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Abstract

The vertex set of the reduced Kneser graph KG2(m, 2) consists of all
pairs {a, b} such that a, b ∈ {1, 2, . . . ,m} and 2 ≤ |a−b| ≤ m−2. Two
vertices are defined to be adjacent if they are disjoint. We prove that,
if m ≥ 4 and m 6= 5, then the circular chromatic number of KG2(m, 2)
is equal to m − 2, its ordinary chromatic number.

Keywords: circular chromatic number, Kneser graph, reduced Kneser

graph

1 Introduction

Given positive integers k and d, k ≥ 2d, a (k, d)-coloring of a graph G is a

mapping φ from the vertex set V (G) to the set {0, 1, . . . , k−1} such that d ≤
∗Supported in part by the National Science Foundation under grant DMS 9805945.
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|φ(x) − φ(y) | ≤ k − d whenever x and y are adjacent vertices. The circular

chromatic number χc(G) is defined to be the infimum of k/d such that G

admits a (k, d)-coloring. Vince [7] first introduced this notion of colorability,

named it the star chromatic number, and proved that the infimum can be

attained by a minimum. It is also known that χ(G) − 1 < χc(G) ≤ χ(G),

where χ(G) is the ordinary chromatic number of G. Hence χ(G) = dχc(G)e.

From this point of view, the circular chromatic number can be regarded as

a refinement of the ordinary chromatic number.

Circular chromatic numbers have been studied intensively in recent

years. Zhu [9] provides a comprehensive survey of this area, in which over

one hundred references are listed.

One section of Zhu’s survey concentrates on graphs whose circular chro-

matic numbers equal chromatic numbers. Among such graphs, one group of

conspicuous examples includes Kneser graphs of particular parameters. For

m ≥ 2n ≥ 2, the Kneser graph KG(m, n) has the vertex set of all n-subsets

of the set [m] = {1, 2, . . . , m}. Two vertices are defined to be adjacent in

KG(m, n) if they have empty intersection as subsets.

It was conjectured by Kneser [4] in 1955 and proved by Lovász [5] in

1978 that χ(KG(m, n)) = m−2n+2. The proof was a celebrating success be-

cause it employed tools from algebraic topology. Recently, Johnson, Holroyd,

and Stahl [3] have proved that χc(KG(2n+1, n)) = 3, χc(KG(2n+2, n)) = 4,

and χc(KG(m, 2)) = m − 2. Each of these circular chromatic numbers at-

tains its upper bound. In view of these results, they further proposed the

following.

Conjecture 1 For every Kneser graph KG(m, n), we have χc(KG(m, n)) =

χ(KG(m, n)).

A subset S of [m] is said to be 2-stable if 2 ≤ |x−y| ≤ m−2 for distinct
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elements x and y of S. The reduced Kneser graph KG2(m, n) is the subgraph

of KG(m, n) induced by all 2-stable n-subsets. It was proved by Schrijver [6]

that χ(KG2(m, n)) = χ(KG(m, n)) and every subgraph induced by a proper

subset of V (KG2(m, n)) has a smaller chromatic number, i.e., KG2(m, n)) is

vertex-critical.

The main focus of this paper is to show that the circular chromatic

number of the reduced Kneser graph KG2(m, 2) also attains its upper bound

if m ≥ 4 and m 6= 5. We first re-prove the result χ(KG(m, 2)) = m − 2 by

a simpler and straightforward method. Our main result can be established

using a refined version of this method.

2 Lemmas

A (k, d)-partition of a graph G is a partition (V0, V1, . . . , Vk−1) of its vertex set

V (G) such that Vi ∪Vi+1 ∪· · ·∪Vi+d−1 is an independent set of G for every i,

0 ≤ i ≤ k− 1, where indices are added modulo k and any Vi is allowed to be

empty. The parts Vi’s are also called color classes and two of them are said

to be consecutive or adjacent if their indices differ by 1 modulo k. The color

classes of a (k, d)-partition are simply the color classes of a (k, d)-coloring.

The following observation first appeared in Fan [1].

Lemma 2 A graph G has a (k, d)-coloring if and only if it has a (k, d)-

partition.

The next lemma appeared in Zhu [8].

