event (Figure 1: offshore and shore stations). We extracted
the station data that are within each plume or closest to the river
mouth (more information: Supplementary Table 2). Figure 5C
shows that the average ENT for the open ocean/no plume
events is low (3.2 CFU/100 mL), wastewater average ENT is
medium (890 CFU/100 mL), mixed average ENT is relatively
high (1314.1 CFU/100 mL), and stormwater average ENT is
high (3440.5 CFU/100 mL). The P-value from ANOVA test is
1.45e-4 for ENT.

We also see differences in plume color for wastewater
and stormwater plumes. Wastewater plumes are green while
stormwater plumes are brown based on the true color imagery
(Supplementary Table 1). Mixed plumes are a combination
of greenish-brown and open ocean/no plumes are dark blue
in the imagery. Such color difference was also captured by
the visual observations in the water quality station monitoring
reports (offshore and shore stations in Figure 1) for the
events in Supplementary Table 2. Wastewater events reported
that the water color was green and included: sewage like
odor, turbid water, and debris. Stormwater events reported
that the water color was brown and included: turbid water,
sewage like odor, debris, and detergent-like odor. Mixed
events reported that the water color was green or brown
and included: sewage like odor, water turbid, and foam
present. Open ocean/no plume events reported that the
water color was greenish-blue and no comments included in
visual observations.

Figure 5D shows the hourly mean flow rate from the
flow gauge station (green star) in Figure 1. Stormwater flow
rates from events 1–4 (Supplementary Table 1) are missing
since there are no data available during those dates. Flow
rate includes all 10 events for wastewater, mixed, and open
ocean/no plume events. Figure 5D shows that the flow rate
values for open ocean/no plume range from 0.1 to 1.3 cms
(low flow), 0 to 2.7 cms for wastewater (low flow), 0 to
16 cms for mixed (medium flow), and 2.2 to 158.3 cms
for stormwater (high flow). The stormwater events typically
exhibit relatively higher flow rates, which is consistent with
being associated with precipitation events. The P-value from
ANOVA test is 1.3e-4 for flow rate. ENT and flow rate have
similar variances since these values are closer to the mean
compared to turbidity and CDOM. Since all p-values from the
ANOVA test for all parameters are less than the significance
level of 0.05, we reject the null hypothesis that four groups
have equal means.

Evaluation of Satellite-Derived Turbidity
Satellite-derived turbidity values for RapidEye were compared
with those collected from in situ stations in the Tijuana River
to assure the accuracy of the satellite measurements. It should
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FIGURE 4 | HCA and PCA Analysis. (A) A dendrogram tree from the HCA. (B) PCA result of PC1 on the x-axis, and PC2 on the y-axis. The arrows indicate the
relative influence of the parameters used in the underlying data (surface reflectance and derived turbidity).

be noted that in situ data for CDOM and spectral data were
not available for evaluation. The in situ water quality stations
are from the NOAA NERRS and are located at the mouth
of the Tijuana River (Boca Rio: purple star in Figure 1)
and inside the estuary (Oneonta Slough: light green star
in Figure 1).

We compared the turbidity from water quality station at
Oneonta Slough (Figure 6A) to the algorithm derived turbidity
from 40 images listed in the Supplementary Table 1, including
10 wastewater events, 10 stormwater events, 10 mixed events,
and 10 open ocean/no plume. We extracted a 3 × 3 pixel
area surrounding the Oneonta Slough Station to compute

the average derived turbidity. This average derived turbidity
is compared with the in situ hourly average turbidity (4 of
the 15-min turbidity values are averaged). The same methods
were applied to the Boca Rio station (Figure 6B). The high
peaks of turbidity from Figures 6A,B are from stormwater
(SW) events, moderate values of turbidity are from wastewater
(WW), and mixed (M) events, and low turbidity values are
from open ocean/no plume events (O). Oneonta Slough has an
R2 of 0.94, and the Boca Rio station has an R2 of 0.71 with
a sample size of 40 for each station. Figures 6C,D are the
regression line plots for the Oneonta Slough Station and Boca Rio
Station, respectively.
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FIGURE 5 | Box plots of CDOM and turbidity derived from remote sensing data, and ENT and flow rate from in situ measurements. (A) Mean derived CDOM from
AOI (Lee et al., 2002) for 5 stormwater, 5 mixed, 5 wastewater, and 5 no plume events using Landsat 8 and Sentinel 2 A/B data (more information: Supplementary
Table 3). (B) Mean derived turbidity from AOI (Nechad et al., 2009) for 10 stormwater, 10 wastewater, 10 mixed, and 10 no plume events using RapidEye data.
(C) Enterococcus (ENT) counts for 7 stormwater, 6 mixed, 4 wastewater, and 2 no plume events (more information: Supplementary Table 2). (D) Mean flow rate
from gauge station (Figure 1: green star) in cubic meters per second (cms) from 12 h prior to the satellite revisit time for 6 stormwater events and 10 wastewater, 10
mixed, and 10 no plume events). For each box plot, the median is shown by the red mark, the whiskers correspond to the maximum and minimum values, the red
plus signs show the outliers outside of the 25–75 percentile range shown by the box.

