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Abstract

A multi-distance labeling (or radio labeling) of a graph G is a function f that assigns each

vertex a non-negative integer label such that the separation of labels between distinct vertices

u, v is at least diam(G) + 1− d(u, v), where the distance d(u, v) between u and v is the length

of a shortest path from u to v and the diameter diam(G) is the maximum distance between

any two vertices in G. The span of a radio labeling f is the difference between the smallest and

largest labels assigned by f , and the radio number of G is the smallest possible span for any

radio labeling of G. We will prove a general formula for the radio number of all grid graphs

dependent only on their horizontal and vertical lengths and their parity. We also survey other

graphs and their radio numbers, some of which are completely determined. Of special interest

within this survey is the radio number of different tree graphs.
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1 Introduction to Radio Labelings and Meshes

1.1 The Channel Assignment Problem

Consider a set of radio stations or transmitters at fixed distances apart, each of which paired

with a given frequency. It is of no surprise that proximity of stations induces interference; that

is, the closer that two stations are, the stronger their interference may be. To circumvent this

disruption to the stations, the separation of channels or frequencies of stations must be suffi-

ciently large.

This leads researchers to design a graph model for the system of stations. We first repre-

sent the stations and their proximity as vertices and edges on a graph, respectively. We then

define a function on the vertex set of this graph to assign frequencies, the goal being to find

a function that precludes any interference but does not require unnecessarily high frequencies.

This problem is known ubiquitously as the channel assignment problem, introduced by Hale in

[2] and pursued by many prominent researchers in the field of graph theory.

To date, researchers have discovered many strong results for various classes of graphs in the

channel assignment problem. The plethora of commonalities and differences in their methods

and results is undeniable.

1.2 Definitions and Preliminary Observations

Definition 1.1. Let m,n ∈ N. An m x n grid graph M(m,n) (or mesh) with n rows and m

columns is Pm�Pn = {(u, v) : u ∈ V (Pm), v ∈ V (Pn)}, called the Cartesian product of Pm and

Pn. Pm and Pn denote paths with m and n vertices, respectively. (u, v) ∼ (u′, v′) in Pm�Pn if

and only if either u ∼Pm u′ and v = v′ or u = u′ and v ∼Pn v′.

Beginning from the bottom left corner of M(m,n), we denote the vertices of M(m,n) in a

manner analogous to the Cartesian coordinate system in the first quadrant of R2. That is,

V (M(m,n)) = {(a, b) ∈ N × N: 1 ≤ a ≤ m 1 ≤ b ≤ n}. For additional consistency with

terminology used in the Cartesian coordinate system, for any v = (a, b) ∈ G, we refer to a as

the x-coordinate of v and b as the y-coordinate of v.
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Above is the grid graph M(6, 4). Each vertex is juxtaposed with an ordered pair of integers.

Definition 1.2. Let G be a connected graph.

1. The distance between elements u, v ∈ V (G), denoted d(u, v), is the length of a shortest

path from u to v.

2. The diameter of G, denoted diam(G), is max{d(u, v) : u, v ∈ V (G)}.

Observation 1.1. Let G = M(m,n).

1. diam(G) = m+ n− 2 and |V (G)| = mn.

2. If u = (a, b) and v = (c, d), then d(u, v) = |c− a|+ |d− b|.

3. M(m,n) ∼= M(n,m). So if m and n have different parity, then we assume that m is even

and n is odd.

Definition 1.3. Let G = M(m,n).

1. A center of G is a middle vertex of G.

(a) If m = 2l + 1 and n = 2k + 1, then G has a unique center (l + 1, k + 1).

(b) If m = 2l and n = 2k + 1, then G has 2 centers, (l, k + 1) and (l + 1, k + 1).

(c) If m = 2l and n = 2k, then G has 4 centers, (l, k), (l+1, k), (l, k+1), and (l+1, k+1).

2. The left region of G is the set of vertices on the left side of G.

(a) If m = 2l + 1, then the left region of G is {(a, b) : 1 ≤ a ≤ l + 1}.

(b) If m = 2l, then the left region of G is {(a, b) : 1 ≤ a ≤ l}.

3. The right region of G is the set of vertices on the right side of G.

(a) If m = 2l + 1, then the right region of G is {(a, b) : l + 1 ≤ a ≤ m}.

(b) If m = 2l, then the right region of G is {(a, b) : l + 1 ≤ a ≤ m}.

2



4. The corners of G are (1, 1), (1, n), (m, 1), and (m,n).

5. The upper section of G is the set of upper vertices of G.

(a) If n = 2k + 1, then the upper section of G is {(a, b) : k + 1 ≤ b ≤ n}

(b) If n = 2k, then the upper section of G is {(a, b) : k + 1 ≤ b ≤ n}

6. The lower section of G is the set of lower vertices of G.

(a) If n = 2k + 1, then the lower section of G is {(a, b) : 1 ≤ b ≤ k + 1}

(b) If n = 2k, then the lower section of G is {(a, b) : 1 ≤ b ≤ k}.

To simplify our calculations, we introduce an artificial horizontal axis and an artificial vertical

axis to separate the sections and regions of G.

1. If n = 2k + 1, then all vertices with y-coordinate k + 1 lie on the horizontal axis. Vertices

on or above the horizontal axis form the upper section of G. Vertices on or below the

horizontal axis form the lower section of G.

2. If n = 2k, then the lower section of G is below the horizontal axis, and the upper section

of G is above the horizontal axis. No vertices of G lie on the horizontal axis if n is even,

but from a visual perspective, each vertex whose y-coordinate is k or k + 1 appears to be

”half a unit” away from the horizontal axis. The horizontal axis therefore partitions the

vertices of G if n is even.

3. If m = 2l+ 1, then all vertices with x-coordinate l+ 1 lie on the vertical axis. Vertices on

or to the left of the vertical axis form the left region of G. Vertices on or to the right of

the vertical axis form the right region of G.

4. If m = 2l, then the left region of G is to the left of the vertical axis, and the right region

of G is to the right of the vertical axis. No vertices of G lie on the vertical axis if m is

even, but from a visual perspective, each vertex whose x-coordinate is l or l + 1 appears

to be “half a unit” away from the vertical axis. The vertical axis therefore partitions the

vertices of G if m is even.

Definition 1.4. Let v ∈ V (G).

1. The level of v, denoted L(v), is the vertical separation of v from the horizontal axis of G.

Let w be the vertex in the same column and section of G nearest the horizontal axis.

(a) If n = 2k + 1, then L(v) = d(v, w)

(b) If n = 2k, then L(v) = d(v, w) + 1
2 .

2. The displacement of v, denoted D(v), is the horizontal separation of v from the vertical

axis of G. Let u be the vertex in the same row and region of G nearest the vertical axis.

3



(a) If m = 2l + 1, then D(v) = d(v, u)

(b) If m = 2l, then D(v) = d(v, u) + 1
2 .

Proposition 1.1. Let G = M(m,n). Let u, v ∈ V (G).

1. If u, v are in the same region of G, then

d(u, v) =

 L(u) + L(v) + |D(u)−D(v)| if u, v are in opposite sections;

|L(u)− L(v)|+ |D(u)−D(v)| if u, v are in the same section.

2. If u, v are in opposite regions of G, then

d(u, v) =

 L(u) + L(v) +D(u) +D(v) if u, v are in opposite sections;

|L(u)− L(v)|+D(u) +D(v) if u, v are in the same section.

Remark 1. If d(u, v) = L(u) +L(v) +D(u) +D(v), then we say the u, v jump is of the best type.

Definition 1.5. Let G be a connected graph.

1. A radio labeling of G (also known as a multi-distance labeling) of G is a function f : V (G)→

{0, 1, 2, ...} such that |f(u)− f(v)| ≥ diam(G) + 1− d(u, v) for all distinct u, v ∈ V (G).

2. The span of a radio labeling f , denoted span(f), is max{|f(u)− f(v)| : u, v ∈ V (G)}

3. The radio number of G, denoted rn(G), is the minimum span of all radio labelings of G.

4. If span(f) = rn(G), then f is an optimal radio labeling of G.

Proposition 1.2. Every radio labeling on a connected graph G is a one-to-one function on its

vertex set V (G), since d(u, v) ≤ diam(G) for all u, v ∈ V (G) by definition. So for every radio

labeling f on G, the elements of V (G) = {u1, u2, ..., un} can be uniquely ordered such that

f(u1) < f(u2) < ... < f(un).

If we fix f(u1) = 0 for convenience, then f(un) = span(f).

Notation: Let f be a radio labeling ofG = M(m,n) with the vertex ordering (x1, y1), ..., (xmn, ymn).

1. Let vi denote (xi, yi), and let di denote d(vi, vi+1).

2. Let fi denote f(vi+1)− f(vi), so fi ≥ n+ 1− di for every 1 ≤ i ≤ mn− 1.

3. Let dxi denote |xi+1 − xi|, the horizontal separation of vi and vi+1.

4. Let dyi denote |yi+1 − yi|, the vertical separation of vi and vi+1.

4



Lemma 1.1. Let G = M(m,n). If f is a radio labeling of G such that 0 = f(v1) < f(v2) <

... < f(vmn) = span(f), then span(f) is bounded below by

span(f) ≥ (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(vi, vi+1).

Proof. Let f be a radio labeling of G. Since diam(G) = m + n − 2, we obtain the following

inequalities.



f(v2)− f(v1) ≥ m+ n− 1− d(v2, v1)

f(v3)− f(v2) ≥ m+ n− 1− d(v3, v2)

...

f(vmn−1)− f(vmn−2) ≥ m+ n− 1− d(vmn−1, vmn−2)

f(vmn)− f(vmn−1) ≥ m+ n− 1− d(vmn, vmn−1)

Summing up these mn− 1 inequalities, we obtain

span(f) ≥ (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(vi, vi+1).

5



2 Radio Number of Ladder Graphs - Lower Bound

2.1 Lower Bound of rn (M(2, n)) for n Odd

Definition 2.1. A ladder graph with n ≥ 3 steps is a mesh M(2, n).

Observation 2.1. Let G = M(2, n). Let v ∈ V (G).

1. If n = 2k + 1, then L(v) = 0 if and only if v is a center. The level of any vertex is

non-negative.

2. If n = 2k, then L(v) = 1
2 if and only if v is a center. The level of any vertex is at least 1

2 .

3. Since G has only two columns, every vertex has a displacement of 1
2 . Hence, D(u)−D(v) =

0 and D(u) +D(v) = 1 for any u, v ∈ V (G).

4. The first column is the left region of G; the second column is the right region of G.

Proposition 2.1. Let G = M(2, n). Let u, v ∈ V (G).

1. If u, v are in the same column of G, then

d(u, v) =

 L(u) + L(v) if u, v are on opposite sections;

|L(u)− L(v)| if u, v are in the same section.

2. If u, v are in opposite columns of G, then

d(u, v) =

 L(u) + L(v) + 1 if u, v are on opposite sections;

|L(u)− L(v)|+ 1 if u, v are in the same section.

So if d(u, v) = L(u) + L(v) + 1, then we say that the u, v jump is of the best type.

Lemma 2.1. Let n = 2k + 1. Let f be a radio labeling of G = M(2, n), where 0 = f(v1) <

f(v2) < ... < f(v2n) = span(f) gives the ordering of the vertices of G. Then

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1] = n2 + 2n− 2− [L(v1) + L(v2n)].

Proof. Suppose the assumption holds. It is clear from an earlier proposition defining the distance

between vertices in terms of their levels that d(vi, vj) ≤ L(vi) + L(vj) + 1 for all vi, vj ∈ V (G),

with equality holding only when vi and vj are on opposite sections and different columns, unless

6



one of the vertices is a center. This gives us the following inequality.

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]

Notice that each vertex level L(vi) appears exactly twice in the above inequality except L(v1)

and L(v2n), each of which appears only once. Also notice that for any integer 1 ≤ t ≤ k, there

exist exactly four vi ∈ V (G) such that L(vi) = t. Hence, we have

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]

= (2n− 1)− L(v1)− L(v2n) + 2

2n∑
i=1

L(vi)

= (2n− 1) + 2

[
4

(
1 + 2 + ...+

n− 1

2

)]
− [L(v1) + L(v2n)]

= (2n− 1) + 8

[
1

2

(
n+ 1

2

)(
n− 1

2

)]
− [L(v1) + L(v2n)]

= n2 + 2n− 2− [L(v1) + L(v2n)] .

(1)

From Lemma 2.1, it becomes evident that the values of L(v1) and L(v2n) are directly related to

minimizing the sum of the distances between consecutively labeled vertices and the search for a

lower bound of rn(G).

Definition 2.2. Let f be a radio labeling of G = M(m,n). A secluded vertex of G is a corner

vertex vj of G (where 2 ≤ j ≤ mn−1) satisfying d(vj , vj+1) = L(vj)+L(vj+1)+D(vj)+D(vj+1)

and d(vj , vj−1) = L(vj) + L(vj−1) +D(vj) +D(vj−1).

Observation 2.2. If G = M(2, n), then a secluded vertex vj (where 2 ≤ j ≤ 2n−1) is a corner

vertex satisfying d(vj , vj+1) = L(vj) + L(vj+1) + 1 and d(vj , vj−1) = L(vj) + L(vj−1) + 1.

Lemma 2.2. Let n = 2k + 1. Let f be a radio labeling of G = M(2, n). If f(vi+1) − f(vi) =

n + 1 − d(vi+1, vi) for all 1 ≤ i ≤ 2n − 1, then for any secluded vertex vj, we have that either

vj−1 or vj+1 is a center of G.

Proof. Suppose the assumption holds. Let vj be a secluded vertex of G. By the assumption,

we have

7




f(vj+1)− f(vj) = n+ 1− d(vj+1, vj) = n+ 1− [L(vj+1) + L(vj) + 1]

f(vj)− f(vj−1) = n+ 1− d(vj , vj−1) = n+ 1− [L(vj) + L(vj−1) + 1]

(2)

=⇒ f(vj+1)− f(vj−1) = 2n− 2L(vj)− L(vj+1)− L(vj−1)

= 2n− 2

(
n− 1

2

)
− [L(vj+1) + L(vj−1)]

= n+ 1− [L(vj+1) + L(vj−1)] .

(3)

By our assumption, we know that vj+1 and vj−1 are both on the column and section opposite

of vj . Hence we know

f(vj+1)− f(vj−1) ≥ n+ 1− d(vj+1, vj−1)

= n+ 1− |L(vj+1)− L(vj−1)|.
(4)

By (3), we have n+ 1− [L(vj+1) + L(vj−1)] ≥ n+ 1− |L(vj+1)− L(vj−1)|

=⇒ L(vj+1) + L(vj−1) ≤ |L(vj+1)− L(vj−1)|

=⇒ L(vj+1) = 0 or L(vj−1) = 0.

(5)

So either vj−1 or vj+1 is a center.

Lemma 2.3. Let n = 2k + 1. Then rn(G) ≥ n2 − n+ 3.

Proof. Let f be any radio labeling of G = M(2, n), with n = 2k + 1. Since L(v1) + L(v2n) ≥ 0,

we observe three cases to show that span(f) ≥ n2 − n+ 3.

Case 1: L(v1) + L(v2n) = 0, so v1 and v2n are the centers of G.

Subcase 1a: For every 1 ≤ i ≤ 2n− 1, vi and vi+1 are in different columns of G.

Since G has exactly two centers v1 and v2n in this case (the first and last vertices in the labeling

sequence of f), we know that v2, v3, ..., v2n−1 are not centers and therefore cannot concurrently

be in both the upper and lower sections of G. Hence, at most n consecutively labeled vertices

can be labeled by switching sections and columns in each jump, so there must exist an index

2 ≤ j ≤ 2n− 2 such that vj and vj+1 are in the same section of G, since we assumed they are

not in the same column in this subcase.

8



Without loss of generality, suppose L(vj+1) ≤ L(vj). Notice that vj+1 is not a center of G, so

L(vj+1) ≥ 1. Therefore, we have

d(vj , vj+1) = |L(vj)− L(vj+1)|+ 1

= L(vj)− L(vj+1) + 1

= L(vj) + [L(vj+1)− 2L(vj+1)] + 1

≤ L(vj) + [L(vj+1)− 2] + 1.

(6)

Hence,

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vj+1) + 1]− 2

≤ n2 + 2n− 4.

(7)

Therefore, span(f) ≥ (2n− 1)(n+ 1)− (n2 + 2n− 4) = n2 − n+ 3.

Subcase 1b: There exists an index 1 ≤ i ≤ 2n−1 such that vi and vi+1 are in the same column

of G.

First note that v1 and v2n are on opposite columns, since they are both centers. Since vi and

vi+1 are in the same column and the two columns of G have equal cardinality, there must exist a

pair of consecutively labeled vertices vj and vj+1 in the column opposite vi and vi+1. Therefore,

we have


d(vi, vi+1) ≤ L(vi) + L(vi+1)

d(vj , vj+1) ≤ L(vj) + L(vj+1).

(8)

=⇒
2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]− 2

≤ n2 + 2n− 4.

(9)

So span(f) ≥ (2n− 1)(n+ 1)− (n2 + 2n− 4) = n2 − n+ 3.

9



CASE 2: L(v1) + L(v2n) ≥ 2.

=⇒
2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]

= n2 + 2n− 2− [L(v1) + L(v2n)]

≤ n2 + 2n− 4.

(10)

So span(f) ≥ (2n− 1)(n+ 1)− (n2 + 2n− 4) = n2 − n+ 3.

CASE 3: L(v1)+L(v2n) = 1. Without loss of generality, assume that L(v1) = 0 and L(v2n) = 1.

Subcase 3a: There exists an index 1 ≤ j ≤ 2n− 1 such that vj and vj+1 are not on opposite

columns and sections. Then

d(vj , vj+1) < L(vj) + L(vj+1) + 1. (11)

=⇒
2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]− 1

= n2 + 2n− 2− [L(v1) + L(v2n)]− 1

= n2 + 2n− 4.

(12)

So span(f) ≥ (2n− 1)(n+ 1)− (n2 + 2n− 4) = n2 − n+ 3.

Subcase 3b: For every index 1 ≤ i ≤ 2n−1, vi and vi+1 are on opposite columns and sections.

Since L(v1) = 0 and L(v2n) = 1, we know v1 is a center of G and that the only unlabeled center

is adjacent to v1 in the opposite column. Since the column opposite v1 has 2 corner vertices

and no vertices precede v1 in the labeling sequence of f , it is impossible for both corner vertices

in the column opposite v1 to immediately precede or follow a center of G, since we assumed in

this subcase that consecutively labeled vertices alternate columns and sections.

Say that vt (where 3 ≤ t ≤ 2n − 2) is a corner vertex in the column opposite v1 that does not

immediately follow v1. Since vt+1 and vt−1 are both in the column and section opposite vt, we

know that vt+1 and vt−1 both reside in the same column and section. Therefore, we have


d(vt, vt+1) = L(vt) + L(vt+1) + 1

d(vt, vt−1) = L(vt) + L(vt−1) + 1

(13)

10



Hence, the conclusion of Lemma 2.2 fails, and so it follows that there exists an index 1 ≤ i ≤

2n− 1 such that f(vi+1)− f(vi) > n+ 1− d(vi, vi+1), with strict inequality.

=⇒ span(f) > (2n− 1)(n+ 1)− (n2 + 2n− 3)

= n2 − n+ 2

(14)

So span(f) ≥ n2 − n+ 3.

Hence, in all cases, we have span(f) ≥ n2 − n + 3, thus proving our lower bound for rn(G)

when n is odd.

2.2 Lower Bound of rn (M(2, n)) for n Even

Lemma 2.4. Let n = 2k. Let f be a radio labeling of G = M(2, n), where 0 = f(v1) < f(v2) <

... < f(v2n) = span(f) gives the ordering of the vertices of G. Then

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1] ≤ n2 + 2n− 2.

Proof. Suppose the assumption holds. We know that d(vi, vj) ≤ L(vi) + L(vj) + 1 for all

vi, vj ∈ V (G), with equality holding only when vi and vj are on opposite sections and different

columns. This gives us the following inequality.

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1] .

Notice that each vertex level L(vi) appears exactly twice in the above inequality except L(v1)

and L(v2n), each of which appears only once. Also notice that for any t ∈
{

1
2 ,

3
2 , ...,

(
n−1

2

)}
,
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there exist exactly four vi ∈ V (G) such that L(vi) = t. Hence, we have

2n−1∑
i=1

d(vi, vi+1) ≤
2n−1∑
i=1

[L(vi) + L(vi+1) + 1]

= (2n− 1)− L(v1)− L(v2n) + 2

2n∑
i=1

L(vi)

= (2n− 1) + 2

[
4

(
1

2
+

3

2
+ ...+

n− 1

2

)]
− [L(v1) + L(v2n)]

= (2n− 1) + 4[1 + 3 + ...+ (n− 1)]− [L(v1) + L(v2n)]

= (2n− 1) + 4

[
1

2

(n
2

)
(n)

]
− [L(v1) + L(v2n)]

= n2 + 2n− 1− [L(v1) + L(v2n)] .

(15)

Since n is even, we have L(v1) + L(v2n) ≥ 1
2 + 1

2 = 1. Therefore, we have

2n−1∑
i=1

[L(vi) + L(vi+1) + 1] ≤ n2 + 2n− 2.

Lemma 2.5. Let n = 2k. If vj (where 2 ≤ j ≤ 2n − 1) is a secluded vertex, then either

f(vj+1)− f(vj) > n+ 1− d(vj+1, vj) or f(vj)− f(vj−1) > n+ 1− d(vj , vj−1).

Proof. Let G = M(2, n), where n = 2k. Let vj ∈ V (G) be a secluded vertex, where 2 ≤ j ≤

2n−1. Suppose for contradiction that f(vj+1)−f(vj) = n+1−d(vj+1, vj) and f(vj)−f(vj−1) =

n+ 1− d(vj , vj−1). Then

f(vj+1)− f(vj−1) = 2(n+ 1)− d(vj+1, vj)− d(vj , vj−1)

= 2(n+ 1)− [L(vj+1) + L(vj) + 1]− [L(vj) + L(vj−1) + 1]

= 2n− L(vj+1)− L(vj−1)− 2L(vj)

= 2n− [L(vj+1) + L(vj−1)]− 2

(
n− 1

2

)
= n+ 1− [L(vj+1) + L(vj−1)].

(16)

By our assumption, we know that vj+1 and vj−1 are both on the column and section opposite
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of vj . Hence we know

f(vj+1)− f(vj−1) ≥ n+ 1− d(vj+1, vj−1)

= n+ 1− |L(vj+1)− L(vj−1)|.
(17)

By (16), we have n+ 1− [L(vj+1) + L(vj−1)] ≥ n+ 1− |L(vj+1)− L(vj−1)|

=⇒ L(vj+1) + L(vj−1) ≤ |L(vj+1)− L(vj−1)|

=⇒ L(vj+1) = 0 or L(vj−1) = 0.

(18)

But this is contradictory, since L(vj+1) ≥ 1
2 and L(vj−1) ≥ 1

2 . So our assumption is false;

therefore, either f(vj+1)−f(vj) > n+1−d(vj+1, vj) or f(vj)−f(vj−1) > n+1−d(vj , vj−1).

Definition 2.3. Let G = M(m,n). Let f be a radio labeling of G = M(m,n), where 0 =

f(v1) < f(v2) < ... < f(vmn) = span(f) gives the ordering of the vertices of G. The α-number

of f , denoted α(f), is the number of indices 1 ≤ i ≤ mn− 1 such that fi > m+ n− 1− di.

From this definition, we obtain the following:

span(f) ≥ (mn− 1)(m+ n− 1) + α(f)−
mn−1∑
i=1

d(vi, vi+1)

Observation: If m = 2 (i.e. G is a ladder graph with n steps), then α(f) is the number of

indices 1 ≤ i ≤ 2n− 1 such that fi > n+ 1− di.

Lemma 2.6. Let n = 2k. Then rn(G) ≥ n2 − n+ 4.

Proof. Let f be any radio labeling of G = M(2, n), with n = 2k. Notice that G has exactly

4 corners and therefore at most 4 secluded vertices. We examine different cases based on the

number of secluded vertices in G to show that span(f) ≥ n2 − n+ 4.

CASE 1: G has four secluded vertices vt1 , vt2 , vt3 , and vt4 , where 1 < t1 < t2 < t3 < t4 < 2n.

Then, we have
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

ft1 > n+ 1− dt1 or ft1−1 > n+ 1− dt1−1

ft2 > n+ 1− dt2 or ft2−1 > n+ 1− dt2−1

ft3 > n+ 1− dt3 or ft3−1 > n+ 1− dt3−1

ft4 > n+ 1− dt4 or ft4−1 > n+ 1− dt4−1.

(19)

If two secluded vertices are consecutively labeled, then two of the conditions can be concurrently

satisfied in a single jump (the jump between the two said secluded vertices). However, no three

secluded vertices may be consecutive, since any corner vertex whose predecessor and successor

in the labeling pattern of f are both corners would necessarily induce a jump not of the best

type. Since there are two pairs of secluded vertices, we can satisfy the first and second con-

ditions above with a single jump, and likewise the third and fourth conditions with a single jump.

Hence, α(f) ≥ 2, with equality possible only if t1 + 1 = t2 and t3 + 1 = t4.

Observe that when n is even, no vertex concurrently exists in both the upper and lower sections

of G. Hence, at most n consecutively labeled vertices can be labeled by alternating columns

and sections in each jump; in other words, at most n− 1 consecutive jumps can be of the best

type. Therefore, there exists an index 1 ≤ j ≤ 2n − 1 such that vj and vj+1 are either in the

same column or the same section. Hence, we have d(vj , vj+1) ≤ L(vj) +L(vj+1). Consequently,

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 1 = n2 + 2n− 3.

So span(f) ≥ (2n− 1)(n+ 1) + 2− (n2 + 2n− 3) = n2 − n+ 4.