Lemma 3 If φ is a (k, d)-coloring of G and χc(G) = k/d, where gcd(k, d) =

1, then φ is a surjection.
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In terms of (k, d)-partitions, Fan [1] translated this lemma into the

following form.

Lemma 4 Let (V0, V1, . . . , Vk−1) be a (k, d)-partition of G, where gcd(k, d) =

1. If χc(G) = k/d, then every Vi is nonempty.

Lemma 5 Let (V0, V1, . . . , Vk−1) be a (k, d)-partition of G and χc(G) = k/d,

where gcd(k, d) = 1. Then for every i, 0 ≤ i ≤ k − 1, there are vertices x in

Vi and y in Vi+d such that x and y are adjacent.

The last lemma is an observation made by Hajiabolhassan and Zhu [2].

If no vertex in Vi is adjacent to a vertex in Vi+d, then we can construct a new

(k, d)-partition by merging Vi+d−1 and Vi+d into a new color class V ′

i+d−1 and

let the adjacent color class V ′

i+d be empty. This would imply χc(G) < k/d

by Lemma 4.

3 Main Result

Theorem 6 If the integer m ≥ 4, then χc(KG(m, 2)) = m − 2.

Proof. Suppose to the contrary that χc(KG(m, 2)) = k/d < m − 2, where

gcd(k, d) = 1 and d ≥ 2. Let (V0, V1, . . . , Vk−1) be a (k, d)-partition of

KG(m, 2) with nonempty color classes Vi’s.

Case 1. For some i, |Vi| ≥ 2.

Without loss of generality, let {1, 2} and {1, 3} belong to Vi. By Lemma

5, there are vertices x in Vi−1 and y in Vi+d−1 such that x and y are adjacent.

Since both x and y are adjacent to neither {1, 2} nor {1, 3}, the only vertices

of KG(m, 2) that could be chosen as x and y are {1, 4}, {1, 5}, . . . , {1, m}

and {2, 3}. However, {2, 3} is adjacent to every vertex of the independent

set {{1, 4}, {1, 5}, . . . , {1, m}}. Therefore one of x and y must be {2, 3}.
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If d > 2, then {2, 3} is adjacent to all vertices of Vi+1. This adjacency

contradicts the defining properties of a (k, d)-coloring. It follows that d = 2

and at least one of Vi−1 and Vi+1 is a singleton.

Next we claim that |Vj| ≤ 2 for any j. Let {a, b} belong to Vj−1 and

{c, d} belong to Vj+1 such that {a, b} and {c, d} are adjacent. Thus a, b, c,

and d are distinct numbers. The vertices of KG(m, 2) that are adjacent to

neither {a, b} nor {c, d} belong to {{a, c}, {a, d}, {b, c}, {b, d}}, which consists

of two independent edges of KG(m, 2). Thus the independent set Vj contains

at most two vertices.

We conclude that 2k > |V (KG(m, 2))| = m(m − 1)/2. Now the fact

χ(G)− 1 < χc(G) ≤ χ(G) implies that χc(KG(m, 2)) = k/2 = m− 2− 1

2
. It

follows that 2(2m − 5) > m(m − 1)/2. However, no integer m ≥ 4 satisfies

this inequality.

Case 2. For all i, |Vi| = 1.

Suppose that d ≥ 4. We may suppose that V0 consists of the unique

vertex {1, 2} and the unique vertex of V1 also contains the number 1. Moving

along increasing indices, we finally reach some j such that Vj = {{1, a}},

Vj+1 = {{1, b}}, and Vj+2 = {{a, b}}. This would force Vj+3 to be empty.

Hence d ≤ 3.

Note that k = |V (KG(m, 2))| in this case. If d = 2, then 2m − 5 =

k = m(m − 1)/2, i.e., m2 − 5m + 10 = 0. No integer m ≥ 4 satisfies this

identity. If d = 3, then we have two possibilities: (i) k/3 = m − 2 − 1

3
or

(ii) k/3 = m − 2 − 2

3
. We can derive the identities m2 − 7m + 14 = 0 for (i)

and m2 − 7m + 16 = 0 for (ii). Both identities have no solutions for integers

m ≥ 4. 2

The circular chromatic numbers of reduced Kneser graphs may be

smaller than their chromatic numbers. For instance, the graph KG2(2n+1, n)
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is an odd cycle C2n+1 : x0, x1, . . . , x2n, x0, where xi = {1+i, 3+i, . . . , 2n−1+i}

(additions modulo 2n+1) for i = 0, 1, . . . , 2n. However, it is well-known that

χc(C2n+1) = 2 + 1

n
< 3 = χ(C2n+1) when n > 1.