DISCUSSION AND CONCLUSION

Previous remote sensing studies focused on tracking, dispersal,
detection, and impacts of stormwater plumes (Warrick et al.,
2007; Lahet and Stramski, 2010; Svejkovsky et al., 2010; Brando
et al., 2015; Holt et al., 2017). There are limited studies
on remote sensing of wastewater plumes (DiGiacomo et al.,
2004; Marmorino et al., 2010; Gierach et al., 2017; Trinh
et al., 2017). However, no known studies have performed the
classification of these plume types. Our study differentiated
the wastewater and stormwater events based on the different
characteristics presented in the plumes. These parameters include
spectral profile, CDOM, turbidity, flow rate, plume color, and
bacteria level (ENT).

Stormwater plumes reflectance values are consistent with
other studies where we see highest reflectance values in the blue to
red ranges (Hafeez et al., 2018; Wang et al., 2019). The wastewater
plumes reflect most strongly in the green wavelength which
shows similar reflectance signatures as CDOM and chlorophyll.
Mixed events show a wide range of reflectance, which depends

on a case by case basis on having “more stormwater” or “more
wastewater” in the mixed plumes. Through conducting HCA
and PCA of surface reflectance values, we were able to classify
stormwater, wastewater, and open ocean/no plume in nearly all
cases (90% success rate). HCA and PCA managed to cluster
these events into 3 groups by finding similar surface reflectance
values for each group. However, HCA misclassified three ocean
samples to wastewater and PCA misclassified two wastewater
samples to open ocean/no plume and one open ocean/no plume
to wastewater. The majority of the samples show that wastewater
and ocean (low-moderate reflectance in the visible) are more
related to each other as compared to stormwater (high reflectance
in the visible). This might be due to some open ocean/no plume
events also having small concentrations of CDOM or chlorophyll,
which reflects in the blue-green band ranges. Another issue may
be the amount of wastewater and its varying concentration and
properties that could influence the surface reflectance values.
For example, the wastewater amounts range from 172,000
gallons to 610 million gallons. These wastewater events are
also comprised of treated wastewater, untreated wastewater, or
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FIGURE 6 | Turbidity validation at the (A) Oneonta Slough Station and (B) Boca Rio Station. (C,D) The regression plots for both stations. Both stations have 40
points each: 10 stormwater, 10 wastewater, 10 mixed, and 10 no plume events.
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a combination of both (see text footnote 1). The plumes that
were misclassified were WW4 and WW8 and we included the
end times of each spill in Supplementary Table 1. There may
have been less wastewater for WW4 since the reported spill
ended 4 h prior to the satellite acquisition time. WW8 might
have been less wastewater as well since it was in the middle
date of a spill that lasted 17 days. The wastewater amount
was significant (143 MG) but occurred throughout these days.
Overall, the majority of the highest reflectances values were
those with the highest reported wastewater amounts. There were
higher amounts of CDOM in stormwater (0.98 to 2.1 m−1) and
lower CDOM values for wastewater (0.3 to 0.59 m−1) (shown
in Figure 5A). Mixed plumes are in-between ranging from
0.39 to 0.96 m−1. Studies have shown variable concentrations
of CDOM in wastewater plumes, which may be due to the
dilution and transport of these plumes (Marmorino et al., 2010;
Gierach et al., 2017).

Validation was only implemented for turbidity since no in situ
data was available for reflectance or CDOM. Turbidity validation
showed high correlations for both the Oneonta Slough (R2 = 0.94)
and Boca Rio (R2 = 0.71) stations. The Oneonta Slough station
obtained the best results due to the station being in quieter waters
with low wave energy (in the estuary) compared to the Boca
Rio station located at the river mouth. At the Boca Rio station
there may be high energy waves which can fluctuate the turbidity
values. In Vanhellemont (2019b), the turbidity deriving algorithm
(Nechad et al., 2009) was validated for RapidEye in several sample
sites with 84 smart Buoys and 129 USGS sites that matched with
RapidEye imagery. The algorithm was able to achieve R2 of 0.78
and 0.81 in the validation of these sites using the red band. Both
Vanhellemont (2019b) and this study have shown that RapidEye
imagery can be used to derive meaningful and accurate turbidity
results based on the Nechad et al. (2009) algorithm.