CASE 2: G has exactly three secluded vertices vt1 , vt2 , and vt3 , where 1 < t1 < t2 < t3 < 2n,

and one non-secluded corner vertex vc. Then we have



ft1 > n+ 1− dt1 or ft1−1 > n+ 1− dt1−1

ft2 > n+ 1− dt2 or ft2−1 > n+ 1− dt2−1

ft3 > n+ 1− dt3 or ft3−1 > n+ 1− dt3−1

dc ≤ L(vc) + L(vc+1) or dc−1 ≤ L(vc−1) + L(vc) unless vc ∈ {v1, v2n}.

(20)

Hence, by the same argument from Case 1, we have α(f) ≥ 2 with equality possible only if

14



t1 + 1 = t2 or t2 + 1 = t3.

Also, since vc is a non-secluded corner vertex, we know that either vc is in {v1, v2n} (in which

case L(v1) + L(v2n) ≥ 2) or at least one jump to or from vc is not of the best type. In either

situation, from Lemma 2.4 we have

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 1 = n2 + 2n− 3.

So span(f) ≥ (2n− 1)(n+ 1) + 2− (n2 + 2n− 3) = n2 − n+ 4.

CASE 3: G has exactly two secluded vertices vt1 and vt2 , where 1 < t1 < t2 < 2n, and two

non-secluded corner vertices vc1 and vc2 , where c1 < c2. Then, we have



ft1 > n+ 1− dt1 or ft1−1 > n+ 1− dt1−1

ft2 > n+ 1− dt2 or ft2−1 > n+ 1− dt2−1

dc1 ≤ L(vc1) + L(vc1+1) or dc1−1 ≤ L(vc1−1) + L(vc1) unless vc1 ∈ {v1, v2n}

dc2 ≤ L(vc2) + L(vc2+1) or dc2−1 ≤ L(vc2−1) + L(vc2) unless vc2 ∈ {v1, v2n}.

(21)

Hence, α(f) ≥ 1 with equality possible only if t1 + 1 = t2.

Also, we know that each non-secluded corner vertex vc1 and vc2 either is in {v1, v2n} or neces-

sarily induces a jump not of the best type. Any corner vertex in {v1, v2n} would automatically

increase L(v1)+L(v2n) by at least 1 and therefore sufficiently minimize the sum of the distances

between consecutive vertices (as in Case 2), so we examine the different possibilities if neither

of these corner vertices is in {v1, v2n}.

1. If vc1 and vc2 are not consecutive, then they each induce a distinct jump not of the best

type, since they are non-secluded.

2. If vc1 and vc2 are consecutive and antipodal (i.e. in different columns and sections), then

the jump from vc1 to vc2 is of the best type, so both these vertices must induce a distinct

jump not of the best type, since they are non-secluded.

3. If vc1 and vc2 are consecutive but not antipodal, then the jump from vc1 to vc2 concurrently

satisfies the third and fourth conditions of this case; however, that would force t2 to be

strictly larger than t1 +1 (since secluded vertices vt1 and vt2 cannot be in the same column
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or section if they are consecutive), which would make the preceding inequality strict.

From our observations, in Case 3 one of the two following statements must hold.

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 2 = n2 + 2n− 4 and α(f) ≥ 1

OR

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 1 = n2 + 2n− 3 and α(f) ≥ 2.

In either case, span(f) ≥ n2 − n+ 4.

CASE 4: G has exactly one secluded vertex vt, where 1 < t < 2n, and three non-secluded

corner vertices vc1 , vc2 , and vc3 , where c1 < c2 < c3. Then, we have



ft > n+ 1− dt or ft−1 > n+ 1− dt−1

dc1 ≤ L(vc1) + L(vc1+1) or dc1−1 ≤ L(vc1−1) + L(vc1) unless vc1 ∈ {v1, v2n}

dc2 ≤ L(vc2) + L(vc2+1) or dc2−1 ≤ L(vc2−1) + L(vc2) unless vc2 ∈ {v1, v2n}

dc3 ≤ L(vc3) + L(vc3+1) or dc3−1 ≤ L(vc3−1) + L(vc3) unless vc3 ∈ {v1, v2n}.

(22)

Hence, by the first condition, we know α(f) ≥ 1.

Also, unless one of the three non-secluded vertices vc1 , vc2 , and vc3 is in {v1, v2n} (in which case

L(v1) + L(v2n) ≥ 2), it is impossible for vc1 , vc2 , and vc3 to collectively induce only one jump

not of the best type, since a single jump can only satisfy at most two of the above conditions.

Therefore, we have

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 2 = n2 + 2n− 4.

So span(f) ≥ (2n− 1)(n+ 1) + 1− (n2 + 2n− 4) = n2 − n+ 4.

CASE 5: G has four non-secluded corner vertices vc1 , vc2 , vc3 , and vc4 with c1 < c2 < c3 < c4.

Then
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

dc1 ≤ L(vc1) + L(vc1+1) or dc1−1 ≤ L(vc1−1) + L(vc1) unless vc1 ∈ {v1, v2n}

dc2 ≤ L(vc2) + L(vc2+1) or dc2−1 ≤ L(vc2−1) + L(vc2) unless vc2 ∈ {v1, v2n}

dc3 ≤ L(vc3) + L(vc3+1) or dc3−1 ≤ L(vc3−1) + L(vc3) unless vc3 ∈ {v1, v2n}

dc4 ≤ L(vc4) + L(vc4+1) or dc4−1 ≤ L(vc4−1) + L(vc4) unless vc4 ∈ {v1, v2n}.

(23)

We examine the different possibilities for the non-secluded corner vertices vc1 , vc2 , vc3 , and vc4 .

1. If two of the four corner vertices are in {v1, v2n}, then L(v1)+L(v2n) ≥ 3 and the remaining

two corner vertices would induce a jump not of the best type.

2. If only one of the four corner vertices is in {v1, v2n}, then L(v1) + L(v2n) ≥ 2, and the

remaining three corner vertices would induce at least two distinct jumps not of the best

type, as was determined in Case 4.

3. If none of the corner vertices are in {v1, v2n}, then the four corner vertices would induce

at least two distinct jumps not of the best type. However, if L(v1) + L(v2n) = 1 and the

four corners induce exactly 2 jumps not of the best type (in other words, if c4 = c3 + 1

and c2 = c1 + 1), then we consider all of the following observations:

(a) The two jumps not of the best type must be between corner vertices within the same

section or column. However, if the jumps are between corner vertices of the same

section, then each jump has a distance 1, which is the worst possible type and further

reduces the sum of the distances between consecutive vertices. So we set the two

jumps that are not of the best type to be between corners in the same column.

(b) If c3 = c2 + 1 (so the jump from vc2 to vc3 is of the best type) where vc1 and vc2 are

in one column and vc3 and vc4 are in the other, then vc1 and vc4 will be in opposite

columns and sections, which would would force an additional jump not of the best type

in order to label all vertices. So c3 6= c2 + 1, which prevents labeling vc3 immediately

after vc2 .

(c) The labeling pattern must begin and end at central vertices. This forces an additional

jump not of the best type unless v1 and v2n are on opposite sections and columns

(since no vertices are in more than one section or column). But f already includes

two jumps between vertices in the same region, since c2 = c1 + 1 and c4 = c3 + 1. So

v1 and v2n must be in opposite columns and sections to avoid another jump not of

the best type.

(d) If the two jumps that are not of the best type are between corners in the same column
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as indicated in (a), then vc4+1 and vc3 are in the same section but opposite columns.

CLAIM: If vc4+1 and vc3 are in the same section but opposite columns, then we have

fc3 > n+ 1− dc3 or fc4 > n+ 1− dc4 .

Proof. Assume that fc3 = n+ 1− dc3 and fc4 = n+ 1− dc4 . Then

fc4 = n+ 1− dc4 = n+ 1− L(vc4+1)− L(vc4)− 1

= n− n− 1

2
− L(vc4+1)

=
n

2
− L(vc4+1) +

1

2
.

(24)

Therefore, since fc3 = n+1−dc3 = (n+1)− (n−1) = 2, we have f(vc4+1)−f(vc3) =

n
2 + 5

2 − L(vc4+1). However,

f(vc4+1)− f(vc3) ≥ n+ 1− d(vc4+1, vc3)

= n+ 1− L(vc3) + L(vc4+1)− 1

= n− n− 1

2
+ L(vc4+1)

=
n

2
+ L(vc4+1) +

1

2

>
n

2
+

5

2
− L(vc4+1), since L(vc4+1) > 1.

(25)

This contradiction shows that fc3 > n+ 1− dc3 or fc4 > n+ 1− dc4 , which indicates

that α(f) ≥ 1.

From our observations, in Case 5 one of the two following statements must hold.

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 3 = n2 + 2n− 5

OR

2n−1∑
i=1

d(vi, vi+1) ≤ (n2 + 2n− 2)− 2 = n2 + 2n− 4 and α(f) ≥ 1.

In either case, span(f) ≥ n2 − n+ 4.

Hence, in all 5 cases, we have span(f) ≥ n2 − n+ 4, thus proving our lower bound for rn(G)

when n is even.

18



3 Radio Number of Ladder Graphs - Upper Bound

3.1 Upper Bound of rn (M(2, n)) for n Odd

Lemma 3.1. Let n = 2k + 1. Then rn(G) ≤ n2 − n+ 3.

Observation 3.1. This proposed upper bound is precisely the lower bound previously proven for

rn(M(2, n)).

Proof. Let n = 2k + 1. It suffices to find one radio labeling of G = M(2, n) with a span of

n2 − n+ 3. Let {w1, w2, ..., w2n} be a permutation of V (G) given by the following pattern.

w1 = (1, k + 1)
k+1−−→ (2, 1)

k+2−−→ (1, k + 2)
k+1−−→ (2, 2)

k+2−−→ (1, k + 3)
k+1−−→ (2, 3)

k+2−−→ ...
k+1−−→

w2k = (2, k)
k+2−−→ (1, n)

2k−→ (1, 1)
k+2−−→ (2, k + 2)

k+1−−→ (1, 2)
k+2−−→ (2, k + 3)

k+1−−→ ...
k+1−−→ (1, k)

k+2−−→ (2, n)
k−→ (2, k + 1) = w2n

Let the quantity above each arrow indicate the distance between the two consecutive ver-

tices. Let f : V (G) → {0, 1, 2, ...} be a function such that f(w1) = 0 and f(wi+1) − f(wi) =

n+ 1− d(wi+1, wi) for all 1 ≤ i ≤ 2n− 1.

CLAIM: f is a radio labeling of G.

To prove this, we show that for all 1 ≤ i ≤ 2n− 2, we have

f(wj)− f(wi) ≥ n+ 1− d(wj , wi) for any j ≥ i+ 2.

By assumption,

f(wi+1)− f(wi) = n+ 1− d(wi+1, wi)

f(wi+2)− f(wi+1) = n+ 1− d(wi+2, wi+1)
...

f(wj)− f(wj−1) = n+ 1− d(wj , wj−1).

Summing up these j − i equations, we obtain

f(wj)− f(wi) = (j − i)(n+ 1)−
j−1∑
t=i

d(wt, wt+1).

Let j = i+p, where p ≥ 2. We observe 2 cases, using distances indicated in the labeling pattern
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for f for reference.

CASE 1: p = 2.

Subcase 1a: i = 2k or 2k + 1 (i.e. i = n − 1 or n). Then according to the labeling pattern,

d(wj , wi) = k.

=⇒ f(wj)− f(wi) = 2(n+ 1)− d(wi, wi+1)− d(wi+1, wi+2)

= n+ 1 + (2k + 2)− [(k + 2) + 2k]

= n+ 1− k = n+ 1− d(wj , wi).

(26)

Subcase 1b: i = 4k (i.e. i = 2n− 2).

=⇒ f(wj)− f(wi) = 2(n+ 1)− d(wi, wi+1)− d(wi+1, wi+2)

= n+ 1 + (2k + 2)− [(k + 2) + k]

= n+ 1 > n+ 1− d(wj , wi) since d(wj , wi) ≥ 1.

(27)

Subcase 1c: i 6= 2k, 2k + 1, or 4k. Then according to the labeling pattern, d(wj , wi) = 1.

=⇒ f(wj)− f(wi) = 2(n+ 1)− d(wi, wi+1)− d(wi+1, wi+2)

= n+ 1 + (2k + 2)− [(k + 1) + (k + 2)]

= n+ 1− 1 = n+ 1− d(wj , wi).

(28)

CASE 2: p ≥ 3.

First note that the distances in the labeling pattern alternate between k + 1 and k + 2 except

on two occasions.

1. The distance from wn = (1, n) to wn+1 = (1, 1) is 2k instead of k + 1.

2. The distance from w2n−1 = (2, n) to w2n = (2, k + 1) is k instead of k + 1.

Also, for p ≥ 3, at most
⌈
p
2

⌉
jumps between wi and wj in the labeling pattern are of distance k+1.

Hence,

j−1∑
t=i

d(wt, wt+1) ≤ p(k + 2)−
⌈p

2

⌉
+ [2k − (k + 1)]

= p(k + 2)−
⌈p

2

⌉
+ k − 1.

(29)
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=⇒ f(wj)− f(wi) = p(n+ 1)−
j−1∑
t=i

d(wt, wt+1)

= n+ 1 + (p− 1)(2k + 2)−
j−1∑
t=i

d(wt, wt+1)

≥ n+ 1 + (p− 1)(2k + 2)−
[
p(k + 2)−

⌈p
2

⌉
+ k − 1

]
= n+ 1 + (p− 3)k +

⌈p
2

⌉
− 1

≥ n+ 1 since p ≥ 3 and
⌈p

2

⌉
≥ 1

> n+ 1− d(wj , wi).

(30)

By Cases 1 and 2, we know that f is a radio labeling of G, proving our claim.

Notice from the labeling pattern that there are four possible distances between consecutively

labeled vertices, namely k, k + 1, 2k, and k + 2, with the number of occurrences 1, 2k − 1, 1,

and 2k, respectively.

=⇒ span(f) = (2n− 1)(n+ 1)−
2n−1∑
i=1

d(wi, wi+1)

= (2n− 1)(n+ 1)− [(k)(1) + (k + 1)(2k − 1) + (2k)(1) + (k + 2)(2k)]

= (2n− 1)(n+ 1)− (4k2 + 8k − 1)

= (2n− 1)(n+ 1)−

[
4

(
n− 1

2

)2

+ 8

(
n− 1

2

)
− 1

]

= (2n− 1)(n+ 1)−
[
(n− 1)

2
+ 4(n− 1)− 1

]
= n2 − n+ 3.

(31)

Therefore, rn(G) ≤ n2 − n+ 3, since f is a radio labeling of G with this span.
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Above is an optimal radio labeling of M(2, 9) following the labeling pattern described in the

proof of Lemma 3.1. The radio number of M(2, 9) is 92 − 9 + 3 = 75.
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3.2 Upper Bound of rn (M(2, n)) for n Even

Lemma 3.2. Let n = 2k. Then rn(G) ≤ n2 − n+ 4.

Proof. Let n = 2k. It suffices to find one radio labeling of G = M(2, n) with a span of n2−n+4.

Let {w1, w2, ..., w2n} be a permutation of V (G) given by the following pattern.

w1 = (1, k+1)
k+1−−→ (2, 1)

2k−→ (1, 2k)
k+1−−→ (2, k)

k−→ (1, 2k−1)
k+1−−→ (2, k−1)

k−→ (1, 2k−2)
k+1−−→

(2, k− 2)
k−→ (1, 2k− 3)

k+1−−→ (2, k− 3)
k−→ ...

k−→ (1, k+ 2)
k+1−−→ wn = (2, 2)

2k−3−−−→ (2, 2k− 1)
k+1−−→

(1, k − 1)
k−→ (2, 2k − 2)

k+1−−→ (1, k − 2)
k−→ (2, 2k − 3)

k+1−−→ (1, k − 3)
k−→ ...

k−→ (2, k + 2)
k+1−−→

(1, 2)
k−→ (2, k + 1)

k+1−−→ (1, 1)
2k−→ (2, 2k)

k+1−−→ (1, k) = w2n

Let the quantity above each arrow indicate the distance between the two consecutive vertices.

Let f : V (G)→ {0, 1, 2, ...} be a function such that f(w1) = 0 and

f(wi+1)− f(wi) =

 n+ 1− d(wi+1, wi) if 1 ≤ i ≤ 2n− 1 unless i = 2 or 2n− 2;

n+ 2− d(wi+1, wi) if i = 2 or 2n− 2.

CLAIM: f is a radio labeling of G.

To prove this, we show that for all 1 ≤ i ≤ 2n− 2, we have

f(wj)− f(wi) ≥ n+ 1− d(wj , wi) for any j ≥ i+ 2.

By the same justification in the previous section, we have

f(wj)− f(wi) = fj−1 + fj−2 + ...+ fi+1 + fi.

Let j = i+p, where p ≥ 2. We observe 3 cases, using distances indicated in the labeling pattern

for f for reference.

CASE 1: p = 2.

Subcase 1a: i = 1, 2, 2n−3, or 2n−2. Then according to the labeling pattern, d(wj , wi) = k−1.
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=⇒ f(wj)− f(wi) = 2(n+ 1) + 1− d(wi, wi+1)− d(wi+1, wi+2)

= 2(n+ 1) + 1− [(k + 1) + 2k]

= n+ 1− (k − 1) = n+ 1− d(wj , wi).

(32)

Subcase 1b: i = n− 1 or n. Then according to the labeling pattern, d(wj , wi) = k − 2.

=⇒ f(wj)− f(wi) = 2(n+ 1)− d(wi, wi+1)− d(wi+1, wi+2)

= 2(n+ 1)− [(k + 1) + (2k − 3)]

= n+ 1− (k − 3)

> n+ 1− (k − 2) = n+ 1− d(wj , wi).

(33)

Subcase 1c: i 6= 1, 2, n − 1, n, 2n − 3, or 2n − 2. Then according to the labeling pattern,

d(wj , wi) = 1.

=⇒ f(wj)− f(wi) = 2(n+ 1)− d(wi, wi+1)− d(wi+1, wi+2)

= 2(n+ 1)− [(k + 1) + k]

= n+ 1 > n+ 1− d(wj , wi).

(34)

CASE 2: p = 3.

Subcase 2a: i = 1 or 2n− 3.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1) + 1− [(k + 1) + 2k + (k + 1)]

= n+ 1 + 2(2k + 1) + 1− [(k + 1) + 2k + (k + 1)]

= n+ 1 + 1 > n+ 1− d(wj , wi).

(35)

Subcase 2b: i = 2 or 2n− 4.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1) + 1− [2k + (k + 1) + k]

= n+ 1 + 2(2k + 1) + 1− [2k + (k + 1) + k]

= n+ 1 + 2 > n+ 1− d(wj , wi).

(36)
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Subcase 2c: i = n− 1.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1)− [(k + 1) + (2k − 3) + (k + 1)]

= n+ 1 + 2(2k + 1)− [(k + 1) + (2k − 3) + (k + 1)]

= n+ 1 + 3 > n+ 1− d(wj , wi).

(37)

Subcase 2d: i = n− 2 or n.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1)− [k + (k + 1) + (2k − 3)]

= n+ 1 + 2(2k + 1)− [k + (k + 1) + (2k − 3)]

= n+ 1 + 4 > n+ 1− d(wj , wi).

(38)

Subcase 2e: i ∈ {3, 5, 7, ..., n− 3, n+ 1, n+ 3, ..., 2n− 5}.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1)− [(k + 1) + k + (k + 1)]

= n+ 1 + 2(2k + 1)− [(k + 1) + k + (k + 1)]

= n+ 1 + k − 1 > n+ 1− d(wj , wi) since k > 1.

(39)

Subcase 2f : i ∈ {4, 6, 8, ..., n− 4, n+ 2, n+ 4, ...2n− 6}.

=⇒ f(wj)− f(wi) = 3(n+ 1) + 1−
i+2∑
t=i

d(wt, wt+1)

= 3(n+ 1)− [k + (k + 1) + k]

= n+ 1 + 2(2k + 1)− [k + (k + 1) + k]

= n+ 1 + k + 1 > n+ 1− d(wj , wi).

(40)

CASE 3: p ≥ 4.

First note that the distances in the labeling pattern alternate between k and k + 1 except on

three occasions.

1. The distance from w2 = (2, 1) to w3 = (1, 2k) is 2k instead of k.
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2. The distance from wn = (2, 2) to wn+1 = (2, 2k − 1) is 2k − 3 instead of k.

3. The distance from w2n−2 = (1, 1) to w2n−1 = (2, 2k) is 2k instead of k.

Also notice that for any p ≥ 4, at most
⌈
p
2

⌉
jumps between wi and wj in the labeling pattern

are of distance k.

Subcase 3a: i ≤ 2 and j ≥ 2n− 1. So p ≥ 4k − 3.

In this subcase,

j−1∑
t=i

d(wt, wt+1) ≤ p(k + 1)−
⌈p

2

⌉
+ [(2k − 3)− k] + 2(2k − k)]

= p(k + 1)−
⌈p

2

⌉
+ 3k − 3.

≤ p(k + 1)−
⌈

4k − 3

2

⌉
+ 3k − 3

≤ p(k + 1)− (2k − 1) + (3k − 3)

= p(k + 1) + k − 2.

(41)

=⇒ f(wj)− f(wi) = p(n+ 1) + 2−
j−1∑
t=i

d(wt, wt+1)

= n+ 1 + (p− 1)(2k + 1) + 2−
j−1∑
t=i

d(wt, wt+1)

≥ n+ 1 + (p− 1)(2k + 1) + 2− [p(k + 1) + k − 2]

= n+ 1 + pk − 3k + 3

= n+ 1 + k(p− 3) + 3

> n+ 1 + 3 since p > 3

> n+ 1− d(wj , wi).

(42)

Subcase 3b: i > 2 or j < 2n− 1.

In this subcase,

j−1∑
t=i

d(wt, wt+1) ≤ p(k + 1)−
⌈p

2

⌉
+ [(2k − 3)− k] + (2k − k)

= p(k + 1)−
⌈p

2

⌉
+ 2k − 3.

≤ p(k + 1)− 2 + 2k − 3 since p ≥ 4

= p(k + 1) + 2k − 5.

(43)
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=⇒ f(wj)− f(wi) = p(n+ 1)−
j−1∑
t=i

d(wt, wt+1)

= n+ 1 + (p− 1)(2k + 1)−
j−1∑
t=i

d(wt, wt+1)

≥ n+ 1 + (p− 1)(2k + 1)− [p(k + 1) + 2k − 5]

= n+ 1 + pk − 4k + 5

= n+ 1 + k(p− 4) + 5

≥ n+ 1 + 5 since p ≥ 4

> n+ 1− d(wj , wi).

(44)

By Cases 1, 2, and 3, we know that f is a radio labeling of G, proving our claim.

Notice from the labeling pattern that there are four possible distances between consecutively

labeled vertices, namely k + 1, 2k, 2k − 3, and k, with the number of occurrences 2k, 2, 1, and

2k − 4, respectively.

Hence, span(f) = (2n− 1)(n+ 1) + 2−
2n−1∑
i=1

d(wi, wi+1)

= (2n− 1)(n+ 1) + 2− [(k + 1)(2k) + (2k)(2) + (2k − 3)(1) + (k)(2k − 4)]

= (2n− 1)(n+ 1) + 2− (4k2 + 4k − 3)

= (2n− 1)(n+ 1) + 2−
[
4
(n

2

)2

+ 4
(n

2

)
− 3

]
= (2n− 1)(n+ 1) + 2− (n2 + 2n− 3)

= n2 − n+ 4.

(45)

Therefore, rn(G) ≤ n2 − n+ 4, since f is a radio labeling of G with this span.
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Above is an optimal radio labeling of M(2, 10) following the labeling pattern described in the

proof of Lemma 3.2. The radio number of M(2, 10) is 102 − 10 + 4 = 94.

Theorem 3.3. Let G = M(2, n), where n ≥ 3. Then

rn(G) =

 n2 − n+ 3 if n is odd;

n2 − n+ 4 if n is even.

Proof. This result follows immediately from Lemmas 2.3, 2.6, 3.1 and 3.2.
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4 Radio Number of Meshes M(m,n) for m,n ≥ 3 - Lower

Bound

4.1 Lower Bound of rn(M(m,n)) for m Even and n Odd

Lemma 4.1. Let m = 2l and n = 2k + 1, where l ≥ 2 and k ≥ 1. Let f be a radio labeling

of G = M(m,n), where 0 = f(v1) < f(v2) < ... < f(vmn) = span(f) gives the ordering of the

vertices of G. Then

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
m(n2 − 1) +

1

2
m2n− 1.

Proof. Suppose the assumption holds. We know that d(vi, vj) ≤ L(vi)+L(vj)+D(vi)+D(vi+1)

for all vi, vj ∈ V (G), with equality holding only when vi and vj are on opposite sections and

regions. This gives us the following inequality.

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

We make the following observations.

1. Each vertex level L(vi) and displacement D(vi) appears exactly twice in the above in-

equality except L(v1), L(vmn), D(v1), and D(vmn), each of which appears only once.

2. For any t ∈
{

1, 2, ...,
(
n−1

2

)}
, there exist exactly 2m vertices vi ∈ V (G) such that L(vi) = t.

3. For any s ∈
{

1
2 ,

3
2 , ...,

(
m−1

2

)}
, there exist exactly 2n vertices vi ∈ V (G) such that D(vi) =

s.

29



Hence, we have

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

= 2

[
mn∑
i=1

L(vi) +

mn∑
i=1

D(vi)

]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 2

[
2m

(
1 + 2 + ...+

n− 1

2

)]
+ 2

[
2n

(
1

2
+

3

2
+ ...+

m− 1

2

)]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 4m

[
1 + 2 + ...+

(
n− 1

2

)]
+ 2n[1 + 3 + ...+ (m− 1)]

− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 4m

[
1

2

(
n+ 1

2

)(
n− 1

2

)]
+ 2n

[
1

2

(m
2

)
(m)

]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

=
1

2
m(n2 − 1) +

1

2
m2n− [L(v1) + L(vmn) +D(v1) +D(vmn)].

(46)

Since m is even and n is odd, we have L(v1) + L(vmn) +D(v1) +D(vmn) ≥ 0 + 0 + 1
2 + 1

2 = 1.