Theorem 7 If the integer m ≥ 4 and m 6= 5, then χc(KG2(m, 2)) = m − 2.

Proof. The graph KG2(4, 2) consists of three independent edges and trivially

χc(KG2(4, 2)) = 2.

Assume that m ≥ 6. Suppose to the contrary that χc(KG2(m, 2)) =

k/d < m − 2, where gcd(k, d) = 1 and d ≥ 2. Let (V0, V1, . . . , Vk−1) be a

(k, d)-partition of KG2(m, 2) with non-empty color classes.

Case 1. For some i, |Vi| ≥ 2.

We first make the following observation.

If Vi = {{x, y}, {x, z}}, then {y, z} is a 2-stable set. (∗)

For otherwise, all the vertices that are adjacent to neither {x, y} nor {x, z}

would contain the number x, hence form an independent set. By Lemma 5,

there are vertices u in Vi−1 and w in Vi+d−1 such that u and w are adjacent.

Since u and w are adjacent to neither {x, y} nor {x, z}, we have obtained a

contradiction.

The same argument for Case 1 of Theorem 6 can be used to show that

d = 2 and at least one of Vi−1 and Vi+1 is a singleton. Furthermore, the

argument also shows that |Vj| ≤ 2 for all j.

Now let p denote the number of color classes of size 2. Since no three

consecutive color classes are of size 2, we have p ≤ 2k/3. It follows that

|V (KG2(m, 2))| =
(

m

2

)

− m = m(m − 3)/2 = 2p + (k − p) ≤ k + (2k/3).

Substituting k = 2m− 5 into this inequality, we obtain 3m2 − 29m + 50 ≤ 0

which can be satisfied only by m = 6 and 7.
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Assume that m = 6 and there is a (7, 2)-partition (V0, V1, . . . , V6) of

KG2(6, 2). Because |V (KG2(6, 2))| = 9, at least one color class is of size 2.

Also note that, for each x ∈ [6], there are exactly three vertices in KG2(6, 2)

that contain x: {x, x + 2}, {x, x + 3}, {x, x + 4} (additions modulo 6).

Hence we may assume that V0 = {{1, 3}, {1, 5}} by (∗). Then V6 and V1

are singletons and V6 ∪ V1 = {{3, 5}, {1, 4}}. Each vertex of the path P :

{2, 4}, {3, 6}, {2, 5}, {4, 6} is adjacent to either {1, 3} or {1, 5}. By (∗), all

the four vertices of P belong to at least three distinct color classes among

Vj, 2 ≤ j ≤ 5. Since two consecutive vertices on P cannot occur in the same

or consecutive color classes, P starts from V3, then successively moves to V5,

V2, and terminates in V4. Then {{3, 6}, {2, 5}} ⊆ V2∪V5, which is impossible

since both {3, 6} and {2, 5} are adjacent to {1, 4}, while {1, 4} ∈ V1 ∪ V6.

Next assume that m = 7 and there is a (9, 2)-partition (V0, V1, . . . , V8)

of KG2(7, 2). Because |V (KG2(7, 2))| = 14, there are exactly five color classes

of size 2 and four color classes of size 1. Hence there exists at least one pair of

consecutive color classes Vi and Vi+1 of size 2. The intersection of all vertices

in Vi and Vi+1 is a certain integer p, 1 ≤ p ≤ 7. By (∗), we may suppose that

V1 = {{1, 3}, {1, 5}} and V2 = {{1, 4}, {1, 6}}. Then they force V0 = {{3, 5}}

and V3 = {{4, 6}}.

If both V4 and V8 are singletons, then we would have three consecutive

color classes of size 2, which is not allowed. Thus one of V4 or V8 is of size 2.