Turbidity existed in our 3 water groups: stormwater,
wastewater, and mixed (Figure 5B). Stormwater showed the
highest turbidity (ranging from 12.38 to 45.65 FNU) out of
all the groups due to the high amount of sediments in these
plumes. Since mixed plumes are a combination of wastewater and
stormwater, the average turbidity ranges from 3.5 to 17.1 FNU.
Wastewater turbidity values are on the lower end ranging
from 1.83 to 8 FNU. Open ocean/no plume has almost no
turbidity ranging from 0.5 to 3.1 FNU. Flow rate (Figure 5D)
showed a similar pattern as turbidity: high flow rate values for
stormwater, low-medium flow rate for mixed, low flow rate for
wastewater, and almost no flow rate for open ocean/no plume.
High flow amounts are most common when there is runoff
from precipitation which is why there are higher flow rates
for stormwater events. Other studies have reported high flow
rates (Corcoran et al., 2010; Holt et al., 2017) and turbidity
(Washburn et al., 2003) for stormwater plumes due to increases in
sediments, dirt, oil, and other pollutants. For wastewater, results
found that the flow rate is low which may be due to the gauge
not being able to accurately estimate the flow. A report from
IBWC10 found that the flow gauge accuracy is ± 5% and is not
able to detect low flow rates. It is unclear why the wastewater

10https://www.ibwc.gov/Files/Report_Trans_Bypass_Flows_Tijuana_033117.pdf

flow rate is almost undetected since some spills report millions
of gallons of wastewater discharged into the Tijuana River.
The IBWC report mentions that this is due to silt and solid
sediments in the river.

Plume color differences are seen in the true-color imagery:
wastewater plume is green while the stormwater plume is brown.
Mixed plumes are a combination of both (greenish-brown) and
open ocean/no plume is dark blue. The water quality station
monitoring reports observed that wastewater plumes are green,
stormwater plumes are brown, mixed plumes are green or brown,
and no plume waters are greenish-blue. Depending on whether a
wastewater spill is treated (less ENT), stormwater plumes often
result in high ENT since this is an unregulated non-point source.
This is shown in Figure 5C with stormwater showing high
ENT (average: 3440.5 CFU/100 mL) for reported events while
wastewater showed lower ENT (average: 890 CFU/100 mL). The
average ENT for mixed was 1314.1 CFU/100 mL and for open
ocean/no plume was 3.2 CFU/100 mL.

We depend primarily on spectral data from RapidEye, which
is highly limited in terms of spectral information but still useful
enough to help classify between plumes at a reasonably good rate
(90% correct). The uncertainties with utilizing remote sensing
to study these optically complex waters come from variations
in CDOM, chlorophyll-a, sun glint, bottom reflectance, and
suspended sediments (Trinh, et al. 2017). Several studies (Kahru
et al., 2012; Dogliotti et al., 2015; Ruddick et al., 2016; Trinh
et al., 2017; Zheng and DiGiacomo, 2017; Vanhellemont, 2019a)
have shown challenges in determining accurate chlorophyll-a
concentrations in these optically complex waters. This is due to
increases in CDOM and sediments near the coast. In this study,
CDOM in stormwater plumes may be overestimated due to an
increase in suspended sediment particles. However, without a
more complete in situ data archive, we are unable to validate
these parameters, such as CDOM and surface reflectance. Some
of the limitations can be addressed by looking at more detailed
spectral profiles, such as what might be offered by Landsat 8
and Sentinel-2 which we were only able to use in a limited way
in this study. There are also opportunities to do data fusion or
downscale by combining Landsat 8 and Sentinel-2 with RapidEye
and PlanetScope, which might provide us more opportunity
to address tradeoffs between spectral, temporal, and spatial
resolutions. Another essential aspect to consider is understanding
the hydrodynamics of wastewater plumes once they enter the
ocean since there is little known on the residence time and
dilution rates of wastewater.

It is also crucial to understand where these point and non-
point sources are originating from. An example of a point source
is a wastewater spill since it can be traced back to the wastewater
treatment effluent. Stormwater plumes are a non-point source
since this runoff can come from a variety of sources. A report
from the City of San Diego11 found that there are several potential
non-point sources in this region such as agricultural operations,
erosion due to unimproved roadways, homeless encampments,
and natural sources of sediment. Moreover, since this watershed

11https://www.sandiego.gov/sites/default/files/legacy/stormwater/pdf/TJR_
WaterQualityImprovementPlan_021715.pdf
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is both on the U.S-Mexico border, there are also pollutants
from Mexico that contribute to this runoff. It is important to
understand the origin of these sources and classify them in order
to regulate harmful pollutants entering our waterways. In situ
sampling in combination with remote sensing is necessary to
tackle these complex problems and protect public health and
the marine environment. Wastewater spills are becoming more
common due to an increasing amount of people living in the
Tijuana area; our techniques can be applied in order to help
coastal managers detect and classify plume types in areas where
there is less extensive monitoring of water quality.
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