Therefore, we have

mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)] ≤ 1

2
m(n2 − 1) +

1

2
m2n− 1.

Lemma 4.2. Let m = 2l and n = 2k + 1, where l ≥ 2. Let G = M(m,n). Then

rn(G) ≥ 1

2
(m2n+mn2 − 2mn−m− 2n) + 2.

Proof. Let f be any radio labeling of G = M(m,n), with m = 2l and n = 2k + 1 where l ≥ 2.

From Lemma 4.1, we have

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
m(n2 − 1) +

1

2
m2n− 1.
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Hence, we have

span(f) ≥ (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(vi, vi+1)

≥ (mn− 1)(m+ n− 1)−
[

1

2
m(n2 − 1) +

1

2
m2n− 1

]
= m2n+mn2 −mn−m− n+ 1−

[
1

2
m(n2 − 1) +

1

2
m2n− 1

]
=

1

2
(m2n+mn2 − 2mn−m− 2n) + 2.

(47)

4.2 Lower Bound of rn(M(m,n)) for m,n Odd

Lemma 4.3. Let m = 2l+ 1 and n = 2k+ 1. Let f be a radio labeling of G = M(m,n), where

0 = f(v1) < f(v2) < ... < f(vmn) = span(f) gives the ordering of the vertices of G. Then

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
m(n2 − 1) +

1

2
n(m2 − 1)− 1.

Proof. Suppose the assumption holds. We know that d(vi, vj) ≤ L(vi)+L(vj)+D(vi)+D(vi+1)

for all vi, vj ∈ V (G), with equality holding only when vi and vj are on opposite sections and

regions. This gives us the following inequality.

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

We make the following observations.

1. Each vertex level L(vi) and displacement D(vi) appears exactly twice in the above in-

equality except L(v1), L(vmn), D(v1), and D(vmn), each of which appears only once.

2. For any t ∈
{

1, 2, ...,
(
n−1

2

)}
, there exist exactly 2m vertices vi ∈ V (G) such that L(vi) = t.

3. For any s ∈
{

1, 2, ...,
(
m−1

2

)}
, there exist exactly 2n vertices vi ∈ V (G) such that L(vi) = s.
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Hence, we have

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

= 2

[
mn∑
i=1

L(vi) +

mn∑
i=1

D(vi)

]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 2

[
2m

(
1 + 2 + ...+

n− 1

2

)]
+ 2

[
2n

(
1 + 2 + ...+

m− 1

2

)]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 4m

[
1

2

(
n+ 1

2

)(
n− 1

2

)]
+ 4n

[
1

2

(
m+ 1

2

)(
m− 1

2

)]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

=
1

2
m(n2 − 1) +

1

2
n(m2 − 1)− [L(v1) + L(vmn) +D(v1) +D(vmn)].

(48)

Since m and n are both odd, we know that G has a unique center. Hence, only one vertex has

a level and displacement both equal to zero. Since levels and displacements are both integral

values when m and n are odd, we have L(v1) + L(vmn) + D(v1) + D(vmn) ≥ 1. Therefore, we

have
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)] ≤ 1

2
m(n2 − 1) +

1

2
n(m2 − 1)− 1.

Lemma 4.4. Let m = 2l + 1 and n = 2k + 1. Let G = M(m,n). Then

rn(G) ≥ 1

2
(m2n+mn2 − 2mn−m− n) + 2.

Proof. Let f be any radio labeling of G = M(m,n), with m = 2l + 1 and n = 2k + 1. From

Lemma 4.3, we have

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
m(n2 − 1) +

1

2
n(m2 − 1)− 1.
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Hence, we have

span(f) ≥ (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(vi, vi+1)

≥ (mn− 1)(m+ n− 1)−
[

1

2
m(n2 − 1) +

1

2
n(m2 − 1)− 1

]
= m2n+mn2 −mn−m− n+ 1−

[
1

2
m(n2 − 1) +

1

2
n(m2 − 1)− 1

]
=

1

2
(m2n+mn2 − 2mn−m− n) + 2.

(49)

4.3 Lower Bound of rn(M(m,n)) for m,n Even

Lemma 4.5. Let m = 2l and n = 2k. Let f be a radio labeling of G = M(m,n), where

0 = f(v1) < f(v2) < ... < f(vmn) = span(f) gives the ordering of the vertices of G. Then

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
mn2 +

1

2
m2n− 2.

Proof. Suppose the assumption holds. We know that d(vi, vj) ≤ L(vi)+L(vj)+D(vi)+D(vi+1)

for all vi, vj ∈ V (G), with equality holding only when vi and vj are on opposite sections and

regions. This gives us the following inequality.

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

We make the following observations.

1. Each vertex level L(vi) and displacement D(vi) appears exactly twice in the above in-

equality except L(v1), L(vmn), D(v1), and D(vmn), each of which appears only once.

2. For any t ∈
{

1
2 ,

3
2 , ...,

(
n−1

2

)}
, there exist exactly 2m vertices vi ∈ V (G) such that L(vi) = t.

3. For any s ∈
{

1
2 ,

3
2 , ...,

(
m−1

2

)}
, there exist exactly 2n vertices vi ∈ V (G) such that D(vi) =

s.
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Hence, we have

mn−1∑
i=1

d(vi, vi+1) ≤
mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)]

= 2

[
mn∑
i=1

L(vi) +

mn∑
i=1

D(vi)

]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 2

[
2m

(
1

2
+

3

2
+ ...+

n− 1

2

)]
+ 2

[
2n

(
1

2
+

3

2
+ ...+

m− 1

2

)]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 2m[1 + 3 + ...+ (n− 1)] + 2n[1 + 3 + ...+ (m− 1)]

− [L(v1) + L(vmn) +D(v1) +D(vmn)]

= 2m

[
1

2

(n
2

)
(n)

]
+ 2n

[
1

2

(m
2

)
(m)

]
− [L(v1) + L(vmn) +D(v1) +D(vmn)]

=
1

2
mn2 +

1

2
m2n− [L(v1) + L(vmn) +D(v1) +D(vmn)].

(50)

Since m and n are both even, we have L(v1) +L(vmn) +D(v1) +D(vmn) ≥ 1
2 + 1

2 + 1
2 + 1

2 = 2.

Therefore, we have

mn−1∑
i=1

[L(vi) + L(vi+1) +D(vi) +D(vi+1)] ≤ 1

2
mn2 +

1

2
m2n− 2.

Lemma 4.6. Let m = 2l and n = 2k. If vj (where 2 ≤ j ≤ mn− 1) is a secluded vertex, then

either f(vj+1)− f(vj) > m+ n− 1− d(vj+1, vj) or f(vj)− f(vj−1) > m+ n− 1− d(vj , vj−1).

Proof. Let G = M(m,n), where m = 2l and n = 2k. Let vj ∈ V (G) be a secluded vertex, where

2 ≤ j ≤ mn − 1. Suppose to the contrary that f(vj+1) − f(vj) = m + n − 1 − d(vj+1, vj) and

34



f(vj)− f(vj−1) = m+ n− 1− d(vj , vj−1). Then

f(vj+1)−f(vj−1) = 2(m+ n− 1)− [d(vj+1, vj) + d(vj , vj−1)]

= 2(m+ n− 1)− [L(vj+1) + 2L(vj) + L(vj−1) +D(vj+1) + 2D(vj) +D(vj−1)]

= 2(m+ n− 1)−
[
L(vj+1) + 2

(
n− 1

2

)
+ L(vj−1) +D(vj+1) + 2

(
m− 1

2

)
+D(vj−1)

]
= m+ n− [L(vj+1) + L(vj−1) +D(vj+1) +D(vj−1)]

≤ m+ n− [|L(vj+1)− L(vj−1)|+ |D(vj+1)−D(vj−1)|+ 2]

since L(vj+1) + L(vj−1) ≥ |L(vj+1)− L(vj−1)|+ 1

and D(vj+1) +D(vj−1) ≥ |D(vj+1)−D(vj−1)|+ 1.

(51)

By our assumption, we know that vj+1 and vj−1 are both on the section and region opposite of

vj . Hence we know

f(vj+1)− f(vj−1) ≥ m+ n− 1− d(vj+1, vj−1)

= m+ n− 1− [|L(vj+1)− L(vj−1)|+ |D(vj+1)−D(vj−1)|].
(52)

Hence, m+n−2−[|L(vj+1)− L(vj−1)|+ |D(vj+1)−D(vj−1)|] ≥ m+n−1−[|L(vj+1)−L(vj−1)|+

|D(vj+1)−D(vj−1)|], a contradiction. Therefore, either f(vj+1)−f(vj) > m+n−1−d(vj+1, vj)

or f(vj)− f(vj−1) > m+ n− 1− d(vj , vj−1).

Recall from the previous section that for any radio labeling f on G = M(m,n), α(f) is the

number of indices 1 ≤ i ≤ mn− 1 such that fi > (m+ n− 1)− di, so we have

span(f) ≥ (mn− 1)(m+ n− 1) + α(f)−
mn−1∑
i=1

d(vi, vi+1).

Lemma 4.7. Let m = 2l and n = 2k, where l ≥ 2 and k ≥ 2. Let G = M(m,n). Then

rn(G) ≥ 1

2
(m2n+mn2 − 2mn− 2m− 2n) + 6.

Proof. Let f be any radio labeling of G = M(m,n), with m = 2l and n = 2k where l ≥ 2 and

k ≥ 2. Without loss of generality, assume that m ≥ n. From Lemma 4.5, we have

mn−1∑
i=1

d(vi, vi+1) ≤ 1

2
mn2 +

1

2
m2n− 2.
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Notice that G has exactly 4 corners and therefore at most 4 secluded vertices. We exam-

ine different cases based on the number of secluded vertices in G to show that span(f) ≥
1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6.

CASE 1: G has four secluded vertices vt1 , vt2 , vt3 , and vt4 , where 1 < t1 < t2 < t3 < t4 < mn.

Then, we have



ft1 > m+ n− 1− dt1 or ft1−1 > m+ n− 1− dt1−1

ft2 > m+ n− 1− dt2 or ft2−1 > m+ n− 1− dt2−1

ft3 > m+ n− 1− dt3 or ft3−1 > m+ n− 1− dt3−1

ft4 > m+ n− 1− dt4 or ft4−1 > m+ n− 1− dt4−1.

(53)

If two secluded vertices are consecutively labeled, then two of the conditions can be concurrently

satisfied in a single jump (the jump between the two said secluded vertices). However, no three

secluded vertices may be consecutive, since any corner vertex whose predecessor and successor

in the labeling pattern of f are both corners would necessarily induce a jump not of the best

type. Since there are two pairs of secluded vertices, we can satisfy the first and second con-

ditions above with a single jump, and likewise the third and fourth conditions with a single jump.

Hence, α(f) ≥ 2, with equality possible only if t1 + 1 = t2 and t3 + 1 = t4.

Observe that when m and n are both even, no vertex concurrently exists in both sections or both

regions of G. Hence, at most 1
2mn consecutively labeled vertices can be labeled by alternating

regions and sections in each jump; in other words, at most 1
2mn− 1 consecutive jumps can be

of the best type. Therefore, there exists an index 1 ≤ j ≤ mn − 1 such that vj and vj+1 are

either in the same region or the same section, so the jump from vj to vj+1 is not of the best

type. Consequently,

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 1 =

1

2
mn2 +

1

2
m2n− 3.

So span(f) ≥ (mn − 1)(m + n − 1) + 2 −
(

1
2mn

2 + 1
2m

2n− 3
)

= 1
2 (m2n + mn2 − 2mn −

2m− 2n) + 6.

CASE 2: G has exactly three secluded vertices vt1 , vt2 , and vt3 , where 1 < t1 < t2 < t3 < mn,
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and one non-secluded corner vertex vc. Then we have



ft1 > m+ n− 1− dt1 or ft1−1 > m+ n− 1− dt1−1

ft2 > m+ n− 1− dt2 or ft2−1 > m+ n− 1− dt2−1

ft3 > m+ n− 1− dt3 or ft3−1 > m+ n− 1− dt3−1

Either the jump to vc or from vc is not of the best type, unless vc ∈ {v1, vmn}.

(54)

Hence, by the same argument from Case 1, α(f) ≥ 2 with equality possible only if t1 + 1 = t2

or t2 + 1 = t3.

Also, since vc is a non-secluded corner vertex, we know that either vc is in {v1, vmn} (in which

case L(v1) + L(vmn) + D(v1) + D(vmn) ≥ 4) or at least one jump to or from vc is not of the

best type. In either situation, from Lemma 4.6 we have

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 1 =

1

2
mn2 +

1

2
m2n− 3.

So span(f) ≥ (mn − 1)(m + n − 1) + 2 −
(

1
2mn

2 + 1
2m

2n− 3
)

= 1
2 (m2n + mn2 − 2mn −

2m− 2n) + 6.

CASE 3: G has exactly two secluded vertices vt1 and vt2 , where 1 < t1 < t2 < mn, and two

non-secluded corner vertices vc1 and vc2 , where c1 < c2. Then, we have



ft1 > m+ n− 1− dt1 or ft1−1 > m+ n− 1− dt1−1

ft2 > m+ n− 1− dt2 or ft2−1 > m+ n− 1− dt2−1

Either the jump to vc1 or from vc1 is not of the best type, unless vc1 ∈ {v1, vmn}.

Either the jump to vc2 or from vc2 is not of the best type, unless vc2 ∈ {v1, vmn}.

(55)

Hence, α(f) ≥ 1 with equality possible only if t1 + 1 = t2.

Also, we know that each non-secluded corner vertex vc1 and vc2 either is in {v1, vmn} or neces-

sarily induces a jump not of the best type. Note that since m,n ≥ 4, we have that any corner

vertex has a level and displacement of at least 3
2 . Therefore, any corner vertex in {v1, vmn}

increases L(v1) + L(vmn) + D(v1) + D(vmn) by at least 2 and therefore sufficiently minimizes
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the sum of the distances between consecutive vertices (as in Case 2), so we examine the different

possibilities if neither of these corner vertices is in {v1, vmn}.

1. If vc1 and vc2 are not consecutive, then they each induce a distinct jump not of the best

type, since they are non-secluded.

2. If vc1 and vc2 are consecutive and antipodal (i.e. in different regions and sections), then

the jump from vc1 to vc2 is of the best type. But both these vertices are non-secluded, so

both these vertices induce a distinct jump that is not of the best type.

3. If vc1 and vc2 are consecutive but not antipodal, then the jump from vc1 to vc2 concurrently

satisfies the third and fourth conditions of this case; however, that would force t2 to be

strictly larger than t1 + 1 (since secluded vertices vt1 and vt2 cannot be in the same region

or section if they are consecutive), which would make the preceding inequality strict.

Our observations above lead to the conclusion that in Case 3, one of the two following statements

must hold.

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 2 =

1

2
mn2 +

1

2
m2n− 4 and α(f) ≥ 1

OR

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 1 =

1

2
mn2 +

1

2
m2n− 3 and α(f) ≥ 2.

In either case, span(f) ≥ 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6.

CASE 4: G has exactly one secluded vertex vt, where 1 < t < mn, and three non-secluded

corner vertices vc1 , vc2 , and vc3 , where c1 < c2 < c3. Then, we have



ft > m+ n− 1− dt or ft−1 > m+ n− 1− dt−1

Either the jump to vc1 or from vc1 is not of the best type, unless vc1 ∈ {v1, vmn}.

Either the jump to vc2 or from vc2 is not of the best type, unless vc2 ∈ {v1, vmn}.

Either the jump to vc3 or from vc3 is not of the best type, unless vc3 ∈ {v1, vmn}.

(56)

Hence, from the first condition we know α(f) ≥ 1.

Also, unless one of the three non-secluded vertices vc1 , vc2 , and vc3 is in {v1, vmn} (in which

38



case L(v1) +L(vmn) +D(v1) +D(vmn) ≥ 4), it is impossible for vc1 , vc2 , and vc3 to collectively

induce only one jump not of the best type, since a single jump can only satisfy at most two of

the above conditions. Therefore, we have

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 2 =

1

2
mn2 +

1

2
m2n− 4.

So span(f) ≥ 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6.

CASE 5: G has four non-secluded corner vertices vc1 , vc2 , vc3 , and vc4 with c1 < c2 < c3 < c4.

Then



Either the jump to vc1 or from vc1 is not of the best type, unless vc1 ∈ {v1, vmn}.

Either the jump to vc2 or from vc2 is not of the best type, unless vc2 ∈ {v1, vmn}.

Either the jump to vc3 or from vc3 is not of the best type, unless vc3 ∈ {v1, vmn}.

Either the jump to vc4 or from vc4 is not of the best type, unless vc4 ∈ {v1, vmn}.

(57)

We examine the different possibilities for the non-secluded corner vertices vc1 , vc2 , vc3 , and vc4 .

1. If two of the four corner vertices are in {v1, vmn}, then L(v1)+L(vmn)+D(v1)+D(vmn) ≥ 6

and the remaining two corner vertices would induce a jump not of the best type.

2. If only one of the four corner vertices is in {v1, vmn}, then L(v1) + L(vmn) + D(v1) +

D(vmn) ≥ 4, and the remaining three corner vertices would induce at least two distinct

jumps not of the best type, as was determined in Case 4.

3. If none of the corner vertices are in {v1, vmn}, then the four corner vertices would induce

at least two distinct jumps not of the best type. However, if L(v1) + L(vmn) + D(v1) +

D(vmn) = 2 and the four corners induce exactly 2 jumps not of the best type (in other

words, if c4 = c3 + 1 and c2 = c1 + 1), then we consider all of the following observations:

(a) The two jumps not of the best type must be between corner vertices within the same

section or region. If the jumps are between corner vertices of the same region, then

each jump has a distance n − 1. But this is a smaller jump than a jump of length

m−1 between corner vertices in the same section (since m ≥ n). Such a jump between

corner vertices in the same region therefore further reduces the sum of the distances

between consecutive vertices. To avoid this, we set the two jumps that are not of the

best type to be between corners in the same section.

(b) If c3 = c2 + 1 (so the jump from vc2 to vc3 is of the best type) where vc1 and vc2 are
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in one section and vc3 and vc4 are in the other, then vc1 and vc4 will be in opposite

regions and sections, which would force an additional jump not of the best type in

order to label all vertices. So c3 6= c2 + 1, which prevents labeling vc3 immediately

after vc2 .

(c) The labeling pattern must begin and end at central vertices. This forces an additional

jump not of the best type unless v1 and vmn are on opposite sections and regions (since

no vertices are in more than one section or region). But f already includes two jumps

between vertices in the same section, since c2 = c1 +1 and c4 = c3 +1. So v1 and vmn

must be in opposite regions and sections to avoid another jump not of the best type.

(d) If the two jumps that are not of the best type are between corners in the same section

as indicated in (a), then vc4+1 and vc3 are in the same region but opposite sections.

Our observations above indicate that in Case 5, one of the two following statements must hold.

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 3 =

1

2
mn2 +

1

2
m2n− 5

OR

mn−1∑
i=1

d(vi, vi+1) ≤
(

1

2
mn2 +

1

2
m2n− 2

)
− 2 =

1

2
mn2 +

1

2
m2n− 4 and α(f) ≥ 1.

So span(f) ≥ 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6.

Hence, in all 5 cases, span(f) ≥ 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6 when m,n are even.

5 Radio Number of Meshes M(m,n) for m,n ≥ 3 - Upper

Bound

5.1 Upper Bound of rn(M(m,n)) for m Even and n Odd

Lemma 5.1. Let m = 2l and n = 2k + 1, where l ≥ 2 and k ≥ 1. Let G = M(m,n). Then

rn(G) ≤ 1
2 (m2n+mn2 − 2mn−m− 2n) + 2.

Proof. Let m = 2l and n = 2k + 1, where l ≥ 2 and k ≥ 1. It suffices to find one radio labeling

of G = M(m,n) with a span of 1
2 (m2n+mn2 − 2mn−m− 2n) + 2. Let {w1, w2, ..., wmn} be a

permutation of V (G) given by the following pattern, which we separate into 3 blocks.
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w1 = (l, k + 1)
l+k−−→ (m, 1)

l+k+1−−−−→ (l, k + 2)
l+k−−→ (m, 2)

l+k+1−−−−→ (l, k + 3)
l+k−−→ (m, 3)

l+k+1−−−−→

(l, k + 4)
l+k−−→ ...

l+k−−→ wn−1 = (m, k)
l+k+1−−−−→ (l, n)

2k+l−1−−−−−→ (m− 1, 1)
l+k+1−−−−→ (l − 1, k + 2)

l+k−−→

(m − 1, 2)
l+k+1−−−−→ (l − 1, k + 3)

l+k−−→ (m − 1, 3)
l+k+1−−−−→ (l − 1, k + 4)

l+k−−→ ...
l+k−−→ w4k =

(m−1, k)
l+k+1−−−−→ (l−1, n)

2k+l−1−−−−−→ ... ... ...
2k+l−1−−−−−→ (l+1, 1)

l+k+1−−−−→ (1, k+2)
l+k−−→ (l+1, 2)

l+k+1−−−−→

(1, k + 3)
l+k−−→ (l + 1, 3)

l+k+1−−−−→ (1, k + 4)
l+k−−→ ...

l+k−−→ (l + 1, k)
l+k+1−−−−→ (1, n) = wmk+1

l+k+1−−−−→ wmk+2 = (l+2, k+1)
l+1−−→ (1, k+1)

l+2−−→ (l+2, k+1)
l+1−−→ (2, k+1)

l+2−−→ (l+3, k+1)
l+1−−→

(3, k + 1)
l+2−−→ ...

l+2−−→ (2l, k + 1)
l+1−−→ (l − 1, k + 1) = w2l(k+1)−1

l+k+1−−−−→ wm(k+1) = (m,n)
l+k+1−−−−→ (l, k)

l+k−−→ (m,n − 1)
l+k+1−−−−→ (l, k − 1)

l+k−−→ (m,n − 2)
l+k+1−−−−→

(l, k − 2)
l+k−−→ ...

l+k−−→ w2(l+1)(k+1)−4 = (m, k + 2)
l+k+1−−−−→ (l, 1)

2k+l−1−−−−−→ (m − 1, n)
l+k+1−−−−→

(l−1, k)
l+k−−→ (m−1, n−1)

l+k+1−−−−→ (l−1, k−1)
l+k−−→ (m−1, n−2)

l+k+1−−−−→ (l−1, k−2)
l+k−−→ ...

l+k−−→

w2(l+1)(k+1)+2k−4 = (m − 1, k + 2)
l+k+1−−−−→ (l − 1, 1)

2k+l−1−−−−−→ ... ... ...
2k+l−1−−−−−→ (l + 1, n)

l+k+1−−−−→

(1, k)
l+k−−→ (l + 1, n − 1)

l+k+1−−−−→ (1, k − 1)
l+k−−→ (l + 1, n − 2)

l+k+1−−−−→ (1, k − 2)
l+k−−→ ...

l+k−−→

(l + 1, k + 2)
l+k+1−−−−→ (1, 1)

l+k−−→ (l + 1, k + 1) = wmn

Above is the labeling pattern described for M(8, 7). The red and purple vectors indicate

subsequences of vertices whose indices are of equal parity.

Let the quantity above each arrow indicate the distance between the two consecutive ver-

tices. Let f : V (G) → {0, 1, 2, ...} be a function such that f(w1) = 0 and f(wi+1) − f(wi) =

m+ n− 1− d(wi+1, wi) for all 1 ≤ i ≤ mn− 1.

CLAIM: f is a radio labeling of G.

41



To prove this, we show that for all 1 ≤ i ≤ mn− 2, we have

f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) for any j ≥ i+ 2.

By the same justification in the previous section, we have

f(wj)− f(wi) = fj−1 + fj−2 + ...+ fi+1 + fi.

Let j = i+p, where p ≥ 2. We observe 2 cases, using distances indicated in the labeling pattern

for f for reference.

CASE 1: p = 2.

For convenience we first define the following disjoint subsets of V (G):

• A1 = {(t, k) : l + 2 ≤ t ≤ 2l}

• A2 = {(t, 2k + 1) : 2 ≤ t ≤ l}

• A3 = {(t, k + 2) : l + 2 ≤ t ≤ 2l}

• A4 = {(t, 1) : 2 ≤ t ≤ l}

• A5 = {(l + 1, k), (l − 1, k + 1)}

• A6 = {(1, 2k + 1), (l + 1, k + 1)}

• A7 = {(t, k + 1) : 1 ≤ t ≤ l − 2 or l + 2 ≤ t ≤ 2l − 1}

Subcase 1a: wi ∈
4⋃
t=1

At. Then according to the labeling pattern, d(wj , wi) = k.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k)− (l + k + 1)− (2k + l − 1)

= (m+ n− 1)− k

= (m+ n− 1)− d(wj , wi).

(58)

Subcase 1b: wi ∈ A5. Then according to the labeling pattern, d(wj , wi) = 2.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k)− (l + k + 1)− (l + k + 1)

= (m+ n− 1)− 2

= (m+ n− 1)− d(wj , wi).

(59)
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Subcase 1c: wi ∈ A6. Then according to the labeling pattern, d(wj , wi) = k.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k)− (l + k + 1)− (l + 1)

= (m+ n− 1) + k − 2

≥ (m+ n− 1)− 1, since k ≥ 1

≥ (m+ n− 1)− d(wj , wi).

(60)

Subcase 1d: wi ∈ A7. Then according to the labeling pattern, d(wj , wi) = 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k)− (l + 1)− (l + 2)

= (m+ n− 1) + 2k − 3

≥ (m+ n− 1)− 1, since k ≥ 1

= (m+ n− 1)− d(wj , wi).

(61)

Subcase 1e: wi /∈
7⋃
t=1

At. Then according to the labeling pattern, d(wj , wi) = 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k)− (l + k + 1)− (l + k)

= (m+ n− 1)− 1

= (m+ n− 1)− d(wj , wi).

(62)

Hence, f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) whenever j = i+ 2.

CASE 2: p ≥ 3.

When p ≥ 3, we can make the following observations about the distances of jumps occurring

between wi and wj .

1. The jumps alternate between lengths of l+ k+ 1 and l+ k if the jumps are not to or from

vertices on the horizontal axis, the bottom row of Quadrant 3, or the top row of Quadrant

2.