Next we claim that, besides V1 and V2, it is impossible to have another

pair of consecutive color classes of size 2. If |V4| = |V5| = 2, then the only

possibility is V4 = {{2, 4}, {2, 6}} and V5 = {{2, 5}, {2, 7}}. They in turn

force V6 = {5, 7}. Moreover, {4, 7} can only belong to V7. Since {3, 6} is

adjacent to both {4, 7} and {5, 7}, we see that nowhere can {3, 6} be placed

properly. By similar reasons, it is impossible to have |V8| = |V7| = 2.
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If |V6| = |V7| = 2, then V6 and V7 are either the pairs {{2, 4}, {2, 6}} and

{{2, 5}, {2, 7}} or the pairs {{2, 7}, {4, 7}} and {{3, 7}, {5, 7}}. In any case,

{3, 5} or {4, 6} would be forced to occupy an adjacent color class. However,

this is not allowed since they have already appeared in V0 and V2. A similar

argument can be used to show that it is impossible to have |V5| = |V6| = 2.

Therefore, the only case remaining to be considered is when |V4| =

|V6| = |V8| = 2 and |V5| = |V7| = 1. In this case, the vertices of V4 must

belong to {{2, 4}, {2, 6}, {3, 6}, {4, 7}}. Since {3, 6} cannot be placed in V4

with {2, 6} by (∗) and {3, 6} is adjacent to {2, 4} and {4, 7}, it follows that

V4 = {{2, 4}, {2, 6}} or V4 = {{2, 4}, {4, 7}}, which in turn forces V5 =

{{2, 5}} or V5 = {{2, 7}}. By similar reasons, we have V8 = {{2, 5}, {5, 7}}

or V8 = {{3, 5}, {5, 7}}, which in turn forces V7 = {{2, 7}} or V7 = {{4, 7}}.

We see that nowhere can {3, 6} be placed.

Case 2. For all i, |Vi| = 1.

By a similar argument used at the beginning of Case 2 in the proof of

Theorem 6, we have d ≤ 3.

Note that k = |V (KG2(m, 2))| in this case. If d = 2, then 2m − 5 =

k = m(m − 3)/2, i.e., m2 − 7m + 10 = 0. No integer m ≥ 6 satisfies the last

identity. If d = 3, then we have two possibilities: (i) k/3 = m − 2− 1

3
or (ii)

k/3 = m−2− 2

3
. For (i), the derived identity is m2−9m+14 = 0 and m = 7

is the only possible solution. For (ii), the derived identity m2 − 9m + 16 = 0

has no integer solutions.

Assume that m = 7 and there is a (14, 3)-partition (V0, V1, . . . , V13) of

KG2(7, 2). Suppose that V0 = {{x, y}} and V13 = {{x, z}}. Since the unique

vertex of V1 is adjacent to the unique vertex of V12, we may suppose that

V12 = {{y, z}} and V1 = {{x, w}} for distinct numbers x, y, z, and w. This

forces V2 = {{y, w}}.

8



Note that, for each number x ∈ [7], there are exactly four vertices in

KG2(7, 2) that contain x: {x, x ± 2}, {x, x ± 3} (additions modulo 7). If

y = x±3, then both z and w would be forced to equal x∓2, a contradiction.

It follows that y = x ± 2.

Indeed, the above argument also shows that, if there are three consec-

utive color classes occupied by three vertices with a number s in common,

and if {s, t} belongs to the middle of these three classes, then s = t ± 2.

Because V0 = {x, y}, we see that V11, V12, and V13 are occupied by

vertices with z as a common number, and {y, z} belongs to the middle of the

three classes; and V1, V2, and V3 are occupied by vertices with w as a common

number, and {y, w} belongs to the middle of the three classes. Therefore, by

the previous paragraph, we have z = y ± 2 and w = y ± 2. However, in view

of y = x ± 2, z must equal w since x is different from z and w. Then we

have arrived at a contradiction because z and w were chosen to be distinct. 2

We conclude this paper by proposing the following.

Problem 1 Given positive integer n > 1, does there exist a number t(n)

such that χc(KG2(m, n)) = χ(KG2(m, n)) holds for all m ≥ t(n)?

Problem 2 If the answer to Problem 1 is positive, then what is the smallest

value for t(n)?

Note that t(n) > 2n + 1 if it exists, and t(n) is undetermined except

we have shown t(2) = 6.
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