2. The jumps within Block 2 alternate between lengths of l+1 and l+2. Note that l+1 ≤ l+k

and l + 2 ≤ l + k + 1.
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3. The transitioning jumps from Block 1 to Block 2 and from Block 2 to Block 3 are the only

two jumps of length l+ k+ 1 within the labeling pattern that immediately follow another

jump of length l + k + 1. But since p ≥ 3 and no three consecutive jumps are of length

l + k + 1, it is true that at most
⌈
p
2

⌉
jumps are of length l + k + 1.

4. At most
⌈
p
2k

⌉
jumps are of length 2k+ l− 1. These jumps occur between jumps of length

l + k + 1, so they replace the usual jump of length l + k that is between jumps of length

l + k + 1.

Therefore, we know

j−1∑
t=i

d(wt, wt+1) ≤ p(l + k + 1)−
⌈p

2

⌉
+
⌈ p

2k

⌉
[(2k + l − 1)− (l + k)].

= p(l + k + 1)−
⌈p

2

⌉
+
⌈ p

2k

⌉
(k − 1).

(63)

=⇒ f(wj)− f(wi) = p(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= m+ n− 1 + (p− 1)(2k + 2l)−
j−1∑
t=i

d(wt, wt+1)

≥ m+ n− 1 + 2pl + 2pk − 2l − 2k −
[
p(l + k + 1)−

⌈p
2

⌉
+
⌈ p

2k

⌉
(k − 1)

]
= m+ n− 1 + pl + pk − 2l − 2k − p+

⌈p
2

⌉
−
⌈ p

2k

⌉
k +

⌈ p
2k

⌉
= m+ n− 1 + (p− 2)l − 2k +

(
p−

⌈ p
2k

⌉)
(k − 1) +

⌈p
2

⌉
≥ m+ n− 1 + (p− 2)l − 2k +

(
p−

⌈ p
2k

⌉)
(k − 1) + 2 since p ≥ 3

= m+ n− 1 + (p− 2)l − 2(k − 1) +
(
p−

⌈ p
2k

⌉)
(k − 1)

> m+ n− 1 +
(
p−

⌈ p
2k

⌉
− 2
)

(k − 1) since p ≥ 3.

(64)

CLAIM:
(
p−

⌈
p
2k

⌉
− 2
)

(k − 1) ≥ 0 for all k ≥ 1.

To prove this claim, we test all integer values of k ≥ 1.

Case 1: k = 1. Then k − 1 = 0, so
(
p−

⌈
p
2k

⌉
− 2
)

(k − 1) = 0.

Case 2: k ≥ 2.

If p = 3, then
(
p−

⌈
p
2k

⌉
− 2
)

=
(
3−

⌈
3
2k

⌉
− 2
)
≥
(
3−

⌈
3
4

⌉
− 2
)

= (3− 1− 2) = 0

=⇒
(
p−

⌈ p
2k

⌉
− 2
)

(k − 1) ≥
(
p−

⌈ p
2k

⌉
− 2
)

(1) = 0, since k ≥ 2. (65)
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If p ≥ 4, then
(
p−

⌈
p
2k

⌉
− 2
)
≥
(
p−

⌈
p
4

⌉
− 2
)
≥
(
p−

(
p
4 + 1

)
− 2
)

= 3p
4 − 3 ≥ 12

4 − 3 = 0

=⇒
(
p−

⌈ p
2k

⌉
− 2
)

(k − 1) ≥
(
p−

⌈ p
2k

⌉
− 2
)

(1) ≥ 0, since k ≥ 2. (66)

Using this claim, we conclude that f(wj)− f(wi) > m+ n− 1 +
(
p−

⌈ p
2k

⌉
− 2
)

(k − 1)

≥ m+ n− 1

> m+ n− 1− d(wj , wi).

(67)

By Cases 1 and 2, we know that f is a radio labeling of G, proving our claim.

Notice from the labeling pattern that there are five possible distances between consecutively la-

beled vertices, namely l+k+ 1, l+k, 2k+ l−1, l+ 1, and l+ 2, with the number of occurrences

2lk + 2, 2lk − 2l + 2, 2l − 2, l − 1, and l − 2, respectively.

Hence, span(f) = (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(wi, wi+1)

= (mn− 1)(m+ n− 1)− [(l + k + 1)(2lk + 2) + (l + k)(2lk − 2l + 2) + (2k + l − 1)(2l − 2)

+ (l + 1)(l − 1) + (l + 2)(l − 2)]

= (mn− 1)(m+ n− 1)− (4l2k + 4lk2 + 4lk + 2l2 − 1)

= (mn− 1)(m+ n− 1)−

[
m2

(
n− 1

2

)
+ 2m

(
n− 1

2

)2

+ 2m

(
n− 1

2

)
+
m2

2
− 1

]

=
1

2
m2n+

1

2
mn2 − 1

2
m−mn− n+ 2

=
1

2
(m2n+mn2 − 2mn−m− 2n) + 2.

(68)

Therefore, rn(G) ≤ 1
2 (m2n + mn2 − 2mn −m − 2n) + 2, since f is a radio labeling of G

with this span.
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Above is the optimal radio labeling determined by the labeling pattern described above for

M(8, 7). The radio number of M(8, 7) is 355.
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5.2 Upper Bound of rn(M(m,n)) for m,n Odd

Lemma 5.2. Let m = 2l + 1 and n = 2k + 1. Let G = M(m,n). Then rn(G) ≤ 1
2 (m2n +

mn2 − 2mn−m− n) + 2.

Proof. Let m = 2l + 1 and n = 2k + 1. Since G(m,n) is isomorphic to G(n,m) and m,n have

the same parity, we may assume without loss of generality that l ≥ k. Therefore, G has at least

as many columns as it does rows.

When m,n are both odd, a complication with calculations requires that we separate the trivial

case of l = 1 from the more general case of l ≥ 2. If l = 1, then by assumption k = 1,

and so G = M(m,n) is a square mesh with 3 rows and 3 columns. We define a function

g : V (G)→ {0, 1, 2, ...} by the following.

(1, 3) 7→ 15 (2, 3) 7→ 5 (3, 3) 7→ 11

(1, 2) 7→ 9 (2, 2) 7→ 0 (3, 2) 7→ 17

(1, 1) 7→ 3 (2, 1) 7→ 13 (3, 1) 7→ 7

From simple calculation it is easy to verify that g as defined above is a radio labeling of

G = M(3, 3) with a span of 17. Since 17 = 1
2

[
(3)2(3) + (3)(3)2 − 2(3)(3)− 3− 3

]
+ 2, the

desired upper bound of rn(G) is achieved when l = 1.

To prove the upper bound when l ≥ 2, it suffices to find one radio labeling of G = M(m,n) with

a span of 1
2 (m2n+mn2 − 2mn−m− n) + 2. Let {w1, w2, ..., wmn} be a permutation of V (G)

given by the following pattern, which we separate into l blocks. Notice that vertices in this

labeling pattern alternate quadrants in diagonal motions, unlike the patterns used in previous

cases.

w1 = (l + 1, k + 1)
l+k−−→ (1, 1)

l+k+1−−−−→ (l + 1, k + 2)
l+k+1−−−−→ (2l + 1, 1)

l+k+1−−−−→ (l, k + 1)
l+k+1−−−−→

(2l + 1, 2k + 1)
l+k+1−−−−→ (l + 1, k)

l+k+1−−−−→ w8 = (1, 2k + 1)

l+k+2−−−−→ w9 = (l+3, k+1)
l+k+1−−−−→ (2, 1)

l+k+1−−−−→ (l+2, k+2)
l+k+1−−−−→ (1, 2)

l+k+1−−−−→ (l+1, k+3)
l+k+1−−−−→

(2l + 1, 2)
l+k+1−−−−→ (l, k + 2)

l+k+1−−−−→ (2l, 1)
l+k+1−−−−→ (l − 1, k + 1)

l+k+1−−−−→ (2l, 2k + 1)
l+k+1−−−−→

(l, k)
l+k+1−−−−→ (2l+ 1, 2k)

l+k+1−−−−→ (l+ 1, k− 1)
l+k+1−−−−→ (1, 2k)

l+k+1−−−−→ (l+ 2, k)
l+k+1−−−−→ (2, 2k+ 1) =

w24
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l+k+2−−−−→ w25 = (l + 4, k + 1)
l+k+1−−−−→ (3, 1)

l+k+1−−−−→ (l + 3, k + 2)
l+k+1−−−−→ (2, 2)

l+k+1−−−−→ (l + 2, k +

3)
l+k+1−−−−→ (1, 3)

l+k+1−−−−→ (l + 1, k + 4)
l+k+1−−−−→ (2l + 1, 3)

l+k+1−−−−→ (l, k + 3)
l+k+1−−−−→ (2l, 2)

l+k+1−−−−→

(l−1, k+2)
l+k+1−−−−→ (2l−1, 1)

l+k+1−−−−→ (l−2, k+1)
l+k+1−−−−→ (2l−1, 2k+1)

l+k+1−−−−→ (l−1, k)
l+k+1−−−−→

(2l, 2k)
l+k+1−−−−→ (l, k − 1)

l+k+1−−−−→ (2l + 1, 2k − 1)
l+k+1−−−−→ (l + 1, k − 2)

l+k+1−−−−→ (1, 2k − 1)
l+k+1−−−−→

(l + 2, k − 1)
l+k+1−−−−→ (2, 2k)

l+k+1−−−−→ (l + 3, k)
l+k+1−−−−→ (3, 2k + 1) = w48

...

l+k+2−−−−→ w49 = (2l + 1, k + 1)
l+k+1−−−−→ (l, 1)

l+k+1−−−−→ (2l, k + 2)
l+k+1−−−−→ (l − 1, 2)

l+k+1−−−−→ (2l −

1, k + 3)
l+k+1−−−−→ (l − 2, 3)

l+k+1−−−−→ ...
l+k+1−−−−→ (2l + 1 − k, 2k + 1)

l+k+1−−−−→ (l − k, k + 1)
l+k+1−−−−→

(2l + 1 − k, 1)
l+k+1−−−−→ (l + 1 − k, k + 2)

l+k+1−−−−→ (2l − k + 2, 2)
l+k+1−−−−→ (l − k + 2, k + 3)

l+k+1−−−−→

...
l+k+1−−−−→ (2l, k)

l+k+1−−−−→ (l, 2k + 1)
k+2−−→ (l + 2, k + 1) = wmn

Above is the labeling pattern described for M(9, 7). The red and purple vectors indicate

subsequences of vertices whose indices are of equal parity.

Let the quantity above each arrow indicate the distance between the two consecutive ver-

tices. Let f : V (G) → {0, 1, 2, ...} be a function such that f(w1) = 0 and f(wi+1) − f(wi) =

m+ n− 1− d(wi+1, wi) for all 1 ≤ i ≤ mn− 1.

CLAIM: f is a radio labeling of G.

To prove this, we show that for all 1 ≤ i ≤ mn− 2, we have

f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) for any j ≥ i+ 2.
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By the same justification in the previous section, we have

f(wj)− f(wi) = fj−1 + fj−2 + ...+ fi+1 + fi.

Let j = i+p, where p ≥ 2. We observe 2 cases, using distances indicated in the labeling pattern

for f for reference.

CASE 1: p = 2.

For convenience we first define the following disjoint subsets of V (G):

• A1 = {w1} = {(l + 1, k + 1)}

• A2 = {(1, t) : 1 ≤ t ≤ k}

• A3 = {(2l + 1, t) : k + 2 ≤ t ≤ 2k + 1}

• A4 = {(t, 1) : 2l − k + 2 ≤ t ≤ 2l + 1}

• A5 = {(t, 2k + 1) : l + 2 ≤ t ≤ 2l − k + 1} Note: A5 = Ø if k = l.

• A6 = {(t, k) : l + 1 ≤ t ≤ 2l − 1}

• A7 = {(t, 2k + 1) : 1 ≤ t ≤ l − 1}

• A8 = {wmn−2} = {(2l, k)}

Subcase 1a: wi ∈ A1. Then according to the labeling pattern, d(wj , wi) = 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k)− (l + k + 1)

= m+ n− 1

> (m+ n− 1)− d(wj , wi).

(69)

Subcase 1b: wi ∈
3⋃
t=2

At. Then according to the labeling pattern, d(wj , wi) = 2l.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 1)− (l + k + 1)

= (m+ n− 1)− 1

> (m+ n− 1)− 2l since l ≥ 2

= (m+ n− 1)− d(wj , wi).

(70)
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Subcase 1c: wi ∈
5⋃
t=4

At.. Then according to the labeling pattern, d(wj , wi) = 2k.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 1)− (l + k + 1)

= (m+ n− 1)− 1

> (m+ n− 1)− 2k, since k ≥ 1

= (m+ n− 1)− d(wj , wi).

(71)

Subcase 1d: wi ∈ A6. Then according to the labeling pattern, d(wj , wi) = 3.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 1)− (l + k + 1)

= (m+ n− 1)− 1

> (m+ n− 1)− 3

= (m+ n− 1)− d(wj , wi).

(72)

Subcase 1e: wi ∈ A7. Then according to the labeling pattern, d(wj , wi) = 2k + 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 2)− (l + k + 1)

= (m+ n− 1)− 2

> (m+ n− 1)− (2k + 1), since k ≥ 1

= (m+ n− 1)− d(wj , wi).

(73)

Subcase 1f : wi ∈ A8. Then according to the labeling pattern, d(wj , wi) = l − 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 1)− (k + 2)

= (m+ n− 1) + l − 2

≥ m+ n− 1, since l ≥ 2

> (m+ n− 1)− d(wj , wi).

(74)

Subcase 1g: wi /∈
8⋃
t=1

At. Then according to the labeling pattern, d(wj , wi) = 2.
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=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) + (2l + 2k + 1)− (l + k + 1)− (l + k + 1)

= (m+ n− 1)− 1

> (m+ n− 1)− 2

= (m+ n− 1)− d(wj , wi).

(75)

Hence, f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) whenever j = i+ 2.

CASE 2: p ≥ 3.

Let S = {(t, 2k+ 1) : 1 ≤ t ≤ l− 1}. When p ≥ 3, we can make the following observations about

the distances of jumps occurring between wi and wj .

1. S is non-empty since l ≥ 2.

2. The jumps in the labeling pattern are all of length l+ k+ 1 except those from a vertex in

{w1, wmn−1} ∪ S.

(a) Jumps from vertices in S are of length l + k + 2, since l ≥ 2. There are l − 1 jumps

of length l + k + 2 in the labeling pattern.

(b) The jump from w1 is of length l + k.

(c) The jump from wmn−1 is of length k+ 2. Since l ≥ 2, we know that k+ 2 < l+ k+ 1.

Therefore, we know

j−1∑
t=i

d(wt, wt+1) ≤ p(l + k + 1) + (l − 1). (76)
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Hence, f(wj)− f(wi) = p(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + (p− 1)(2k + 2l + 1)−
j−1∑
t=i

d(wt, wt+1)

≥ (m+ n− 1) + (p− 1)(2k + 2l + 1)− [p(l + k + 1) + (l − 1)]

= (m+ n− 1) + pl + pk − 2l − 2k − l

= (m+ n− 1) + (p− 2)(l + k)− l

> (m+ n− 1) + (p− 2)(l + k)− (l + k) since k ≥ 1

= (m+ n− 1) + (p− 3)(l + k)

≥ m+ n− 1 since p ≥ 3

> (m+ n− 1)− d(wi, wj).

(77)

By Cases 1 and 2, we know that f is a radio labeling of G when l ≥ 2, proving our claim.

Notice from the labeling pattern that there are four possible distances between consecutively

labeled vertices, namely l + k + 1, l + k + 2, k + 2, and l + k, with the number of occurrences

mn− (l + 2), l − 1, 1, 1, respectively.

So span(f) = (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(wi, wi+1)

= (mn− 1)(m+ n− 1)− [(l + k + 1)(mn− l − 2) + (l + k + 2)(l − 1) + (k + 2) + (l + k)]

= (mn− 1)(m+ n− 1)−
(
m+ n

2

)(
2mn−m− 3

2

)
−
(
m+ n+ 2

2

)(
m− 3

2

)
−
(
m+ 2n+ 1

2

)
= (mn− 1)(m+ n− 1)− 1

4
[(m+ n)(2mn−m− 3) + (m+ n+ 2)(m− 3) + 2(m+ 2n+ 1)]

= (mn− 1)(m+ n− 1)− 1

4
(2m2n+ 2mn2 − 2m− 2n− 4)

=
1

2
m2n+

1

2
mn2 −mn− 1

2
m− 1

2
n+ 2

=
1

2
(m2n+mn2 − 2mn−m− n) + 2.

(78)

Therefore, rn(G) ≤ 1
2 (m2n+mn2− 2mn−m−n) + 2, since f is a radio labeling of G with

this span.
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Above is the optimal radio labeling determined by the labeling pattern described above for

M(9, 7). The radio number of M(9, 7) is 435.
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5.3 Upper Bound of rn(M(m,n)) for m,n Even

Lemma 5.3. Let m = 2l and n = 2k. Let G = M(m,n). Then rn(G) ≤ 1
2 (m2n+mn2−2mn−

2m− 2n) + 6.

Proof. Let m = 2l and n = 2k. Since G(m,n) is isomorphic to G(n,m) and m,n have the same

parity, we may assume without loss of generality that l ≥ k. Therefore, G has at least as many

columns as it does rows.

When m,n are both even, a complication with calculations requires that we separate the trivial

case of l = 2 from the more general case of l ≥ 3. If l = 2, then by assumption k = 2,

and so G = M(m,n) is a square mesh with 4 rows and 4 columns. We define a function

g : V (G)→ {0, 1, 2, ...} by the following.

(1, 4) 7→ 5 (2, 4) 7→ 18 (3, 4) 7→ 28 (4, 4) 7→ 41

(1, 3) 7→ 12 (2, 3) 7→ 0 (3, 3) 7→ 46 (4, 3) 7→ 34

(1, 2) 7→ 25 (2, 2) 7→ 38 (3, 2) 7→ 8 (4, 2) 7→ 21

(1, 1) 7→ 43 (2, 1) 7→ 31 (3, 1) 7→ 15 (4, 1) 7→ 3

From straightforward calculation it is easy to verify that g as defined above is a radio labeling

of G = M(4, 4) with a span of 46. Since 46 = 1
2

[
(4)2(4) + (4)(4)2 − 2(4)(4)− 2(4)− 2(4)

]
+ 6,

the desired upper bound of rn(G) is achieved when l = 2.

To prove the upper bound when m and n are even where l ≥ 3, it suffices to find one radio label-

ing of G = M(m,n) with a span of 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6. Let {w1, w2, ..., wmn}

be a permutation of V (G) to define a labeling pattern.

When m and n are both even, there exist slight complications that require a specific labeling

for each subcase determined by the parities of l and k. The structures of all these labelings

are almost identical, and their commonalities will suffice in proving the desired upper bound.

The only slight adjustments involve the corner vertices of each of the four quadrants. Each of

the labeling patterns can be systematically separated into two blocks. On each of the sample

graphs, the red and purple vectors indicate subsequences of vertices in each quadrant whose

indices are of equal parity .
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Case 1: l is Odd and k = 2.

Then we define f by the following blocks.

w1 = (l, 3)
l+2−−→ (m, 1)

m+2−−−→ (1, 4)
l+2−−→ (l + 1, 2)

l+1−−→ (1, 3)
l+2−−→ (l + 1, 1)

l+2−−→ (2, 4)
l+2−−→

(l + 2, 2)
l+1−−→ (3, 4)

l+2−−→ (l + 3, 2)
l+2−−→ (2, 3)

l+2−−→ (l + 2, 1)
l+1−−→ ...

l+2−−→ (l − 1, 4)
l+2−−→

(m− 1, 2)
l+1−−→ (l, 4)

l+2−−→ (m, 2)
l+2−−→ (l − 1, 3)

l+2−−→ (m− 1, 1) = w2m

m−1−−−→ w2m+1 = (1, 2)
l+2−−→ (l + 1, 4)

l+2−−→ (2, 1)
l+2−−→ (l + 2, 3)

l+1−−→ (2, 2)
l+2−−→ (l + 2, 4)

l+2−−→

(3, 1)
l+2−−→ (l + 3, 3)

l+1−−→ ...
l+2−−→ (l, 1)

l+2−−→ (m, 3)
l+2−−→ (l, 2)

l+2−−→ (m, 4)
m+2−−−→ (1, 1)

l+2−−→

(l + 1, 3) = w4m

Above is the labeling pattern described for M(6, 4) .

Case 2: l is Even and k = 2.

Then we define f by the following blocks.

w1 = (l, 3)
l+2−−→ (m, 1)

m+2−−−→ (1, 4)
l+2−−→ (l + 1, 2)

l+1−−→ (1, 3)
l+2−−→ (l + 1, 1)

l+2−−→ (2, 4)
l+2−−→

(l + 2, 2)
l+1−−→ (3, 4)

l+2−−→ (l + 3, 2)
l+2−−→ (2, 3)

l+2−−→ (l + 2, 1)
l+1−−→ ...

l+2−−→ (l − 2, 3)
l+2−−→

(m− 2, 1)
l+1−−→ (l − 1, 3)

l+2−−→ (m− 1, 1)
l+2−−→ (l, 4)

l+2−−→ (m, 2) = w2m

m−1−−−→ w2m+1 = (1, 2)
l+2−−→ (l + 1, 4)

l+2−−→ (2, 1)
l+2−−→ (l + 2, 3)

l+1−−→ (2, 2)
l+2−−→ (l + 2, 4)

l+2−−→

(3, 1)
l+2−−→ (l + 3, 3)

l+1−−→ ...
l+1−−→ (l, 1)

l+2−−→ (m, 3)
l+2−−→ (l − 1, 2)

l+2−−→ (m − 1, 4)
l+1−−→ (l, 2)

l+2−−→

(m, 4)
m+2−−−→ (1, 1)

l+2−−→ (l + 1, 3) = w4m

Above is the labeling pattern described for M(8, 4) .
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Case 3: l is Odd and k ≥ 4 is Even.

Then we define f by the following blocks.

w1 = (l, k+ 1)
l+k−−→ (m, 1)

m+n−2−−−−−→ (1, n)
l+k−−→ (l+ 1, k)

l+k−1−−−−→ (1, n− 1)
l+k−−→ (l+ 1, k− 1)

l+k−−→

(2, n)
l+k−−→ (l+2, k)

l+k−1−−−−→ (3, n)
l+k−−→ (l+3, k)

l+k−−→ (2, n−1)
l+k−−→ (l+2, k−1)

l+k−−→ (1, n−2)
l+k−−→

(l+1, k−2)
l+k−1−−−−→ (1, n−3)

l+k−−→ (l+1, k−3)
l+k−−→ (2, n−2)

l+k−−→ (l+2, k−2)
l+k−−→ (3, n−1)

l+k−−→

(l+ 3, k−1)
l+k−−→ (4, n)

l+k−−→ (l+ 4, k)
l+k−1−−−−→ ...

l+k−−→ (1, k+ 2)
l+k−−→ (l+ 1, 2)

l+k−−→ (1, k+ 1)
l+k−−→

(l+1, 1)
l+k−−→ (2, k+2)

l+k−−→ (l+2, 2)
l+k−−→ ... ... ...

l+k−−→ (l−k+1, k+1)
l+k−−→ (m−k+1, 1)

l+k−1−−−−→

(l − k + 2, k + 1)
l+k−−→ (m − k + 2, 1)

l+k−−→ (l − k + 3, k + 2)
l+k−−→ (m − k + 3, 2)

l+k−−→ ...
l+k−−→

(l, n−1)
l+k−−→ (m, k−1)

l+k−1−−−−→ (l, n−2)
l+k−−→ (m, k−2)

l+k−−→ (l−1, n−3)
l+k−−→ (m−1, k−3)

l+k−−→

...
l+k−−→ (l, k+3)

l+k−−→ (m, 3)
l+k−1−−−−→ (l, k+2)

l+k−−→ (m, 2)
l+k−−→ (l−1, k+1)

l+k−−→ (m−1, 1) = wkm

m+k−3−−−−−→ wkm+1 = (1, k)
l+k−−→ (l + 1,m)

n+l−2−−−−→ (2, 1)
l+k−−→ (l + 2, k + 1)

l+k−−→ (1, 2)
l+k−−→

(l + 1, k + 2)
l+k−1−−−−→ (1, 3)

l+k−−→ (l + 1, k + 3)
l+k−−→ (2, 2)

l+k−−→ (l + 2, k + 2)
l+k−−→ (3, 1)

l+k−−→

(l+ 3, k+ 1)
l+k−−→ (2, k+ 2)

l+k−1−−−−→ (4, 1)
l+k−−→ (l+ 4, k+ 1)

l+k−1−−−−→ (3, 2)
l+k−−→ (l+ 3, k+ 2)

l+k−−→

...
l+k−−→ (2, k−1)

l+k−−→ (l+2, n−1)
l+k−1−−−−→ (2, k)

l+k−−→ (l+2, n)
l+k−−→ (3, k−1)

l+k−−→ (l+3, n−1)
l+k−−→

(4, k − 2)
l+k−−→ (l + 4, n − 2)

l+k−−→ ... ... ...
l+k−1−−−−→ (l − k + 1, k)

l+k−−→ (m − k + 1, n)
l+k−−→

(l−k+ 2, k−1)
l+k−−→ (m−k+ 2, n−1)

l+k−−→ ...
l+k−−→ (l−1, k)

l+k−−→ (m−1, n)
l+k−−→ (l, k−1)

l+k−−→

(m,n− 1)
l+k−1−−−−→ (k, l)

l+k−−→ (m,n)
m+n−2−−−−−→ (1, 1)

l+k−−→ (l + 1, k + 1) = wmn

Above is the labeling pattern described for M(10, 8).

Case 4: l is Even and k ≥ 4 is Even.

Then we define f by the following blocks.
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w1 = (l, k+ 1)
l+k−−→ (m, 1)

m+n−2−−−−−→ (1, n)
l+k−−→ (l+ 1, k)

l+k−1−−−−→ (1, n− 1)
l+k−−→ (l+ 1, k− 1)

l+k−−→

(2, n)
l+k−−→ (l+2, k)

l+k−1−−−−→ (3, n)
l+k−−→ (l+3, k)

l+k−−→ (2, n−1)
l+k−−→ (l+2, k−1)

l+k−−→ (1, n−2)
l+k−−→

(l+1, k−2)
l+k−1−−−−→ (1, n−3)

l+k−−→ (l+1, k−3)
l+k−−→ (2, n−2)

l+k−−→ (l+2, k−2)
l+k−−→ (3, n−1)

l+k−−→

(l+ 3, k−1)
l+k−−→ (4, n)

l+k−−→ (l+ 4, k)
l+k−1−−−−→ ...

l+k−−→ (1, k+ 2)
l+k−−→ (l+ 1, 2)

l+k−−→ (1, k+ 1)
l+k−−→

(l+1, 1)
l+k−−→ (2, k+2)

l+k−−→ (l+2, 2)
l+k−−→ ... ... ...

l+k−1−−−−→ (l−k+1, k+1)
l+k−−→ (m−k+1, 1)

l+k−−→

(l−k+2,+2)
l+k−−→ (m−k+2, 2)

l+k−−→ ...
l+k−−→ (l, n)

l+k−−→ (m, k)
l+k−−→ (l, n−1)

l+k−−→ (m, k−1)
l+k−−→

(l − 1, n − 2)
l+k−−→ (m − 1, k − 2)

l+k−−→ ...
l+k−−→ (l, n − 2)

l+k−−→ (m, k − 2)
l+k−−→ (l, n − 3)

l+k−−→

(m, k − 3)
l+k−−→ ...

l+k−−→ (l − 2, k + 1)
l+k−−→ (m − 2, 1)

l+k−1−−−−→ (l − 1, k + 1)
l+k−−→ (m − 1, 1)

l+k−−→

(l, k + 2)
l+k−−→ (m, 2) = wkm

m+k−3−−−−−→ wkm+1 = (1, k)
l+k−−→ (l + 1,m)

n+l−2−−−−→ (2, 1)
l+k−−→ (l + 2, k + 1)

l+k−−→ (1, 2)
l+k−−→

(l + 1, k + 2)
l+k−1−−−−→ (1, 3)

l+k−−→ (l + 1, k + 3)
l+k−−→ (2, 2)

l+k−−→ (l + 2, k + 2)
l+k−−→ (3, 1)

l+k−−→

(l+ 3, k+ 1)
l+k−−→ (2, k+ 2)

l+k−1−−−−→ (4, 1)
l+k−−→ (l+ 4, k+ 1)

l+k−1−−−−→ (3, 2)
l+k−−→ (l+ 3, k+ 2)

l+k−−→

...
l+k−−→ (2, k−1)

l+k−−→ (l+2, n−1)
l+k−1−−−−→ (2, k)

l+k−−→ (l+2, n)
l+k−−→ (3, k−1)

l+k−−→ (l+3, n−1)
l+k−−→

(4, k − 2)
l+k−−→ (l + 4, n− 2)

l+k−−→ ... ... ...
l+k−−→ (l − k + 1, k)

l+k−−→ (m − k + 1, n)
l+k−−→ ...

l+k−1−−−−→

(l, k − 1)
l+k−−→ (m,n − 1)

l+k−−→ (l − 1, k)
l+k−−→ (m − 1, n)

l+k−1−−−−→ (l, k)
l+k−−→ (m,n)

m+n−2−−−−−→

(1, 1)
l+k−−→ (l + 1, k + 1) = wmn

Above is the labeling pattern described for M(12, 8) .

Case 5: l is Odd and k is Odd.

Then we define f by the following blocks.
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w1 = (l, k+ 1)
l+k−−→ (m, 1)

m+n−2−−−−−→ (1, n)
l+k−−→ (l+ 1, k)

l+k−1−−−−→ (1, n− 1)
l+k−−→ (l+ 1, k− 1)

l+k−−→

(2, n)
l+k−−→ (l+2, k)

l+k−1−−−−→ (3, n)
l+k−−→ (l+3, k)

l+k−−→ (2, n−1)
l+k−−→ (l+2, k−1)

l+k−−→ (1, n−2)
l+k−−→

(l+1, k−2)
l+k−1−−−−→ (1, n−3)

l+k−−→ (l+1, k−3)
l+k−−→ (2, n−2)

l+k−−→ (l+2, k−2)
l+k−−→ (3, n−1)

l+k−−→

(l+3, k−1)
l+k−−→ (4, n)

l+k−−→ (l+4, k)
l+k−1−−−−→ ...

l+k−−→ (1, k+1)
l+k−−→ (l+1, 1)

l+k−1−−−−→ (2, k+1)
l+k−−→

(l+2, 1)
l+k−−→ (3, k+2)

l+k−−→ (l+3, 2)
l+k−−→ ... ... ...

l+k−−→ (l−k+1, k+1)
l+k−−→ (m−k+1, 1)

l+k−1−−−−→

(l−k+2, k+1)
l+k−−→ (m−k+2, 1)

l+k−−→ (l−k+3, k+2)
l+k−−→ (m−k+3, 2)

l+k−−→ ...
l+k−−→ (l, n−1)

l+k−−→

(m, k − 1)
l+k−1−−−−→ (l, n − 2)

l+k−−→ (m, k − 2)
l+k−−→ (l − 1, n − 3)

l+k−−→ (m − 1, k − 3)
l+k−−→ ...

l+k−−→

(l− 2, k+ 1)
l+k−−→ (m− 2, 1)

l+k−−→ (l− 1, k+ 1)
l+k−−→ (m− 1, 1)

l+k−−→ (l, k+ 2)
l+k−−→ (m, 2) = wkm

m+k−3−−−−−→ w2m+1 = (1, k)
l+k−−→ (l + 1, n)

n+l−2−−−−→ (2, 1)
l+k−−→ (l + 2, k + 1)

l+k−−→ (1, 2)
l+k−−→ (l +

1, k+ 2)
l+k−1−−−−→ (1, 3)

l+k−−→ (l+ 1, k+ 3)
l+k−−→ (2, 2)

l+k−−→ (l+ 2, k+ 2)
l+k−−→ (3, 1)

l+k−−→ (l+ 3, k+

1)
l+k−1−−−−→ (4, 1)

l+k−−→ (l + 4, k + 1)
l+k−−→ (3, 2)

l+k−−→ (l + 3, k + 2)
l+k−−→ ...

l+k−−→ (1, k − 1)
l+k−−→

(l+1, n−1)
l+k−−→ (2, k−1)

l+k−−→ (l+2, n−1)
l+k−−→ (3, k−2)

l+k−−→ (l+3, n−2)
l+k−−→ (4, k−3)

l+k−−→

(l + 4, n − 3)
l+k−−→ ... ... ...

l+k−1−−−−→ (l − k + 1, k)
l+k−−→ (m − k + 1, n)

l+k−−→ (l − k + 2, k − 1)
l+k−−→

(m − k + 2, n − 1)
l+k−−→ ...

l+k−−→ (l, k − 2)
l+k−−→ (m,n − 2)

l+k−1−−−−→ (l, k − 1)
l+k−−→ (m,n − 1)

l+k−−→

(l − 1, k)
l+k−−→ (m− 1, n)

l+k−1−−−−→ (l, k)
l+k−−→ (m,n)

m+n−2−−−−−→ (1, 1)
l+k−−→ (l + 1, k + 1) = wmn

Above is the labeling pattern described for M(10, 6) .

Case 6: l is Even and k is Odd.

Then we define f by the following blocks.
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w1 = (l, k+ 1)
l+k−−→ (m, 1)

m+n−2−−−−−→ (1, n)
l+k−−→ (l+ 1, k)

l+k−1−−−−→ (1, n− 1)
l+k−−→ (l+ 1, k− 1)

l+k−−→

(2, n)
l+k−−→ (l + 2, k)

l+k−1−−−−→ (3, n)
l+k−−→ (l + 3, k)

l+k−−→ (2, n − 1)
l+k−−→ (l + 2, k − 1)

l+k−−→

(1, n−2)
l+k−−→ (l+1, k−2)

l+k−1−−−−→ (1, n−3)
l+k−−→ (l+1, k−3)

l+k−−→ (2, n−2)
l+k−−→ (l+2, k−2)

l+k−−→

(3, n−1)
l+k−−→ (l+3, k−1)

l+k−−→ (4, n)
l+k−−→ (l+4, k)

l+k−1−−−−→ ...
l+k−−→ (1, k+1)

l+k−−→ (l+1, 1)
l+k−1−−−−→

(2, k + 1)
l+k−−→ (l + 2, 1)

l+k−−→ (3, k + 2)
l+k−−→ (l + 3, 2)

l+k−−→ ... ... ...
l+k−1−−−−→ (l − k + 1, k + 1)

l+k−−→

(m − k + 1, 1)
l+k−−→ (l − k + 2, k + 2)

l+k−−→ (m − k + 2, 2)
l+k−−→ ...

l+k−−→ (l, n)
l+k−−→ (m, k)

l+k−1−−−−→

(l, n − 1)
l+k−−→ (m, k − 1)

l+k−−→ (l − 1, n − 2)
l+k−−→ (m − 1, k − 2)

l+k−−→ ...
l+k−−→ (l, k + 3)

l+k−−→

(m, 3)
l+k−1−−−−→ (l, k + 2)

l+k−−→ (m, 2)
l+k−−→ (l − 1, k + 1)

l+k−−→ (m− 1, 1) = wkm

m+k−3−−−−−→ w2m+1 = (1, k)
l+k−−→ (l+ 1, n)

n+l−2−−−−→ (2, 1)
l+k−−→ (l+ 2, k+ 1)

l+k−−→ (1, 2)
l+k−−→ (l+ 1, k+

2)
l+k−1−−−−→ (1, 3)

l+k−−→ (l+1, k+3)
l+k−−→ (2, 2)

l+k−−→ (l+2, k+2)
l+k−−→ (3, 1)

l+k−−→ (l+3, k+1)
l+k−1−−−−→

(4, 1)
l+k−−→ (l+4, k+1)

l+k−−→ (3, 2)
l+k−−→ (l+3, k+2)

l+k−−→ ...
l+k−−→ (1, k−1)

l+k−−→ (l+1, n−1)
l+k−−→

(2, k−1)
l+k−−→ (l+2, n−1)

l+k−−→ (3, k−2)
l+k−−→ (l+3, n−2)

l+k−−→ (4, k−3)
l+k−−→ (l+4, n−3)

l+k−−→

... ... ...
l+k−−→ (l − k + 1, k)

l+k−−→ (m − k + 1, n)
l+k−1−−−−→ (l − k + 2, k)

l+k−−→ (m − k + 2, n)
l+k−−→

(l−k+3, k−1)
l+k−−→ (m−k+3, n−1)

l+k−−→ ...
l+k−1−−−−→ (l−1, k)

l+k−−→ (m−1, n)
l+k−−→ (l, k−1)

l+k−−→

(m,n− 1)
l+k−−→ (l, k)

l+k−−→ (m,n)
m+n−2−−−−−→ (1, 1)

l+k−−→ (l + 1, k + 1) = wmn

Above is the labeling pattern described for M(8, 6) .

In each block, let the quantity above each arrow indicate the distance between the two consec-

utive vertices. Let f : V (G)→ {0, 1, 2, ...} be a function such that f(w1) = 0 and

f(wi+1)− f(wi) =

 m+ n− 1− d(wi+1, wi) if 1 ≤ i ≤ mn− 1 unless i = 2 or mn− 2;

m+ n− d(wi+1, wi) if i = 2 or mn− 2.

CLAIM: f is a radio labeling of G.
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To prove this, we show that for all 1 ≤ i ≤ mn− 2, we have

f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) for any j ≥ i+ 2.

By the same justification in the previous section, we have

f(wj)− f(wi) = fj−1 + fj−2 + ...+ fi+1 + fi.

We make the following observations about the distances of jumps occurring between wi and wj .

1. The jumps in the labeling pattern are all of length l+ k and l+ k− 1 except those from a

vertex in the set {w2, wkm, wkm+2, wmn−2}.

(a) Jumps from vertices in {w2, wmn−2} are of length m + n − 2, since these jumps are

between antipodal vertices. There are 2 jumps of length m + n − 2 in the labeling

pattern.

(b) The jump from wkm is of length m + k − 3. Since m ≥ 6 by assumption, we have

m+ k − 3 ≥ l + k

(c) The jump from wkm+2 is of length n + l − 2. Since n ≥ 4 by assumption, we have

n+ l − 2 ≥ l + k.

2. The jumps of length l + k − 1 are all from vertices in the right region of G and have a

one-to-one correspondence with the vertices wj in the left region such that wj and wj+2

are adjacent. Quadrant II and Quadrant III each have (l − 1) + (k − 1) − 1 = l + k − 3

such vertices. Hence, there are 2l + 2k − 6 = m + n − 6 vertices wj in V (G) such that

d(wj , wj+1) = l + k − 1.

Let j = i+p, where p ≥ 2. We observe 3 cases, using distances indicated in the labeling pattern

for f for reference.

CASE 1: p = 2.

We examine five different cases when j = i+ 2.

Subcase 1a: i = 1, 2,mn− 3, or mn− 2. Then according to the labeling pattern, d(wj , wi) =

l + k − 2.
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=⇒ f(wj)− f(wi) = 2(m+ n− 1) + 1− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) +m+ n− (m+ n− 2)− (l + k)

= (m+ n− 1) + 2− (l + k)

= (m+ n− 1)− (l + k − 2)

= (m+ n− 1)− d(wj , wi).

(79)

Subcase 1b: i = km+ 1 or km+ 2. Then according to the labeling pattern, d(wj , wi) = k.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) +m+ n− 1− (l + k)− (n+ l − 1)

= (m+ n− 1) + 2− (l + k)

= (m+ n− 1)− k

= (m+ n− 1)− d(wj , wi).

(80)

Subcase 1c: i = km. Then according to the labeling pattern, d(wj , wi) = n+ l − 3.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) +m+ n− 1− (m+ k − 3)− (l + k)

= (m+ n− 1)− (l − 2)

> (m+ n− 1)− (n+ l − 3) since n > 1

= (m+ n− 1)− d(wj , wi).

(81)

Subcase 1d: i = km− 1. Then according to the labeling pattern, d(wj , wi) = l − 1.

=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

= (m+ n− 1) +m+ n− 1− (l + k)− (m+ k − 3)

= (m+ n− 1)− (l − 2)

> (m+ n− 1)− (l − 1)

= (m+ n− 1)− d(wj , wi).

(82)

Subcase 1e: i /∈ {1, 2, km − 1, km, km + 1, km + 2,mn − 2,mn − 2}. Then according to the

labeling pattern, d(wj , wi) ≤ 2.
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=⇒ f(wj)− f(wi) = 2(m+ n− 1)− d(wi, wi+1)− d(wi+1, wi+2)

≥ (m+ n− 1) +m+ n− 1− (l + k)− (l + k)

= (m+ n− 1)− 1

≥ (m+ n− 1)− d(wj , wi) since d(wj , wi) ≥ 1.

(83)

Hence, f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) whenever j = i+ 2.

CASE 2: p = 3.

We examine five different cases when j = i+ 2.

Subcase 2a: i = 1, 2,mn− 3, or mn− 4.

=⇒ f(wj)− f(wi) = 3(m+ n− 1) + 1−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1) + 1−
j−1∑
t=i

d(wt, wt+1)

≥ (m+ n− 1) + 2(m+ n− 1) + 1− [2(l + k) + (m+ n− 2)]

= (m+ n− 1) + 2(m+ n− 1) + 1− [2m+ 2n− 2]

= (m+ n− 1) + 1

> (m+ n− 1)− d(wj , wi).

(84)

Subcase 2b: i = km− 2 or km− 1.

=⇒ f(wj)− f(wi) = 3(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)− [2(l + k) + (m+ k − 3)]

= (m+ n− 1) + 2(m+ n− 1)− (2m+ 3k − 3)

= (m+ n− 1) + (k + 1)

> (m+ n− 1)− d(wj , wi).

(85)
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Subcase 2c: i = km.

=⇒ f(wj)− f(wi) = 3(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)− [(m+ k − 3) + (l + k) + (n+ l − 2)]

= (m+ n− 1) + 2(m+ n− 1)− (2m+ 2n− 5)

= (m+ n− 1) + 3

> (m+ n− 1)− d(wj , wi).

(86)

Subcase 2d: i = km+ 1 or km+ 2.

=⇒ f(wj)− f(wi) = 3(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)− [2(l + k) + (n+ l − 2)]

= (m+ n− 1) + 2(m+ n− 1)− (3l + 2n− 2)

= (m+ n− 1) + l

> (m+ n− 1)− d(wj , wi).

(87)

Subcase 2e: i /∈ {1, 2, km− 2, km− 1, km, km+ 1, km+ 2,mn− 4,mn− 3}.

=⇒ f(wj)− f(wi) = 3(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + 2(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

≥ (m+ n− 1) + 2(m+ n− 1)− 3(l + k)

= (m+ n− 1) + (l + k − 2)

> (m+ n− 1)− d(wj , wi).

(88)

Hence, f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) whenever j = i+ 3.
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CASE 3: p ≥ 4.

Subcase 3a: i ≤ 2 and j ≥ mn− 1. So p ≥ mn− 3.

In this subcase,

j−1∑
t=i

d(wt, wt+1) ≤ p(l + k) + [(m+ k − 3)− (l + k)] + [(n+ l − 2)− (l + k)]

+ 2[(m+ n− 2)− (l + k)]

= p(l + k) + (l − 3) + (k − 2) + 2(l + k − 2)

= p(l + k) + 3l + 3k − 9.

(89)

=⇒ f(wj)− f(wi) = p(m+ n− 1) + 2−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + (p− 1)(m+ n− 1) + 2−
j−1∑
t=i

d(wt, wt+1)

≥ (m+ n− 1) + (p− 1)(m+ n− 1) + 2− [p(l + k) + 3(l + k − 3)]

= (m+ n− 1) + pl + pk − p−m− n− 3l − 3k + 12

= (m+ n− 1) + (p− 3)(l + k)− 2(l + k)− p+ 12

= (m+ n− 1) + (l + k)(p− 5)− p+ 12

≥ (m+ n− 1) + 5(p− 5)− p+ 12 since l ≥ 3 and p ≥ mn− 3 ≥ 21 > 5

= (m+ n− 1) + 4p− 13

≥ (m+ n− 1) + 71

> m+ n− 1− d(wj , wi).

(90)

Subcase 3b: i > 2 or j < mn− 1.

In this subcase,

j−1∑
t=i

d(wt, wt+1) ≤ p(l + k) + [(m+ k − 3)− (l + k)] + [(n+ l − 2)− (l + k)]

+ [(m+ n− 2)− (l + k)]

= p(l + k) + (l − 3) + (k − 2) + (l + k − 2)

= p(l + k) +m+ n− 7.

(91)
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=⇒ f(wj)− f(wi) ≥ p(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

= (m+ n− 1) + (p− 1)(m+ n− 1)−
j−1∑
t=i

d(wt, wt+1)

≥ (m+ n− 1) + (p− 1)(m+ n− 1)− [p(l + k) +m+ n− 7]

= (m+ n− 1) + pm+ pn− p− 2m− 2n− pl − pk + 8

= (m+ n− 1) + (p− 2)(m+ n)− p(l + k)− p+ 8

= (m+ n− 1) + (2p− 4)(l + k)− p(l + k)− p+ 8

= (m+ n− 1) + (p− 4)(l + k)− p+ 8.

(92)

1. If p = 4, then f(wj)− f(wi) ≥ (m+ n− 1) + 0 + 4 > m+ n− 1− d(wj , wi).

2. If p > 4,then f(wj)− f(wi) ≥ (m+ n− 1) + (p− 4)(5)− p+ 8 = (m+ n− 1) + 4p− 12 >

m+ n− 1− d(wj , wi).

Hence, f(wj)− f(wi) ≥ m+ n− 1− d(wj , wi) whenever j = i+ p, where p ≥ 4.

By Cases 1, 2, and 3, we know that f is a radio labeling of G, proving our claim.

From direct calculation, there are five possible distances between consecutively labeled vertices,

namely l + k, l + k − 1, m + k − 3, n + l − 2, and m + n − 2, with the number of occurrences

mn−m− n+ 1, m+ n− 6, 1, 1, and 2, respectively.
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So span(f) = (mn− 1)(m+ n− 1)−
mn−1∑
i=1

d(wi, wi+1)

= (mn− 1)(m+ n− 1) + 2− [(l + k)(mn−m− n+ 1) + (l + k − 1)(m+ n− 6) + (m+ k − 3)

+ (n+ l − 2) + (m+ n− 2)(2)]

= (mn− 1)(m+ n− 1) + 2−
[(

m+ n

2

)
(mn−m− n+ 1) +

(
m+ n− 2

2

)
(m+ n− 6)

]
−
[(

2m+ n− 6

2

)
+

(
2n+m− 4

2

)
+

(
4m+ 4n− 8

2

)]
= (mn− 1)(m+ n− 1) + 2− 1

2
[(m+ n)(mn−m− n+ 1) + (m+ n− 2)(m+ n− 6)]

− 1

2
(7n+ 7m− 18)

= (mn− 1)(m+ n− 1) + 2− 1

2
[(m2n+mn2 − 7m− 7n+ 12) + (7m+ 7n− 18)]

= (m2n+mn2 −mn−m− n+ 1) + 2− 1

2
(m2n+mn2 − 6)

=
1

2
(m2n+mn2 − 2mn− 2m− 2n) + 6.

(93)

Therefore, rn(G) ≤ 1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6, since f is a radio labeling of G with

this span.

Above is the optimal radio labeling determined by the labeling pattern described above for

M(8.6). The radio number of M(8, 6) is 280.

66



Theorem 5.4. Let G = M(m,n), where m,n ≥ 3. Then

rn(G) =


1
2 (m2n+mn2 − 2mn−m− 2n) + 2 if m is even and n is odd;

1
2 (m2n+mn2 − 2mn−m− n) + 2 if m,n are odd;

1
2 (m2n+mn2 − 2mn− 2m− 2n) + 6 if m,n are even.

Proof. This result follows immediately from Lemmas 4.2, 4.4, 4.7, 5.1, 5.2, and 5.3.
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6 A Survey of Relevant Results - Trees

Other results by prominent researchers in the calculation of the radio number of various classes

of graphs have both motivated and concurred with the work of this thesis. Such results in trees

more notably include the radio number of spiders and level-wise regular trees.

6.1 Radio Number of Spiders

Definition 6.1. A tree is a connected acyclic graph.

The difficulty of determining the radio number of general trees is that its definition allows too

many variations in its structure. As seen in the proof for the lower bound of the radio number for

grids, determining a lower bound of the radio number for a graph requires calculating both its

diameter and the distances between consecutively labeled vertices of an optimal radio labeling,

all of which require more restrictions in the structure of the graph. Thus, we focus on specific

types of trees whose structures are far easier to characterize.

Definition 6.2. A spider is a tree T that contains at most one vertex of degree greater than

or equal to 3, called the center of T .

• If deg(v) ≤ 2 for all v ∈ V (T ), then T is a path, and the center of T is the middle vertex

of T if the order of T is odd and either of the middle vertices if the order of T is even.

• A leg of a spider is a path whose ends are the center and a leaf (a degree-one vertex) of

the spider. A spider with m legs (given m ≥ 2) is denoted by Sl1,l2,...,lm , where li ∈ N

is the length of the ith leg such that l1 ≥ l2 ≥ ... ≥ lm. The jth vertex of the ith leg is

denoted vi,j , the center is appropriately denoted v0,0, and the vertex set of the ith leg is

denoted Vi.

• The level of a vertex v, denoted L(v), is the distance from the center of T to v. So

L(vi,j) = j, where 1 ≤ i ≤ m and 0 ≤ j ≤ li.

Observation 6.1. From this definition, the following must be true for T = Sl1,l2,...,lm .

1. diam(T ) = l1 + l2.

2. V (T ) = V1 ∪ V2 ∪ ... ∪ Vm.

3. {v0,0} = V1 ∩ V2 ∩ ... ∩ Vm. In fact, Vi ∩ Vj = {v0,0} if 1 ≤ i < j ≤ m.
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4. |V (T )| = l1 + l2 + ...+ lm + 1.

In order to optimize the sum of distances between consecutive vertices in a radio labeling f , we

also note that the distance between two vertices vi,j and vi′,j′ can be characterized as follows.

d(vi,j , vi′,j′) =

 j + j′ if i 6= i′;

|j − j′| if i = i′.

Liu’s [4] initial strategy of ordering the vertices by increasing labels and using the summation

of n− 1 inequalities (where n = |V (G)|) as the span of a radio labeling f was used in this thesis

to prove the general lower bound of the radio number for general grid graphs. This strategy is

also used to find a general lower bound of the radio number of various other graphs that are

currently investigated, including paths and cycles in [6].

Also, in this thesis the preliminary concepts of level and displacement of vertices in a grid were

both inspired by Liu’s concept of the level of vertices in a spider (and a rooted tree in general).

Level and displacement were used in this thesis as an integral element of the proof of the lower

bound for the radio number of grids. These similar concepts characterize the distance from a

vertex to the “middle” of the graph in order to calculate and optimize the sum of the distances

between all |V (G)| − 1 pairs of consecutively labeled vertices.

To determine a general lower bound of the radio number for spiders and identify spiders that

meet this bound, Liu introduced some special notations and a sequence of short lemmas, which

we now prove in greater detail. Our arguments differ slightly in some areas, but the structure

of the proofs is consistent with the original source.

Definition 6.3. Let f be a radio labeling of G with the vertex ordering given by 0 = f(u0) <

f(u1) < ... < f(un−1). Then for 0 ≤ i ≤ n− 2,

xi = f(ui+1)− f(ui) + L(ui+1) + L(ui)− diam(G)− 1

where L(vi,j) = j. ui and ui+1 are consecutive vertices.
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Observation 6.2. The following are true for xi.

1. xi must be non-negative, since by definition f(ui+1)−f(ui) ≥ diam(G)+1−d(ui+1, ui) ≥

diam(G) + 1− [L(ui+1) + L(ui)].

2. xi measures a surplus of distances between consecutive vertices for a radio labeling f . If

xi = 0 and d(ui, ui+1) = L(ui) + L(ui+1), then the equality holds and ui and ui+1 are on

different legs.

3. If ui and ui+1 are on the same leg, then xi ≥ 2Min{L(ui+1), L(ui)}.

Lemma 6.1. Let G = Sl1,...lm . Say f : V (G) → {0, 1, 2, ...} satisfies f(u0) < f(u1) < ... <

f(un−1). Then f is a radio labeling of G if and only if the following two statements hold for

every set {ui, ui+1, ..., uj} of consecutive vertices, where 0 ≤ i < j ≤ n− 1.

1.
j−1∑
t=i

xt ≥ 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1).

2. If ui and uj are on the same leg, then

j−1∑
t=i

xt ≥ 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1) + 2Min{L(ui), L(uj)}.

Proof. Let G = Sl1,...lm . Say f : V (G) → {0, 1, 2, ...} satisfies f(u0) < f(u1) < ... < f(un−1).

( =⇒ ) : Suppose f is a radio labeling, so f(ui+1) − f(ui) ≥ diam(G) + 1 − d(ui+1, ui) for all

0 ≤ i ≤ n− 2. Thus, we have the following j − i equations.



xi = f(ui+1)− f(ui) + L(ui+1) + L(ui)− diam(G)− 1

xi+1 = f(ui+2)− f(ui+1) + L(ui+2) + L(ui+1)− diam(G)− 1

...

xj−2 = f(uj−1)− f(uj−2) + L(uj−1) + L(uj−2)− diam(G)− 1

xj−1 = f(uj)− f(uj−1) + L(uj) + L(uj−1)− diam(G)− 1
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Hence,

j−1∑
t=i

xt = f(uj)− f(ui) + 2

(
j−1∑
t=i+1

L(ut)

)
+ L(uj) + l(ui)− (j − i)(l1 + l2 + 1)

≥ (l1 + l2 + 1)− L(ui)− L(uj) + 2

(
j−1∑
t=i+1

L(ut)

)
+ L(ui) + L(uj)− (j − i)(l1 + l2 + 1)

= 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1), which proves (1).

(94)

Now if ui and uj are on the same leg, then d(ui, uj) = Max{L(ui), L(uj)}−Min{L(ui), L(uj)}.

Therefore,

j−1∑
t=i

xt = f(uj)− f(ui) + 2

(
j−1∑
t=i+1

L(ut)

)
+ L(uj) + L(ui)− (j − i)(l1 + l2 + 1)

≥ (l1 + l2 + 1)−Max{L(ui), L(uj)}+Min{L(ui), L(uj)}+ 2

(
j−1∑
t=i+1

L(ut)

)

+ L(ui) + L(uj)− (j − i)(l1 + l2 + 1)

= 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1) + 2Min{L(ui), L(uj)}, which proves (2).

(95)

(⇐): Suppose (1) and (2) hold for every set {ui, ui+1, ..., uj} of consecutive vertices, where

0 ≤ i < j ≤ n− 1. We must verify the inequality in the definition of radio labelings by observ-

ing two separate cases.

Case 1: ui and uj are on different legs, so d(ui, uj) = L(ui) + L(uj). By (1), we have

f(uj)− f(ui) =

j−1∑
t=i

xt − 2

(
j−1∑
t=i+1

L(ut)

)
− L(uj)− L(ui) + (j − i)(l1 + l2 + 1)

≥ 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1)− 2

(
j−1∑
t=i+1

L(ut)

)
− L(ui)− L(uj)

+ (j − i)(l1 + l2 + 1)

= (l1 + l2 + 1)− [L(ui) + L(uj)] = diam(G) + 1− d(ui, uj).

(96)

Case 2: ui and uj are on the same leg, so d(ui, uj) = Max{L(ui), L(uj)}−Min{L(ui), L(uj)}.
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Then by (2),

f(uj)− f(ui) =

j−1∑
t=i

xt − 2

(
j−1∑
t=i+1

L(ut)

)
− L(uj)− L(ui) + (j − i)(l1 + l2 + 1)

≥ 2

(
j−1∑
t=i+1

L(ut)

)
− (j − i− 1)(l1 + l2 + 1) + 2Min{L(ui), L(uj)}

+ 2

(
j−1∑
t=i+1

L(ut)

)
− L(ui)− L(uj) + (j − i)(l1 + l2 + 1)

= (l1 + l2 + 1)−Max{L(ui), L(uj)}+Min{L(ui), L(uj)}

= diam(G) + 1− d(ui, uj).

(97)

Thus, f is a radio labeling, which completes our proof of Lemma 6.1.

Notation: Let G = Sl1,l2,...,lm such that l1 − l2 ≥ 2.

1. Let z =
⌊
l1−l2−2

2

⌋
.

2. Let f be a radio labeling of G. For 0 ≤ j ≤ z, let tj be the integer such that utj = v1,l1−j ,

where utj denotes the tj
th vertex in the labeling sequence for f .

Lemma 6.2. Let f be a radio labeling for G = Sl1,l2,...,lm such that l1− l2 ≥ 2. Let n = |V (G)|.

1. If 1 ≤ tj ≤ n− 2 for some j = 0, 1, 2, ..., z, then

xtj−1 + xtj ≥ l1 − l2 − (2j + 1) ≥ 1.

2. If the first equality holds, then utj−1 and utj+1 are on different legs of G, unless one of

them is v0,0.

Proof. Suppose utj = v1,l1−j (where j = 0, 1, 2, ..., z) for some 1 ≤ tj ≤ n− 2. Consider the set

{utj−1, utj , utj+1} of consecutive vertices. Then L(utj ) = l1− j. By Lemma 6.1 and considering
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0 ≤ j ≤ z =
⌊
l1−l2−2

2

⌋
≤
(
l1−l2−2

2

)
and l1 − l2 ≥ 2, we obtain the following.

xtj−1 + xtj ≥ 2
(
L(utj )

)
− [(tj + 1)− (tj − 1)− 1](l1 + l2 + 1)

= 2(l1 − j)− (1)(l1 + l2 + 1)

= l1 − l2 − 2j − 1

≥ l1 − l2 − 2

(
l1 − l2 − 2

2

)
− 1

≥ l1 − l2 − (l1 − l2 − 2)− 1 = 1.

(98)

To prove the second statement, we argue by contraposition. Assume that utj−1 and utj+1 are

on the same leg and that neither of them are the center. Then by Lemma 6.1, we have

xtj−1 + xtj ≥ 2
(
L(utj )

)
− [(tj + 1)− (tj − 1)− 1](l1 + l2 + 1) + 2Min{L(utj−1), L(utj+1)}

> 2(l1 − j)− (1)(l1 + l2 + 1)

= l1 − l2 − 2j − 1.

(99)

The above inequality is strict because by assumption neither utj+1 nor utj−1 can be the center,

so Min{L(utj−1), L(utj+1)} must be positive. Thus, the proof for Lemma 6.2 is complete.

Lemma 6.3. If there exist j, j′ such that tj′ = tj + 1 (in other words, utj′ = utj+1, so v1,l1−j

and v1,l1−j′ are consecutive), then

xtj > 2(l1 − l2 − j′ − j − 1).

Proof. Assume that j, j′ are integers such that utj′ = utj+1. Since utj and utj+1 are both on

the longest leg, we have by Lemma 6.1

xtj ≥ 2

 tj∑
t=tj+1

L(ut)

− [(tj + 1)− tj − 1](l1 + l2 + 1) + 2Min{L(utj ), L(utj+1)}

= 2Min{L(utj ), L(utj+1)}

= 2Min{l1 − j, l1 − j′}

≥ 2(l1 − j − j′ − l2)

> 2(l1 − j − j′ − l2 − 1).

(100)
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The second inequality holds because l1− j ≥ l1− j− j′ and l1− j′ ≥ l1− j− j′. This completes

the proof of Lemma 6.3.

Lemma 6.4. Let f be a radio labeling of G = Sl1,l2,...,lm , where n = |V (G)|.

1. If one of the following two statements holds

(a) l1 − l2 ≤ 1; or

(b) l1 − l2 ≥ 2 and 1 ≤ tj ≤ n− 2 for all j = 1, 2, ..., z, then we have
n−2∑
i=0

xi ≥
⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
.

2. If l1 − l2 ≥ 2 and equality holds, then the following three statements must be true:

(a) For all 1 ≤ j ≤ z, utj−1 and utj+1 are on different legs unless one of them is the

center.

(b) For all 0 ≤ j < j′ ≤ z, v1,l1−j and v1,l1−j′ are not consecutive vertices.

(c) If i /∈ {tj : j = 0, 1, 2, ..., z} ∪ {tj − 1 : j = 0, 1, 2, ..., z}, then xi = 0.

Proof. If l1− l2 ≤ 1, then
⌊
l1−l2

2

⌋
= 0, so the result is trivially true (since xi ≥ 0 for all i). So we

assume that l1 − l2 ≥ 2 and 1 ≤ tj ≤ n− 2 for all j = 1, 2, ..., z. Let A = {tj : j = 0, 1, 2, ..., z}.

and B = {tj − 1 : j = 0, 1, 2, ..., z}. By Lemma 6.2 and 6.3 (and calculating arithmetic series),

we have

n−2∑
i=0

xi =
∑

t∈A∪B
xt +

∑
t/∈A∪B

xt ≥
∑

t∈A∪B
xt

≥ (l1 − l2)(z + 1)−
z∑
j=0

(2j + 1)

= (l1 − l2)(z + 1)− [1 + 3 + 5 + ...+ (1 + 2z)]

= (l1 − l2)(z + 1)− [1 + (2z + 1)](z + 1)

2

= (l1 − l2)(z + 1)− (z + 1)2

= (z + 1)(l1 − l2 − z − 1)

=

(⌊
l1 − l2 − 2

2

⌋
+ 1

)(
l1 − l2 − 1−

⌊
l1 − l2 − 2

2

⌋)
=

⌊
l1 − l2

2

⌋(
2l1 − 2l2 − 2

2
−
⌊
l1 − l2 − 2

2

⌋)
=

⌊
l1 − l2

2

⌋⌈
l1 − l2

2

⌉
.

(101)
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This proves the Part 1 of Lemma 6.4. To prove Part 2, notice that if l1 − l2 ≥ 2 and equality

holds, then (a) follows immediately from Lemma 6.2 and (b) follows immediately from the con-

trapositive of Lemma 6.3. Since xi is non-negative for all i, if for any i /∈ A∪B we have xi > 0,

then
∑

t/∈A∪B
xt > 0, which would contradict the assumed equality.

Thus our proof of Lemma 6.4 is complete.

Lemma 6.5. Let f be a radio labeling of a spider G = Sl1,l2,...,lm with the vertex ordering given

by 0 = f(u0) < f(u1) < ... < f(un−1). Then

2

(
n−2∑
i=1

L(ui)

)
+ L(u0) + L(un−1) ≤

m∑
k=1

lk(lk + 1)− 1.

Also, the equality holds if and only if {u0, un−1} = {v0,0, vt,1} for some 1 ≤ t ≤ m (in other

words, the first and last vertices in the labeling sequence are the center and one of its neighbors).

Proof. Let f be a radio labeling of a spider G = Sl1,l2,...,lm with the vertex ordering given by

0 = f(u0) < f(u1) < ... < f(un−1). Then

2

(
n−2∑
i=1

L(ui)

)
+ L(u0) + L(un−1) = 2

(
n−1∑
i=0

L(ui)

)
− L(u0)− L(un−1)

= 2

(
m∑
k=1

(1 + 2 + 3 + ...+ lk)

)
− L(u0)− L(un−1)

= 2

(
m∑
k=1

[
lk(lk + 1)

2

])
− L(u0)− L(un−1)

=

m∑
k=1

lk(lk + 1)− [L(u0) + L(un−1)]

≤
m∑
k=1

lk(lk + 1)− 1.

(102)

The final inequality holds because L(u0) +L(un−1) ≥ 0 + 1 = 1. Note that the equality holds if

and only if {L(u0), L(un−1)} = {0, 1} if and only if {u0, un−1} = {v0,0, vt,1} for some 1 ≤ t ≤ m

(in other words, the first and last vertices in the labeling sequence of f are the center and one

of its neighbors). This completes the proof for Lemma 6.5.
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With Lemmas 6.1, 6.2, 6.3, 6.4, 6.5, we prove a comprehensive theorem for determining a lower

bound of the radio numbers of spiders and characterizing radio labelings whose span match this

bound.

Recall: Let G = Sl1,l2,...,lm , where n = |V (G)|.

1. Given a radio labeling f of G, we assume that f(u0) = 0 and span(f) = f(un−1).

2. diam(G) = l1 + l2.

3. n = 1 +
m∑
k=1

lk.

Theorem 6.6. Let G = Sl1,l2,...,lm , where n = |V (G)|. Let f be a radio labeling of G. The

following statements must hold.

1. rn(G) ≥
m∑
k=1

lk(l1 + l2 − lk) +
⌈
l1−l2

2

⌉ ⌊
l1−l2

2

⌋
+ 1.

2. span(f) equals this bound if and only if all the following statements are true.

(a) {u0, un−1} = {v0,0, vs,1} for some 1 ≤ s ≤ m (in other words, the first and last

vertices in the labeling sequence of f are the center of G and one of its neighbors).

(b) If l1−l2 ≥ 2, then 1 ≤ tj ≤ n−2 for all 0 ≤ j ≤ z (in other words, neither first nor the

last vertex in the labeling sequence of f are within the set {v1,l1 , v1,l1−1, ..., v1,l1−z}).

(c) If l1 − l2 ≥ 2, then, xtj−1 + xtj = l1 − l2 − (2j + 1) for all 0 ≤ j ≤ z.

(d) If l1 − l2 ≥ 2, then for any 0 ≤ j ≤ z, utj−1 and utj+1 belong to different legs, unless

one of them is the center.

(e) If l1 − l2 ≤ 1, then xi = 0 for all 0 ≤ i ≤ n − 2. If l1 − l2 ≥ 2, then xi = 0 if

i /∈ {tj : j = 0, 1, ..., z} ∪ {tj − 1 : j = 0, 1, ..., z}.

Proof. Let f be a radio labeling of G = Sl1,l2,...,lm , where n = |V (G)|. To prove the first

statement, we write the following n− 1 equations by the definition of xi.

f(un−1)− f(un−2) = (l1 + l2 + 1)− L(un−1)− L(un−2) + xn−2

f(un−2)− f(un−3) = (l1 + l2 + 1)− L(un−2)− L(un−3) + xn−3

...

f(u1)− f(u0) = (l1 + l2 + 1)− L(u1)− L(u0) + x0
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From summing up these n− 1 equations and applying Lemmas 6.4 and 6.5, we have

span(f) = (l1 + l2 + 1)(n− 1)− 2

(
n−2∑
i=1

L(ui)

)
− L(u0)− L(un−1) +

n−2∑
i=0

xi

≥ (l1 + l2 + 1)

m∑
k=1

lk −
m∑
k=1

lk(lk + 1) + 1 +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋

=

m∑
k=1

[lk(l1 + l2 + 1)− lk(lk + 1)] + 1 +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋

=

m∑
k=1

lk(l1 + l2 − lk) +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
+ 1.

(103)

Notice that the second equality holds if and only if (a), (c), (d), and (e) all hold by Lemmas 6.2,

6.4, and 6.5. To show that (b) is necessary for equality, we prove the following claim.

CLAIM: If tj = 0 or tj = n − 1 for some j = 0, 1, ..., z, then span(f) >
m∑
k=1

lk(l1 + l2 −

lk) +
⌈
l1−l2

2

⌉ ⌊
l1−l2

2

⌋
+ 1.

Proof : We observe two cases.

CASE 1: There is exactly one value 0 ≤ j ≤ z such that utj ∈ {u0, un−1}. Then j fails to

satisfy the conditions of Lemma 6.2, so from the proof of of Lemma 6.4, we know

n−2∑
i=0

xi ≥
⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
− (l1 − l2 − 2j − 1).

Also, since L(utj ) = l1 − j, we know that L(u0) + L(un−1) ≥ l1 − j. Therefore,

span(f) = (l1 + l2 + 1)(n− 1)− 2

(
n−2∑
i=1

L(ui)

)
− L(u0)− L(un−1) +

n−2∑
i=0

xi

≥ (l1 + l2 + 1)

m∑
k=1

lk −
m∑
k=1

lk(lk + 1) + (l1 − j) +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
− (l1 − l2 − 2j − 1)

>

m∑
k=1

lk(l1 + l2 − lk) +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
+ 1.

(104)

CASE 2: There exist 0 ≤ j < j′ ≤ z such that {utj , utj′} = {u0, un−1}. Then j and j′ fail to
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satisfy the conditions of Lemma 6.2, so from the proof of of Lemma 6.4, we know

n−2∑
i=0

xi ≥
⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
− 2(l1 − l2 − j − j′ − 1).

Also, since L(utj ) = l1 − j and L(utj′ ) = l1 − j′, we know that L(u0) + L(un−1) ≥ (l1 − j) +

(l1 − j′) = 2l1 − j − j′. Therefore,

span(f) = (l1 + l2 + 1)(n− 1)− 2

(
n−2∑
i=1

L(ui)

)
− L(u0)− L(un−1) +

n−2∑
i=0

xi

≥ (l1 + l2 + 1)

m∑
k=1

lk −
m∑
k=1

lk(lk + 1) + (2l1 − j − j′) +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
− 2(l1 − l2 − j − j′ − 1)

>

m∑
k=1

lk(l1 + l2 − lk) +

⌈
l1 − l2

2

⌉⌊
l1 − l2

2

⌋
+ 1, proving the claim.

(105)

Thus, the proof for Theorem 6.6 is complete, and we have established a general lower bound for

the radio number of spiders and characterized radio labelings that achieve this bound.

Liu’s result [4] for the radio number of spiders is as follows.

Theorem 6.7. Let G = Sl1,l2,...,lm be a spider. If l1 = l2, then

rn(G) =


m∑
i=1

li(2l1 − li) + 1 if m ≥ 3 or l1 = 1;

m∑
i=1

li(2l1 − li) + 2 otherwise.

If l1 > l2, then rn(G) =
m∑
i=1

li(l1 + l2 − li) + d l1−l22 eb
l1−l2

2 c+ 1if and only if
m∑
i=2

li ≥ l1+l2−1
2 .
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Above is an optimal radio labeling for the spider S7,2,1,1,1,1. This spider achieves the lower

bound established in Theorem 6.6.

6.2 Radio Number of Level-Wise Regular Trees

A fundamental property of trees is that every tree T has a central element, depending on the

parity of diam(T ), the length of a longest path in T .

1. If diam(T ) is even, then T has a central vertex r ∈ V (T ), and we say L0 = {r}.

2. If diam(T ) is odd, then T has a central edge r′r′′ ∈ E(T ), and we say L0 = {r′, r′′}.

It is important to note that in the context of general trees T , the center of T is a vertex with

minimum eccentricity. That is not necessarily the case for the center v0,0 of a spider, which is

defined as the unique vertex with degree at least 3 (if such a vertex exists).

Halasz and Tuza provide the following definitions [1] of several special types of trees.

Definition 6.4. Let T be a tree with order n.

1. The level sets of T are the sets Li = {v ∈ V | d(u, L0) = i} for 1 ≤ i ≤ h = b 1
2diam(T )c,

where d(v, L0) denotes the minimum distance from v to an element of L0.
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2. An i-vertex is a vertex v ∈ Li, where 0 ≤ i ≤ h.

3. T is level-wise regular if all i−vertices have equal degree for each i = 0, 1, 2, ..., h, and this

common degree of i-vertices is denoted mi.

(a) If diam(T ) = 2h, then |L0| = 1, and we denote the tree uniquely determined by

(m0,m1, ...,mh−1) as T 1
m0,m1,...,mh−1

.

(b) If diam(T ) = 2h + 1, then |L0| = 2, and we denote the tree uniquely determined by

(m0,m1, ...,mh−1) as T 2
m0,m1,...,mh−1

.

4. A complete m-ary tree is a level-wise regular tree represented by m0 = m, mi = m + 1 if

1 ≤ i ≤ h− 1, and mh = 1.

5. An internally m-regular complete tree is a level-wise regular tree represented by mi = m

if 0 ≤ i ≤ h− 1 and mh = 1. So all vertices except leaves have degree m.

The radio number of complete m-ary trees was previously completely determined by Li, Mak,

and Zhou [3]. The radio number of (m + 1)-regular complete trees, as defined above, follows

from Halasz and Tuza’s formula [1] for the radio number of level-wise regular trees.

To prove this formula, we introduce the following definitions.

Definition 6.5. Let G be a graph. Let ~j = (j1, j2, ..., jd) be a d-tuple of integers such that

1 ≤ d ≤ diam(G).

1. The dth power of G, denoted Gd, is the graph such that

V (G) = V (Gd) and uv ∈ E(Gd) if and only if dG(u, v) ≤ d.

We denote the edge set of Gd by Ed.

2. The weight function wj : Ed → {j1, j2, ..., jd} is defined by

w~j(u, v) = ji if and only if dG(u, v) = i for all uv ∈ Ed.

Powers of graphs should not be confused with the Cartesian product of graphs. Although the

notation representations for both are identical, it is important to recognize the context under

which the graph is discussed to avoid confusion or ambiguity. In this subsection, the exponential

notation represents powers of graphs as defined above.
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Observation 6.3. Given a graph G with diameter d, if we set ji = d + 1 − i for i = 1, 2, ..., d

and define a weight function wj : Ed → {j1, j2, ..., jd} by w~j(u, v) = ji if and only if dG(u, v) = i

for all uv ∈ Ed, then a function f : V (G) → {0, 1, 2, ...} is a radio labeling if and only if it

satisfies

|f(u)− f(v)| ≥ w~j(u, v) for all uv ∈ Ed.

.

Definition 6.6. Given an understood ~j = (j1, j2, ..., jd) for a graph G, the weighted dth power

graph for G, denoted G(V,E,w) or Gdw, is the graph satisfying

V (Gdw) = V (G) , E(Gdw) = E(Gd), and w(u, v) = ji if and only if dG(u, v) = i.

For the graph G with diameter d, we henceforth take ~j = (j1, j2, ..., jd), where dG(u, v) = i and

ji = d+ 1− i for each 1 ≤ i ≤ d and u, v ∈ V (G).

Observation 6.4. By taking the above definition of ~j, Gdw is a complete graph with edge weights

w(u, v) = d+ 1− i, where i = dG(u, v) for all distinct u, v ∈ V (G).

Definition 6.7. Let G be a graph.

1. A Hamiltonian Path P of G is a path that spans V (G), i.e. P contains all vertices of G.

2. Suppose G has diameter d, and let w be a weight function on Ed. Then the weighted length

of a path P in Gdw is the sum of the weights of the edges in P .

Lemma 6.8. Let G be a graph. Then rn(G) is at least as large as the minimum weighted length

of a Hamiltonian Path in Gdw, where d = diam(G).

Proof. Let G be a graph with order n = |V (G)| and diameter d. Let f be a radio labeling

of G, so f is one-to-one. Let Gdw be the weighted power graph of G, so w(u, v) = d + 1 − i ,

where i = dG(u, v), for all distinct u, v ∈ V (G). Since f is one-to-one, f induces a unique linear
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ordering of V (G) given by

0 = f(u1) < f(u2) < ... < f(un−1) < f(un) = span(f).

From Observation 6.3, we know that f(uk+1)− f(uk) ≥ w(uk+1, uk) for all 1 ≤ k ≤ n− 1. This

produces the following n− 1 inequalities.



f(un)− f(un−1) ≥ w(un, un−1)

f(un−1)− f(un−2) ≥ w(un−1, un−2)

...

f(u3)− f(u2) ≥ w(u3, u2)

f(u2)− f(u1) ≥ w(u2, u1)

Thus, span(f) = f(un) ≥
n−1∑
k=1

w(uk+1, uk), where u1, u2, ..., un−1, un is the Hamiltonian Path in

Gdw corresponding to the f -ordering of V (G) = V (Gdw). Therefore, by definition of radio number,

rn(G) ≥ Min

{
n−1∑
t=1

w(vt+1, vt) : v1, v2, ..., vn is a Hamiltonian Path in Gdw

}
, which completes

the proof of Lemma 6.8.

It is important to remember that although a radio labeling f of G induces a Hamiltonian Path

v1, v2, ..., vn in Gdw that satisfies |f(vk+1) − f(vk)| ≥ w(vk+1, vk) for all 1 ≤ k ≤ n − 1, the

converse is not true. In other words, given a Hamiltonian Path v1, v2, ..., vn in Gdx, a function

f : V (G)→ {0, 1, ...} that satisfies |f(vk+1)− f(vk)| ≥ w~j(vk+1, vk) for all 1 ≤ k ≤ n− 1 is not

necessarily a radio labeling of G. This is because the Hamiltonian Path criterion only satisfies

the necessary inequality for every pair of consecutive vertices and not necessarily globally for

all distinct u, v ∈ V (G). Therefore, the above equality does not always hold.

Definition 6.8. Consider a directed graph T .

1. T is a tournament if there is exactly one directed edge connecting any two vertices.

2. A tournament T is transitive if adjacency is transitive in T ; in other words, if u v v and

v v w in T , then u v w in T .

Proposition 6.1. Let T be a tournament.

1. T has a Hamiltonian path.

2. T is transitive if and only if the Hamiltonian path in T is unique.
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Though there are several details and cases to consider in the proof of (2), a general sketch of

the argument is as follows:

1. (⇒): If T is transitive and yet contains two distinct Hamiltonian paths P1 and P2, then

by transitivity the first two vertices u and v that differ in the orderings of P1 and P2 will

necessarily be mutually adjacent, since both paths span T by definition. This violates the

requirements of a tournament.

2. (⇐): If T contains a unique Hamiltonian path v1, v2, ..., vn, then if we assume there is a

vertex vm that is incident to a vertex vk of smaller index (thus violating transitivity), then

the existence of this edge creates a second Hamiltonian path in T , a contradiction.

The importance of this proposition is that there must exist a bijection between the directed

Hamiltonian paths of Gdw and the transitive orientations of Gdw. Any transitive orientation of

Gdw therefore induces a unique Hamiltonian path.

Lemma 6.9. Let G be a graph with diameter d. Then rn(G) is equal to the smallest possible

weighted length of a longest directed path taken over all transitive orientations of Gdw.

Proof. Let G be a graph with order n and diameter d.

1. Let lT := max

{
m−1∑
i=1

w(ui+1, ui) : u1, u2, ..., um is a path in T

}
for each transitive orienta-

tion of T of Gdw.

2. Let M = min
{
lT : T is a transitive orientation of Gdw

}
.

We wish to show that rn(G) = M .

rn(G) ≤M : Let T be a transitive orientation of Gdw, and let v1, v2, ..., vn be the unique Hamil-

tonian path in T . We show that rn(G) ≤ lT . Define a map f : V (G)→ {0, 1, 2, ...} recursively

by

f(vi) =

 0 if i = 1;

d+ 1 + max {f(vt)− d(vi, vt) : 1 ≤ t ≤ i− 1} if 2 ≤ i ≤ n.

Notice for all 1 ≤ j < i ≤ n, we have

d+ 1 + max {f(vt)− d(vi, vt) : 1 ≤ t ≤ i− 1} ≥ d+ 1 + f(vj)− d(vi, vj).
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Thus, for each 1 ≤ j < i ≤ n, by definition f satisfies f(vi) − f(vj) ≥ d + 1 − d(vi, vj), and so

f is a radio labeling of G. In fact, for each 2 ≤ i ≤ n equality is achieved for some ji < i, so

by backtracking we obtain a monotone decreasing sequence of labels of vertices that define a

directed path v1 = u1, u2, ..., um = vn (not necessarily Hamiltonian) from v1 to vn. By definition

of the weight function w on Ed, w(ui+1, ui) = d + 1 − d(ui+1, ui) for each 1 ≤ i ≤ m − 1. We

therefore have the following equations by the definition of f .



f(um)− f(um−1) = w(um, um−1)

f(um−1)− f(um−2) = w(um−1, um−2)

...

f(u3)− f(u2) = w(u3, u2)

f(u2)− f(u1) = w(u2, u1)

The weighted length of u1, u2, ..., um is
m−1∑
i=1

w(ui+1, ui) = f(um) = f(vn), so we have rn(G) ≤

f(vn) ≤ lT . Since T is an arbitrary transitive orientation of Gdw, we have rn(G) ≤M .

rn(G) ≥M : Let f : V (G)→ {0, 1, 2, ..., rn(G)} be an optimal radio labeling of G, so span(f) =

rn(G). Then f is necessarily one-to-one, and we can uniquely order the vertices v1, v2, ..., vn

such that

0 = f(v1) < f(v2) < ... < f(vn) = rn(G).

We construct a tournament by orienting the edges of Gdw from smaller index to larger index,

so vj v vi if and only if 1 ≤ j < i ≤ n. Since inequality is a transitive relation on natural

numbers, we know that adjacency so defined is a transitive relation on the vertices of Gdw. Thus,

this orientation T of Gdw is transitive and by definition induces the directed Hamiltonian path

v1, v2, ..., vn.

Now let P be a heaviest weighted directed path u1, u2, ..., um in T (not necessarily Hamiltonian),

so lT =
m−1∑
i=1

w(ui+1, ui). Since f is a radio labeling of G by assumption, we have f(ui+1) −

f(ui) ≥ d+ 1− d(ui+1, ui) = w(ui+1, ui) for all 1 ≤ i ≤ m− 1. We therefore have the following
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system of inequalities.



f(um)− f(um−1) ≥ w(um, um−1)

f(um−1)− f(um−2) ≥ w(um−1, um−2)

...

f(u3)− f(u2) ≥ w(u3, u2)

f(u2)− f(u1) ≥ w(u2, u1)

By summing up these inequalities, we have f(um) ≥
m−1∑
i=1

w(ui+1, ui) = lT . Since the largest

element of the codomain of f is rn(G), we know

rn(G) ≥ f(um) ≥
m−1∑
i=1

w(ui+1, ui) = lT ≥M.

Thus, rn(G) = M , which proves Lemma 6.9.

Notation: Given an h-tuple (m0,m1, ...,mh−1), we use the following notation for level-wise

regular trees.

T 1 = T 1
m0,m1,...,mh−1

and T 2 = T 2
m0,m1,...,mh−1

Theorem 6.10. Suppose h ≥ 1 and mi ≥ 2 for all 0 ≤ i ≤ h− 1.

1. If d = 2h, then rn(T 1) ≥ (d+ 1)(n− 1) + 1− 2
h∑
i=1

[
i ·m0

i−1∏
j=1

(mj − 1)

]
.

2. If d = 2h+ 1, then rn(T 2) ≥ d(n− 1)− 4
h∑
i=1

[
i ·

i−1∏
j=0

(mj − 1)

]
.

Proof. Suppose h ≥ 1 and mi ≥ 2 for all 0 ≤ i ≤ h− 1. Let d denote the diameter of the graph.

Consider two cases.

Case 1: d = 2h, so the center L0 of T 1 = T 1
m0,m1,...,mh−1

is a singleton. For each vertex v of

T 1, let α(v) := d(v, L0). Because T 1 is level-wise regular, vertices with equal level have equal

degree. Also, the center has exactly m0 children and each i-vertex (where 1 ≤ i ≤ h − 1) has

mi − 1 children. Thus, for each 1 ≤ i ≤ h, we have

|Li| = m0

i−1∏
j=1

(mj − 1).
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CLAIM: Let 0 ≤ i′ ≤ i′′ ≤ h. If v′ ∈ Li′ and v′′ ∈ Lv′′ , then d(v′, v′′) ≤ i′ + i′′.

To prove this claim, we consider two possibilities.

1. If v′ is on the path from v′′ to L0, then d(v′, v′′) = i′′ − i′ ≤ i′′ + i′, with equality holding

if and only if v′ ∈ L0.

2. If v′ is not on the path from v′′ to L0, then if w is the closest common ancestor of v′

and v′′, then d(v′, v′′) = d(v′, w) + d(w, v′′) ≤ i′ + i′′, with equality holding if and only if

w ∈ L0.

This proves the claim. By the claim, w(v′, v′′) ≥ d+ 1− d(v′, v′′) ≥ d+ 1− (i′ + i′′) in (T 1)dw.

We define a function l on V (T 1) by l(v) := h + 1
2 − α(v) = li, where v ∈ Li. Notice that

l(v) = d+1
2 − α(v), since d is even. Observe now that if P = v1, v2, ..., vn is a Hamiltonian path

in (T 1)dw, then for 1 ≤ j ≤ n− 1, we have

w(vj , vj+1) ≥ d+ 1− (α(vj) + α(vj+1))

=

[
h+

1

2
− α(vj)

]
+

[
h+

1

2
− α(vj+1)

]
= l(vj) + l(vj+1).

(106)

Thus, we have the following system of inequalities.



w(v1, v2) ≥ l(v1) + l(v2)

w(v2, v3) ≥ l(v2) + l(v3)

...

w(vn−2, vn−1) ≥ l(vn−2) + l(vn−1)

w(vn−1, vn) ≥ l(vn−1) + l(vn).

By summing up and noting that each l(vi) appears twice except for l(v1) and l(vn), we have

n−1∑
j=1

w(vj , vj+1) ≥ l(v1) +

n−1∑
j−2

l(vj) + l(vn) ≥ 2

n∑
j=1

l(vj)− l(v1)− l(vn). (107)
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We can now apply Lemma 6.8, from which we have

rn(T 1) ≥ Min


n−1∑
j=1

w(vj , vj+1) : v1, v2, ..., vn is a Hamiltonian path of (T 1)dw


≥ Min


n∑
j=1

2l(vj)− l(v1)− l(vn) : v1, v2, ..., vn is a Hamiltonian path of (T 1)dw


= Min


n∑
j=1

[d+ 1− 2α(vj)]− d− 1 + α(v1) + α(vn) : v1, ..., vn is Hamiltonian in (T 1)dw


=

n∑
j=1

[d+ 1− 2α(vj)]− d− 1 + 0 + 1

= n(d+ 1)− d− 2

n∑
j=1

α(vj)

= n(d+ 1)− d− 2

h∑
i=1

i|Li|

= (d+ 1)(n− 1) + 1− 2

h∑
i=1

i ·m0

i−1∏
j=1

(mj − 1)

 .
(108)

This completes the proof for Case 1.

Case 2: d = 2h, so the center L0 of T 2 = T 1
m0,m1,...,mh−1

contains exactly two adjacent vertices.

For each vertex v of T 2, let α(v) := d(v, L0). Because T 2 is also level-wise regular, vertices with

equal level have equal degree. Also, each of the two central vertices has exactly m0− 1 children

and each i-vertex (where 1 ≤ i ≤ h− 1) also has mi − 1 children. Thus, for each 1 ≤ i ≤ h, we

have

|Li| = 2

i−1∏
j=0

(mj − 1).

By the same argument as in Case 1 (and taking account the additional edge at level 0 in T 2,

we know if v′ ∈ Li′ and v′′ ∈ Li′′ , then d(v′, v′′) ≤ i′ + i′′ + 1. Thus in (T 2)dw, we know

w(v′, v′′) ≥ d+ 1− d(v′, v′′) ≥ d+ 1− (i′ + i′ + 1′) = d− (i′ + i′′).

As in Case 1, we define a function l on V (T 2) by l(v) := h+ 1
2 −α(v) = li, where v ∈ Li. Notice

that l(v) = d
2 − α(v), since d is odd. Observe now that if P = v1, v2, ..., vn is a Hamiltonian
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path in (T 2)dw, then for 1 ≤ j ≤ n− 1, we have

w(vj , vj+1) ≥ d− (α(vj) + α(vj+1))

= 2h+ 1− α(vj)− α(vj+1)

=

[
h+

1

2
− α(vj)

]
+

[
h+

1

2
− α(vj+1)

]
= l(vj) + l(vj+1).

(109)

Notice that although the parity of d alters the computations, the result is identical to our result

in Case 1. Thus, by summing up edge weights as in Case 1, we still obtain

n−1∑
j=1

w(vj , vj+1) ≥ 2

n∑
j=1

l(vj)− l(v1)− l(vn). (110)

By applying Lemma 6.8 again, we obtain

rn(T 2) ≥ Min


n−1∑
j=1

w(vj , vj+1) : v1, v2, ..., vn is a Hamiltonian path of (T 2)dw


≥ Min


n∑
j=1

2l(vj)− l(v1)− l(vn) : v1, v2, ..., vn is a Hamiltonian path of (T 2)dw


= Min


n∑
j=1

[d− 2α(vj)]− d+ α(v1) + α(vn) : v1, v2, ..., vn is Hamiltonian in (T 2)dw


=

n∑
j=1

[d− 2α(vj)]− d+ 0 + 0

= nd− 2

n∑
j=1

α(vj)− d

= d(n− 1)− 2

h∑
i=1

i|Li|

= d(n− 1)− 2

h∑
i=1

i · 2 i−1∏
j=0

(mj − 1)


= d(n− 1)− 4

h∑
i=1

i · i−1∏
j=0

(mj − 1)

 .
(111)

This completes the proof for Case 2.
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If we make a stronger assumption that mi ≥ 3 for all 0 ≤ i ≤ h − 1, then it is possible to

construct a radio labeling whose span meets the lower bound established in Theorem 6.10. This

will establish the radio number for all level-wise regular trees that meet this requirement.

Theorem 6.11. Suppose h ≥ 1 and mi ≥ 3 for all 0 ≤ i ≤ h− 1.

1. If d = 2h, then rn(T 1) = (d+ 1)(n− 1) + 1− 2
h∑
i=1

[
i ·m0 ·

i−1∏
j=1

(mj − 1)

]
.

2. If d = 2h+ 1, then rn(T 2) = d(n− 1)− 4
h∑
i=1

[
i ·

i−1∏
j=0

(mj − 1)

]
.

In other words, the equalities of Theorem 6.10 hold if mi ≥ 3 for all 0 ≤ i ≤ h− 1.

Proof. Suppose h ≥ 1 and mi ≥ 3 for all 1 ≤ i ≤ h− 1. Let d denote the diameter of the graph.

Consider two cases.

Case 1: Suppose d = 2h, so the center of T 1 is a single vertex. To prove equality for the radio

number of T 1, we must construct a radio labeling f of T 1 whose span meets the lower bound

established in Theorem 6.10. For each 1 ≤ i ≤ h− 1 and each vertex v in Li, we enumerate the

edges between v and its children from 0 to mi − 2. Mark the edges between L0 and its children

with integers from 0 to m0 − 1.

Now let v ∈ Li. There is a unique path from L0 to v since T 1 is a tree, so v can be uniquely

represented by the following i-tuple:

a(v) := (a0(v), a1(v), ..., ai−1(v))

where aj(v) denotes the number assigned to the edge between the jth and (j + 1)th levels on

the (v, L0)-path. Now for each 1 ≤ i ≤ h, define a map si : Li → Z by

si(v) := a0 + a1m0 + a2m0(m1 − 1) + ...+ ai−1m0(m1 − 1)...(mi−2 − 1).

If we let m′j =

 m0 if j = 0;

mj − 1 if 1 ≤ j ≤ h− 1
then we have si(v) =

i−1∑
k=0

[
ak(v) ·

k−1∏
j=0

m′j

]
.

Notice that for each i, si is a bijection between Li and the set {0, 1, 2, ..., |Li| − 1}. So each

si induces a unique ordering of the vertices in Li from smallest to largest si-value. Using the

ordering L0 → Lh → Lh−1 → ... → L1 of the levels of T 1 and listing the vertices within each
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level according the function si, we uniquely determine an ordering v1, v2, ..., vn−1, vn of V (T 1).

Now define a recursive map f : V (T 1)→ {0, 1, 2, ...} by

f(vi) :=

 0 if i = 0;

f(vi−1) + l(vi−1) + l(vi) if 1 ≤ i ≤ n

where l(v) := h+ 1
2 − d(v, L0). For convenience, denote d(v, L0) by α(v) for each v ∈ V (T 1).

By definition, l(v) ≥ 1
2 for all v ∈ V (T 1) and l(vi−1) + l(vi) = 2h + 1 − α(vi−1) − α(vi) =

d+ 1− α(vi−1)− α(vi) for all 1 ≤ i ≤ n. A critical observation now is that for any level i, any

|Li| consecutive vertices in

h⋃
k=i

Lk have mutually distinct ancestors in Li. Thus, if two vertices

vp, vq ∈
h⋃
k=i

Lk have a common ancestor z ∈ Li, then |p− q| ≥ |Li| =
i−1∏
j=0

m′j .

To verify that f satisfies the radio labeling inequality, let vp ∈ Li′ and vp+k ∈ Li′′ , where k ≥ 1.

Let z ∈ Li be the lowest common ancestor of vp and vp+k, so d(vp, vp+k) = i′ + i′′ − 2i and

{vp, vp+1, ..., vp+k} ⊆
h⋃
t=i

Lt based on the ordering defined on V (T 1). Then we have the following

system of k inequalities.



f(vp+k)− f(vp+k−1) = l(vp+k) + l(vp+k−1) ≥ l(vp+k) + 1
2

f(vp+k−1)− f(vp+k−2) = l(vp+k−1) + l(vp+k−2) ≥ 1
2 + 1

2 = 1

...

f(vp+2)− f(vp+1) = l(vp+2) + l(vp+1) ≥ 1
2 + 1

2 = 1

f(vp+1)− f(vp) = l(vp+1) + l(vp) ≥ 1
2 + l(vp).

By summing up these inequalities and taking into account the minimum values of k and mi for
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each 0 ≤ i ≤ h− 1, we have

f(vp+k)− f(vp) ≥ l(vp+k) + l(vp) + k − 1

=

(
h+

1

2
− i′

)
+

(
h+

1

2
− i′′

)
+ k − 1

≥ d+ 1− i′ − i′′ + |Li| − 1

= d+ 1− i′ − i′′ +m0

i−1∏
j=1

(mj − 1)− 1

≥ d+ 1− i′ − i′′ + 3 · 2i−1 − 1

≥ d+ 1− i′ − i′′ + 2i

= d+ 1− (i′ + i′′ − 2i)

= d+ 1− d(vp, vp+k).

(112)

Thus, f is a radio labeling of T 1 as claimed. Furthermore, using the standard telescoping

argument for calculating the span of radio labelings, we have by definition of f that

span(f) = f(vn) = (d+ 1)(n− 1)− 2

n∑
i=1

α(vi) + α(v1) + α(vn)

= (d+ 1)(n− 1)− 2

h∑
i=1

i ·m0 ·
i−1∏
j=1

(mj − 1)

+ 0 + 1

= (d+ 1)(n− 1) + 1− 2

h∑
i=1

i ·m0 ·
i−1∏
j=1

(mj − 1)

 .
(113)

This matches the lower bound for rn(T 1) found in Theorem 6.10, so Case 1 is proved.

Above is an optimal radio labeling for the level-wise regular tree T 1
3,4,3. Edges are marked and
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vertices are ordered as in the proof of Case 1 of Theorem 6.11. T 1
3,4,3 has a radio number 61.

Case 2: Suppose d = 2h+ 1, so the center of T 2 is contains two vertices. To prove equality for

the radio number of T 2, we must construct a radio labeling f of T 2 whose span meets the lower

bound established in Theorem 6.10.

Let e denote the central edge of T 2. Then T 2 \ e has two isomorphic level-wise regular compo-

nents, say T ′ and T ′′ with diameter 2h. The difference between the trees discussed in Case 1

and T ′ or T ′′ is that the central vertices of T ′ and T ′′ have degree m0 − 1, not m0.

To prove that rn(T 2) is bounded above by the lower bound established in Theorem 6.10, we

will establish an ordering v1, v2, ..., vn of V (T 2) such that the same recursive map f from Case 1

satisfies the required inequality for radio labelings between any two distinct vertices in V (T 2).

Our ordering will meet the following initial requirements.

1. {v1, vn} = L0, so α(v1) = α(vn) = 0.

2. The vertices in the labeling will alternate between T ′ and T ′′, beginning with T ′. Thus,

T ′ will contain all odd-indexed vertices, and T ′′ will contain all even-indexed vertices.

3. The levels of T ′ are ordered by L0 → Lh → Lh−1 → ...→ L2 → L1.

4. The levels of T ′′ are ordered by L1 → L2 → L3 → ... → Lh → L0, the reverse order of

levels in T ′.

For each 1 ≤ i ≤ h, let L′i denote V (T ′) ∩Li, and similarly let L′′i denote V (T ′′) ∩Li, so |L′i| =

|L′′i | = 1
2 |Li|. Analogous to Case 1, for each level i there are bijections s′i : L′i → {0, 1, ..., |L′i|−1}

and s′′i : L′i → {0, 1, ..., |L′′i | − 1} that when applied to each level of V (T 2) yield a cumulative

ordering v1, v3, v5, ...vn−1 of V (T ′) and a cumulative ordering v2, v4, ..., vn of V (T ′′) such that

the following hold.

1. Any |L′i| odd consecutively labeled vertices in

h⋃
k=i

L′k have mutually distinct ancestors in

L′i.

2. Any |L′′i | even consecutively labeled vertices in

h⋃
k=i

L′′k have mutally distinct ancestors in

L′′i .
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Thus, since L′i ∩ L′′i = ∅, we have that any |Li| consecutively labeled vertices in

h⋃
k=i

Lk have

mutually distinct ancestors in Li. Consequently, if two vertices vp, vq ∈
h⋃
k=i

Lk have a common

ancestor z ∈ Li, then |p− q| ≥ |Li|.

With this ordering v1, v2, ..., vn of V (T 2) established we verify that the recursive map from Case

1 is a radio labeling for T 2. Let vp ∈ Li′ and vp+k ∈ Li′′ , where k ≥ 1. Observe two cases.

Case 2a: Suppose vp and vp+k are on different branches of T 2, so d(vp, vp+k) = i′ + i′′ + 1.

Then by the telescoping argument from Case 1 and the fact that d = 2h+ 1, we have

f(vp+k)− f(vp) ≥ l(vp+k) + l(vp) + k − 1

=

(
h+

1

2
− i′

)
+

(
h+

1

2
− i′′

)
+ k − 1

= d− i′ − i′′ + k − 1

= d+ k − (i′ + i′′ + 1)

≥ d+ 1− d(vp, vp+k).

(114)

Case 2b: Suppose vp and vp+k are on the same branch of T 2. Let z ∈ Li be the lowest common

ancestor of vp and vp+k, so d(vp, vp+k) = i′ + i′′ − 2i. Then again by telescoping, we have
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f(vp+k)− f(vp) ≥ l(vp+k) + l(vp) + k − 1

=

(
h+

1

2
− i′

)
+

(
h+

1

2
− i′′

)
+ k − 1

≥ d− i′ − i′′ + |Li| − 1

= d− i′ − i′′ + 2

i−1∏
j=0

(mj − 1)− 1

≥ d− i′ − i′′ + 2 · 2i − 1

= d+ 1− i′ − i′′ + 2(2i − 1)

≥ d+ 1− i′ − i′′ + 2i

= d+ 1− (i′ + i′′ − 2i)

= d+ 1− d(vp, vp+k).

(115)

Thus, since both cases satisfy the radio labeling inequality, we have that f is a radio labeling

of T 2. Furthermore, using the standard telescoping argument for calculating the span of radio

labelings, we have by definition of f that

span(f) = f(vn) = d(n− 1)− 2

n∑
i=1

α(vi) + α(v1) + α(vn)

= d(n− 1)− 2

h∑
i=1

i · 2 · i−1∏
j=0

(mj − 1)

+ 0 + 0

= d(n− 1)− 4

h∑
i=1

i · i−1∏
j=0

(mj − 1)

 .
(116)

This matches the lower bound for rn(T 2) established in Theorem 6.10, so the proof for Case 2

is complete. This completes the proof for Theorem 6.11.
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Above is an optimal radio labeling for the level-wise regular tree T 2
3,4,3. Vertices are ordered as

in the proof of Case 2 of Theorem 6.11. T 2
3,4,3 has a radio number 87.

Corollary 6.11.1. Let T be an internally (m + 1)-regular complete tree (where m ≥ 3) with

diameter d ≥ 3, so the height h =
⌊
d
2

⌋
and the degree parameters are given by m0 = m1 = ... =

mh−1 = m+ 1. Then

1. If d = 2h, then

rn(T ) = 1 +

h−1∑
i=0

[
mi(m+ 1)(d− 1− 2i)

]
= mh +

4mh+1 − 2hm2 − 4m+ 2h

(m− 1)2
.

(117)

2. If d = 2h+ 1, then

rn(T ) =

h∑
i=0

[
2mi(d− 2i)

]
− d

= 2mh +
6mh+1 − 2mh − (2h− 1)m2 − 4m+ 2h+ 1

(m− 1)2
.

(118)

Proof. Let T be an internally (m+1)-regular complete tree (where m ≥ 3) with diameter d ≥ 3.

By setting mi = m + 1 for all 0 ≤ i ≤ h − 1 in the formulas established in Theorem 6.11, the

result follows in each case with lengthy but elementary algebraic simplification.

95



7 A Survey of Relevant Results - Graphs with Cycles

Our final survey involves other graphs that do not contain unique paths between all pairs of

vertices, particularly rth power paths and Hamming graphs. It is here that we investigate radio

labelings that are bijections from a vertex of size n onto a set of n consecutive natural numbers

in greater detail.

7.1 Radio Number of rth-Power Paths

Recall: The rth power of a graph G , denoted Gr, is the graph constructed from G by inserting

an edge between any pair of vertices whose distance is at most r in G..

Thus, a fourth-power path P 4
n is the fourth power of a path Pn of n vertices. The radio number

of fourth-power paths is almost completed determined by Lo and Alegria in [7], and bounds are

established for the single case in which the exact radio number of P 4
n is not yet fully determined.

Preceding results for rth power paths include Liu and Xie’s proof of the radio number of all square

paths in [5] and Sooryanarayana’s proof of the radio number of third-power paths in [9].

Liu and Xie [5] have the following result on the radio number of square paths P 2
n .

Theorem 7.1. Let P 2
n be a square path on n vertices, and let k = bn2 c. Then

rn(P 2
n) =

 k2 + 2 if n ≡ 1 (mod 4) and n ≥ 9;

k2 + 1 otherwise.

Following Liu and Xie’s result is Sooryanarayana’s [9] solution for the radio number of third-

power paths P 3
n , also known as the cube of Pn.
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Theorem 7.2. Let P 3
n be the cube of a path on n vertices, where n ≥ 6 and n 6= 7. Then

rn(P 3
n) =



n2+12
6 if n ≡ 0 (mod 6);

n2−2n+19
6 if n ≡ 1 (mod 6);

n2+2n+10
6 if n ≡ 2 (mod 6);

n2+15
6 if n ≡ 3 (mod 6);

n2−2n+16
6 if n ≡ 4 (mod 6);

n2+2n+13
6 if n ≡ 5 (mod 6).

An immediate commonality between grids, spiders, level-wise regular trees, and rth power paths

is the concept of center and level in relation to distances between vertices. However, it is

important to note that the level function on the vertex set of P rn defines the level of a vertex v

to be the Pn-distance from v to a center of Pn, not its distance in P rn .

The same system used by Lo and Alegria of representing a radio labeling f by blocks that

indicate both the ordering of vertices and the distances between consecutive vertices is adopted

several times in this thesis as a means to prove the upper bound of the radio number of a

grid graph. The advantage of adopting this systematic notation is that the pattern of labeling

becomes apparent in the sequencing of the vertices in each block and that the distances between

consecutive vertices can more easily be summed by calculating the number of occurrences of

each distance in each block.

Lo and Alegria’s result [7] on the radio number of the fourth-power path P 4
n is as follows.

Theorem 7.3. Let G = P 4
n be a fourth-power path on n vertices (where n ≥ 6), and let

k = dn−1
4 e, so k = diam(G). Then

rn(G) =


2k2 + 1 if n ≡ 0, 3, 6, or 7 (mod 8) or n = 9;

2k2 + 2 if n ≡ 4 or 5 (mod 8);

2k2 if n ≡ 2 (mod 8).

If n ≡ 1(mod 8) and n ≥ 17 (where n is of the form 8q + 1), then

2k2 + 2 ≤ rn(P 4
8q+1) ≤ 2k2 + q.
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Above is an optimal radio labeling for the fourth-power path P 4
21. Following Case 2 of

Theorem 7.3, P 4
21 has a radio number 52.

When calculating the radio number of fourth-power paths of order n with Theorem 7.3, it is

acceptable to consider only the cases with n ≥ 6, since P 4
1 , P 4

2 , P 4
3 , P 4

4 , and P 4
5 are all complete

graphs and therefore trivially have a radio number of n − 1. Any proper coloring suffices as a

radio labeling of complete graphs. The following subsection generalizes the types of graphs that

satisfy this property.

98



7.2 Radio Number of Hamming Graphs and Graceful Radio Labelings

Definition 7.1. Let n1, n2, ..., nd ∈ N, where d ≥ 2 and ni ≥ 2 for every 1 ≤ i ≤ d. A Hamming

Graph is a graph H of the form Kn1�Kn2�...�Knd , the Cartesian Product of d complete graphs

of orders n1, n2, ..., nd respectively. If n1 = n2 = ...nd = n, then we denote H by Kn
d.

Observation 7.1. Let G1, G2 be graphs.

1. dG1�G2
((u, v), (u′, v′)) = dG1(u, u′) + dG2(v, v′).

2. diam(G1�G2) = diam(G1) + diam(G2).

In finding optimal radio labelings for Hamming Graphs, Niedzialomski uses a slightly altered

definition [8] of radio labelings and span than the definitions used throughout this thesis.

Definition 7.2. Let G be a graph.

1. A radio labeling of G is a function f : V (G)→ N such that |f(u)− f(v)| ≥ diam(G) + 1−

d(u, v) for all distinct u, v ∈ V (G).

2. The span of a radio labeling f , denoted span(f), is Max{f(u) : u ∈ V (G)}.

3. The radio number of G is the minimum span of any radio labeling of G.

The subtle difference between Niedzialomski’s definition of radio labeling and the definition

otherwise used throughout this thesis is the codomain of f ; in this new definition, 0 is not

a possible label. Also, the span of f is now the largest label and not the largest separation

between labels. However, the inequality requirement is identical in both definitions, so this slight

modification of the definition does not change the process of determining the radio number of

Hamming Graphs. In this section we are to determine the span of optimal radio labelings of

Hamming Graphs H. Notice by this new definition that for a graph G of order n, rn(G) ≥ n,

since radio labelings are injective maps.

Definition 7.3. Let G be a graph with order n, and let f be a radio labeling of G.

1. f is a consecutive radio labeling of G if f(V (G)) = {1, 2, ..., n}.

2. If a consecutive radio labeling of G exists, then G is a radio graceful graph.
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Observation 7.2. Let G be a graph of order n.

1. G is radio graceful if rn(G) = n.

2. Since any radio labeling f is one-to-one, if f is indeed a consecutive radio labeling of G,

then f is onto {1, 2, ..., n}.

3. If V (G) = {v1, v2, ..., vn}, then G is radio graceful if and only if there exists an or-

dering x1, x2, ..., xn of elements of V (G) such that for all ∆ ∈ {1, 2, ..., diam(G)} and

i ∈ {1, 2, ..., n−∆},

d(xi, xi+∆) ≥ diam(G)−∆ + 1.

4. If the diameter of G is 2, then any labeling f on G such that consecutive vertices in

the labeling sequence of f are not adjacent (in other words, d(xi, xi+1) ≥ 2 for 1 ≤ i ≤

|V (G)|−1) will satisfy the requirement in (3) of a graceful labeling of G. Since nonadjacent

vertices in G are adjacent in Gc (the complement of G), this implies G is radio graceful if

and only if Gc contains a Hamiltonian Path, which is used as the ordering of the vertices

of a graceful labeling of G.

Examples:

1. Complete graphs Kn are radio graceful. Since diam(Kn) = dKn(u, v) = 1 for all distinct

u, v ∈ V (Kn), we know that if u, v ∈ V (Kn) are distinct, then |f(u)−f(v)| ≥ diam(Kn)+

1 − d(u, v) = 1 + 1 − 1 = 1. So any proper vertex coloring suffices as a radio labeling of

Kn, provided the colors are in {1, 2, ..., n}.

2. The Petersen graph is radio graceful, since the diameter of the Petersen graph is 2, and

its complement contains a Hamiltonian Path.

General Strategy for Proving Radio Gracefulness: Let G be a graph with order n.

1. Define a list of elements {x1, x2, ...xn} of V (G).

2. Prove that the list is an ordering of V (G), that is, there is neither any repetition nor

exclusion.

3. Prove that the order induces a consecutive radio labeling.

We use this strategy in a moderately revised proof of the radio number of Hamming Graphs of

the form Kn
t, where n ≥ 3.

Definition 7.4. Let C = G1�G1�...�Gt. For xi ∈ V (C), let xi = (xi1 , xi2 , ..., xit). Then we
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define a function π : V (C)× V (C)→ {0, 1, 2, ..., t} by

π(xi, xj) =

t∑
k=1

πk(xi, xj), where πk(xi, xj) =

 1 if xik = xjk ;

0 otherwise.

Observation 7.3. If C = Gt, then

t− π(xi, xj) ≤ dGt(xi, xj) =

t∑
k=1

dG(xik , xjk) ≤ diam(G) (t− π(xi, xj)) .

From this inequality, if H = Kn1
�Kn2

�...�Knt , then

t− π(xi, xj) ≤ dH(xi, xj) ≤ diam(Knα) (t− π(xi, xj)) = (1) (t− π(xi, xj))

which implies

dH(xi, xj) = t− π(xi, xj).

Lemma 7.4. Let G be a graph with n = |V (G)|. For t ∈ N, let {x1, x2, ..., xnt} be an ordering

of V (Gt) that induces a consecutive radio labeling of Gt (so Gt is radio graceful). Then

π(xi, xj) ≤
|i− j| − 1

diam(G)
for all i, j ∈ {1, 2, ..., nt}.

Proof. Suppose the above conditions hold. Then there exists a map f : V (Gt) → {1, 2, ..., nt}

defined by f(xi) = i for every 1 ≤ i ≤ nt that satisfies |f(xi)−f(xj)| ≥ diam(Gt)+1−dGt(xi, xj)

for all i, j.

=⇒ |i− j| ≥ t (diam(G)) + 1− dGt(xi, xj) for all i, j.

=⇒ t (diam(G)) + 1− |i− j| ≤ dGt(xi, xj) for all i, j.

From Observation 7.3, dGt(xi, xj) ≤ diam(G) (t− π(xi, xj)), so t diam(G) + 1 − |i − j| ≤

t diam(G)− π(xi, xj)(diam(G)). Therefore,

π(xi, xj) ≤
|i− j| − 1

diam(G)
, since diam(G) > 0.
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Lemma 7.5. Let H = Kn1
�Kn2

�...�Knt be of order N . Then an ordering x1, x2, ...xN of

V (H) induces a consecutive radio labeling of H if and only if π(xi, xj) ≤ |i − j| − 1 for all

i, j ∈ [N ].

Proof. Let H = Kn1�Kn2�...�Knt be of order N .

( =⇒ ) : Suppose the ordering x1, x2, ..., xN induces a consecutive radio labeling of H. Then

there exists a function f : V (H)→ [N ] defined by f(xi) = i for all i satisfying |f(xi)− f(xj)| ≥

diam(H) + 1− dH(xi, xj) for all i, j ∈ [N ].

=⇒ |i− j| ≥ t+ 1− dH(xi, xj) for all i, j ∈ [N ].

=⇒ t+ 1− |i− j| ≤ dH(xi, xj) for all i, j ∈ [N ].

Since dH(xi, xj) ≤ t− π(xi, xj), we know that t+ 1− |i− j| ≤ t− π(xi, xj) for all i, j ∈ [N ]. So

π(xi, xj) ≤ |i− j| − 1 for all i, j ∈ [N ].

(⇐=): Suppose π(xi, xj) ≤ |i − j| − 1 for all i, j ∈ [N ]. Then t + π(xi, xj) ≤ t + |i − j| − 1 for

all i, j ∈ [N ]. Note that diam(H) = t and t− π(xi, xj) = dH(xi, xj).

=⇒ diam(H)− |i− j|+ 1 = t− |i− j|+ 1 ≤ t− π(xi, xj) = dH(xii, xj) for all i, j ∈ [N ].

=⇒ |i− j| ≥ diam(H) + 1− dH(xi, xj) for all i, j ∈ [N ].

Hence, if we define a function f : V (H) → [N ] by f(xi) = i for all i ∈ [N ], then f satisfies the

inequality for a radio labeling, which completes the proof.

Step 1: Define the vertices x1, x2, ...xnt of H = Kn
t.

Let n ≥ 3 and V (Kn) = {v1, v2, ...vn}. Let t ∈ [n]. We recursively describe vertices as the rows

of nt−1 matrices of order n x t.
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Definition 7.5. Assume the following notations.

1. V (Kn) = {v1, v2, ..., vn}.

2. σ = (v1, v2, ..., vn), a permutation in the symmetric group SV (Kn).

3. For 2 ≤ k ≤ nt−1, pk = Max{α ∈ Z : nα|k − 1}.

Then the matrices A(1), A(2), ..., A(nt−1) are defined recursively as follows.

A(1) =



v1 v1 v1 . . . v1

v2 x2 v2 . . . v2

...
...

...
. . .

...

vn vn vn . . . vn


and ai,j

(k) =

 σ
(
ai,j

(k−1)
)

if j = t− pk;

ai,j
(k−1) otherwise.

Example: Consider A = K4 = {v1, v2, v3, v4}.

A(1) =


v1 v1 v1

v2 v2 v2

v3 v3 v3

v4 v4 v4


, A(2) =


v1 v1 σ(v1)

v2 v2 σ(v2)

v3 v3 σ(v3)

v4 v4 σ(v4)


=


v1 v1 v2

v2 v2 v3

v3 v3 v4

v4 v4 v1


since t− p2 = 3− 0 = 3

A(3) =


v1 v1 v3

v2 v2 v4

v3 v3 v1

v4 v4 v2


, A(4) =


v1 v1 v4

v2 v2 v1

v3 v3 v2

v4 v4 v3


, A(5) =


v1 v2 v4

v2 v3 v1

v3 v4 v2

v4 v1 v3


since t− p5 = 3− 1 = 2

Observation 7.4. Let 2 ≤ k ≤ nt−1.

1. All columns of A(k) are the same as the columns of A(k−1) except the column at which

j = t− pk.

2. Since k − 1 < k ≤ nt−1, nt−1 does not divide k − 1, and so pk ≤ t− 2. Thus, j ≥ 2, and

so σ is never applied to the first column of any A(k). In other words, A(1), A(2), ..., A(nt−1)

all have the same first column.
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Definition 7.6. Let V (Kn
t) = {x1, x2, ..., xnt}. If i = bn+ c (where c ∈ [n]), then

xi = xbn+c =
(
ac,1

(b+1), ac,2
(b+1), ..., ac,t

(b+1)
)
.

In other words, xbn+c is the cth row of A(b+1).

Step 2: Verify x1, x2, ..., xnt is an ordering of V (Kn
t).

We show that x1, x2, ...xnt has no repeated vertices (so xi = xj if and only if i = j) and does not

omit any elements of V (Kn
t). To simplify this task, notice first that Column 1 is fixed in each

A(k) and also that for 2 ≤ i ≤ n, 1 ≤ j ≤ t, and 1 ≤ k ≤ nt−1, we have ai,j
(k) = σ

(
ai−1,j

(k)
)
.

Thus, the first row of each matrix uniquely defines all other rows in the matrix.

Observation 7.5. Since the first row of each matrix uniquely defines all other rows of the same

matrix, it suffices to show that no two matrices have the same first row.

Definition 7.7. For Kn
t, take A(1), ..., A(nt−1) as defined above.

1. Let A = [ai,j ] be the nt−1 × t matrix defined by ai,j = a1,j
(i), so the ith row of A is the

first row of A(i). Explicitly, the i, jth entry of A is defined recursively by

ai,j =


v1 if j = 1;

σ (ai−1, j) if j = t− pi ;

ai−1,j otherwise.

2. A j-block is any of the vectors



a1, j

a2, j

...

ant−1, j


,



ant−j+1, j

ant−j+2, j

...

a2nt−j , j


, . . . . . . ,



a(nj−1−1)nt−j+1, j

a(nj−1−1)nt−j+2, j

...

ant−1, j


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3. The cth j-block , denoted β(c, j), is the vector



a(c−1)nt−j+1, j

a(c−1)nt−j+2, j

...

acnt−j , j


4. The scope of β(c, j) is the set of consecutive integers {(c − 1)nt−j + 1, (c − 1)nt−j +

2, ..., cnt−j}. In essence, the scope of β(c, j) is the set {i : ai,j is an entry of β(c, j)}.

Observation 7.6. For each j, there are nj−1 j-blocks, each of dimension nt−j.

Lemma 7.6. Let 1 ≤ j ≤ t and 1 ≤ c ≤ nj−1. Then all entries of β(c, j) are identical.

Proof. Let 1 ≤ j ≤ t and 1 ≤ c ≤ nj−1. If j = t, then β(c, j) has nt−t = n0 = 1 entry, which

is a trivial case. So assume that 1 ≤ j ≤ t− 1. Note that the only i ∈ S (β(c, j)) that satisfies

nt−j |i− 1 is i = (c− 1)nt−j + 1, the top row of β(c, j). So if i 6= (c− 1)nt−j + 1 (in other words,

if ai,j is not the top of β(c, j)), then pi 6= t− j (so j 6= t− pi).

=⇒ ai,j = ai−1,j by the definition of the matrix A.

Therefore, all entries of β(c, j) are identical to its top entry, which completes the proof of

Lemma 7.6.

Observation 7.7. Since all entries of β(c, j) are identical, any entry of β(c, j) can represent

β(c, j). So σ (β(c, j)) makes sense, since it is uniquely defined by any entry in β(c, j).

Lemma 7.7. Let 2 ≤ j ≤ t and 1 ≤ c ≤ nj−1 − 1. Then β(c, j) = β(c+ 1, j) if and only if n|c.

Proof. Let 2 ≤ j ≤ t and 1 ≤ c ≤ nj−1 − 1. Let ai,j be the top entry of β(c + 1, j), so

i = cnt−j + 1. Then nt−j |i− 1, so pi ≥ t− j. From Lemma 7.6, we have
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β(c+ 1, j) = β(c, j) ⇐⇒ The bottom entry of β(c, j) equals the top entry of β(c+ 1, j)

⇐⇒ ai−1,j = ai,j

⇐⇒ j 6= t− pi

⇐⇒ pi > t− j

⇐⇒ n1+t−j |i− 1

⇐⇒ n|c, since i− 1 = cnt−j .

(119)

This completes the proof of Lemma 7.7.

Lemma 7.8. Let 2 ≤ j ≤ t and 1 ≤ m ≤ nj−2. Then β(x, j) 6= β(y, j) if (m − 1)n + 1 ≤ x <

y ≤ mn.

Proof. Let 2 ≤ j ≤ t and 1 ≤ m ≤ nj−2. Suppose (m − 1)n + 1 ≤ x < y ≤ mn, so y = x + ∆

for some 0 < ∆ < n. By Lemma 7.7, since n does not divide z if (m − 1)n + 1 ≤ z ≤ mn − 1,

we have

β(mn, j) = σ (β(mn− 1, j)) = σ2 (β(mn− 2, j)) = ... = σn−1 (β((m− 1)n+ 1, j)) .

Thus, β(y, j) = β(x+ ∆, j) = σ∆ (β(x, j)) 6= β(x, j), since 0 < ∆ < n = |σ|. This completes the

proof of Lemma 7.8.

Lemma 7.9. If two rows of A share their first k entries, then they are in the scope of the same

k-block.

Proof. We proceed with induction on k. The base case (k = 1) is trivial, since there exists a

unique 1-block, so every row is in the scope of this 1-block.

For the inductive step, assume that the result holds for some k ∈ N. Suppose the xth and

yth rows share the first k + 1 entries (and therefore the same first k entries). Then the xth and
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yth rows are in the scope of the same k-block, say the mth k-block, by the inductive hypothesis.

By Lemma 7.8, {β ((m− 1)n+ 1, k + 1) , ..., β(mn, k + 1)} are n distinct (k + 1)-blocks with

scope β(m, k). So the xth, and yth rows can be in the scope of exactly one of these (k + 1)-

blocks, since they share the same (k + 1)th entry. Thus, they are in the scope of the same

(k + 1)-block, which completes the induction and proves Lemma 7.9.

Lemma 7.10. The list x1, x2, ..., xnt is an ordering of V (Kn
t).

Proof. Suppose the xth and yth rows of A have equal entries. Then by Lemma 7.9, they are in

the scope of the same t-block. This has only nt−t = n0 = 1 entry, so x = y; in other words, A

has no identical rows. By definition, the rows of A are the top rows of A(1), A(2), ..., A(nt−1), so

none of the top rows of A(1), A(2), ..., A(nt−1) are identical.

=⇒ None of the rows xi of A(1), A(2), ..., A(nt−1) are identical by by Observation 6.7.

Hence, the sequence x1, x2, ..., xnt is an ordering of V (Kn
t), which proves Lemma 7.10.

Step 3: Prove that the ordering x1, x2, ..., xnt induces a consecutive radio labeling of Kn
t. This

gives the first main result for Hamming Graphs.

Theorem 7.11. Let n ≥ 3 and t ≤ n. Then Kn
t is radio graceful.

Proof. Let H = Kn
t, where n ≥ 3 and t ≤ n. Let x1, x2, ..., xnt be the previously defined

ordering of V (H). Define f : V (H)→ N by f(xi) = i for all xi ∈ V (H). By Lemma 7.5, using

j = i+ ∆ (where ∆ > 0), it suffices to prove

π(xi, xi+∆) ≤ ∆− 1 for all ∆ ∈ [nt − 1] and i ∈ [nt −∆]

since ∆− 1 = |i− j| − 1.
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By Lemma 7.10, xi and xi+∆ are distinct (since ∆ > 0), so not all coordinates of xi and

xi+∆ are equal.

=⇒ π(xi, xi+∆) ≤ t− 1.

Hence, we only need to prove π(xi, xi+∆) ≤ ∆− 1 for all ∆ ∈ [t− 1], not [nt − 1].

Let xi be some row in A(k), and let ∆ ≤ t − 1. Since A(k) has n rows and ∆ ≤ t − 1 < n, we

know xi+∆ is either in A(k) or A(k+1). We examine both cases.

CASE 1: xi+∆ is in A(k).

Note that for each 1 ≤ j ≤ t, we know σ∆
(
ai,j

(k)
)
6= ai,j

(k), since 0 < ∆ < n = |σ|.

Since ai+∆,j
(k) = σ∆

(
ai,j

(k)
)

for each 1 ≤ j ≤ t, we have ai+∆,j
(k) 6= ai,j

(k) for each 1 ≤ j ≤ t.

Thus, π(xi, xi+∆) = 0 ≤ ∆− 1.

CASE 2: xi+∆ is in A(k+1) We consider two subcases based on the value of ∆.

Subcase 2a: ∆ > 1.

Recall that all but exactly one of the columns of A(k) and A(k+1) are identical. Since ∆ < n and

n is the number of rows of A(k), we know xi and xi+∆ are in different rows of their respective

matrices. Thus, at least t−1 of the entries of xi and xi+∆ differ. Hence, π(xi, xi+∆) ≤ 1 ≤ ∆−1,

since ∆ ≥ 2.

Subcase 2b: ∆ = 1.

In this sub case, xi+∆ = xi+1, so we know the following:

1. xi is the last row of A(k).

2. xi+∆ is the first row of A(k+1).
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Let j′ = t− pk+1. Recall that ai,j
(k+1) = σ

(
ai,j

(k)
)

if and only if j = j′. Thus, we have

xi+∆ = xi+1 =
(
a1,1

(k+1), ..., a1,j′
(k+1), ..., a1,t

(k+1)
)

=
(
a1,1

(k), ..., σ
(
a1,j′

(k)
)
, ..., a1,t

(k)
)

and

xi =
(
an,1

(k), ..., an,j′
(k), ..., an,t

(k)
)

=
(
σ−1

(
a1,1

(k)
)
, ..., σ−1

(
a1,j′

(k)
)
, ..., σ−1

(
a1,t

(k)
))

.

But |σ| = n ≥ 3, so for each j, a1,j
(k) 6= σ−1

(
a1,j

(k)
)

and σ
(
a1,j′

(k)
)
6= σ−1

(
a1,j′

(k)
)
.

Thus, π(xi, xi+∆) = 0 ≤ ∆ − 1, since ∆ = 1. This exhausts all all cases, and so our proof

of Theorem 7.11 is complete.

Above is a consecutive (hence optimal) radio labeling for K2
3 , a radio graceful Hamming graph.

The ordering of V (K2
3 ) satisfies the characterization of consecutive radio labelings established

in Lemma 7.5.

Lemma 7.12. Given a graph G, let d = diam(G) and n = |V (G)|. Let

s = 1 +

n−1∑
k=d

(n− k)

⌊
k

d

⌋
. (120)

If t ≥ s, then Gt is not radio graceful.
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Proof. Let G be a graph with diameter d and a vertex set V (G) = {v1, v2, ..., vn}, so n = |V (G)|.

Let s = 1+
n−1∑
k=d

(n−k)
⌊
k
d

⌋
. Let t ≥ s. Suppose (to the contrary) that x1, x2, ...xnt is an ordering

of V (Gt) that induces a graceful labeling f : V (Gt)→ [nt], where f(xi) = i for each xi ∈ V (Gt).

From Lemma 7.4, we know

π(xi, xj) ≤
|i− j| − 1

d
for all i, j ∈ [nt].

Define a function Π : V (Gt)× V (Gt)→ Z by

Π(xi, xj) = Min

{
t,
|i− j| − 1

d

}
for all (xi, xj) ∈ V (Gt)× V (Gt).

Note from this definition that the maximum number of coordinates xi can have in common with

any prior vertex in the ordering of f is
i−1∑
j=1

Π(xi, xj), since π(xi, xj) ≤ Π(xi, xj) for all j. Thus,

the first n+ 1 vertices x1, x2, ...xn+1 can agree on at most
n+1∑
i=2

(
i−1∑
j=1

Π(xi, xj)

)
coordinates. So

if M is the number of coordinate agreements within x1, x2, ..., xn+1, then

M ≤
n+1∑
i=2

i−1∑
j=1

Π(xi, xj)


≤
n+1∑
i=2

i−1∑
j=1

⌊
|i− j| − 1

d

⌋
=

2∑
i=2

i−1∑
j=1

⌊
|i− j| − 1

d

⌋+

n+1∑
i=3

i−1∑
j=1

⌊
|i− j| − 1

d

⌋
=

2∑
j=1

⌊
|3− j| − 1

d

⌋
+

3∑
j=1

⌊
|4− j| − 1

d

⌋
+ ...+

n∑
j=1

⌊
|(n+ 1)− j| − 1

d

⌋

=

2∑
j=1

⌊
2− j
d

⌋
+

3∑
j=1

⌊
3− j
d

⌋
+ ...+

n∑
j=1

⌊
n− j
d

⌋

=

1∑
k=1

⌊
k

d

⌋
+

2∑
k=1

⌊
k

d

⌋
+ ...+

n−1∑
k=1

⌊
k

d

⌋
= (n− 1)

⌊
1

d

⌋
+ (n− 2)

⌊
2

d

⌋
+ ...+

⌊
n− 1

d

⌋
=

n−1∑
k=1

(n− k)

⌊
k

d

⌋

=

n−1∑
k=d

(n− k)

⌊
k

d

⌋
= s− 1 = t.

(121)
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Thus, the first n + 1 vertices contain fewer than t coordinate agreements. This indicates that

there must exist at least one coordinate in which none of the first n+ 1 coordinates agree, say

the pth coordinate. So the set P of pth coordinates of x1, x2, ...xn+1 has n+ 1 distinct elements,

which is impossible because P ⊆ {v1, v2, ..., vn}. Therefore, Gt has no graceful labeling, which

completes the proof of Lemma 7.12.

Lemma 7.12 leads us to our second main result for Hamming Graphs.

Theorem 7.13. Let n ≥ 3 and t ≥ 1 + n(n2−1)
6 . Then Kn

t is not radio graceful.

Proof. From Lemma 7.12, we know that Kn
t is not radio graceful for any t ≥ s, where

s = 1 +

n−1∑
k=diam(Kn)

(n− k)

⌊
k

diam(Kn)

⌋

= 1 +

n−1∑
k=1

(n− k)(k)

= 1 + n

(
n−1∑
k=1

k

)
−
n−1∑
k=1

k2

= 1 + n · (n+ 1)(n)

2
+

(n− 1)(n) [2(n− 1) + 1]

6

= 1 +
3n2(n− 1)− n(n− 1)(2n− 1)

6

= 1 +
n(n+ 1)(3n− 2n+ 1)

6
= 1 +

n(n2 − 1)

6
.

(122)

Thus, Kn
t is not radio graceful if t ≥ 1 + n(n2−1)

6 .

Whether Kn
t is radio graceful for n + 1 ≤ t ≤ n(n2−1)

6 remains open. Recent attempts were

made to find a consecutive radio labeling for K3
4, the smallest example of a Hamming Graph

Kn
t whose radio gracefulness (or lack thereof) remains unproven. We have thus far determined

using programming techniques a sequence of 79 vertices of K3
4 (i.e. 79 4-tuples of {1, 2, 3}) that

satisfy the requirements for consecutive vertices of a graceful labeling. However, whether it is

possible to find such a sequence of all 81 vertices of K3
4 as needed remains unknown.
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