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ABSTRACT

Factorizing Bivariate and

Trivariate Polynomials

By

Ronald Chen

This thesis discusses the reducibility of homogeneous trivariate polynomials of

degree 2 and 3. In the degree 2 case, we give necessary and sufficient conditions for

the reducibility of such a polynomial. When a factorization exists, we show how to

find the factors of the polynomial. We also provide necessary and sufficient conditions

for the polynomial to be a perfect square.

The question of the reducibility of degree-3 polynomials is more complicated.

We don’t have a complete answer; we only have partial results. Some information

can be obtained from a certain 9 by 3 matrix V whose entries are derived from the

coefficients of the polynomial. Specifically,

(1) If the polynomial is reducible, then V has rank 1 or 0.

(2) If V has rank 1, then we have a candidate factor that has to be checked using

long division.

(3) If the polynomial factors completely, then V is the zero matrix.

(4) If the polynomial is reducible and V is not the zero matrix, then the polynomial

can be factored over the coefficient field.

The converses of these results are not true and we give counterexamples.
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CHAPTER 1

Introduction

This thesis is about the factorizations of homogeneous bivariate and trivariate poly-

nomials having degree 2 or 3. For example, do the following polynomials f and g in

the indeterminates x, y, and z factor at all?

f = x2 − 6xy − 2y2 − 20xz − 6yz + z2

g = 2x3 − 3x2y + 3xy2 − y3 + x2z − 6xyz + 5y2z − xz2 − 7yz2 + 3z3

For the answers to the reducibility of these two polynomials, see Example 4.57 and

Example 5.53. We will find some conditions on the coefficients of these polynomials

that determine whether they factor. And if these polynomials factor, do they factor

over the coefficient field or over an extension?

Any bivariate homogeneous polynomial will factor completely because of the

Fundamental Theorem of Algebra. For example, let F be a field and let

f(x, y) = a3x
3 + a2x

2y + a1xy
2 + a0y

3 ∈ F [x, y], a3 6= 0.

Then setting y = 1, we get

f(x, 1) = a3x
3 + a2x

2 + a1x+ a0.

By the Fundamental Theorem of Algebra,

f(x, 1) = a3(x− x1)(x− x2)(x− x3) (1.1)
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where x1, . . . , x3 ∈ C are the roots of f(x, 1). Matching coefficients, we find

a2 = −(x1 + x2 + x3)a3

a1 = (x1x2 + x1x3 + x2x3)a3

a0 = −x1x2x3a3.

(1.2)

Homogenizing each factor in (1.1) by appending a y after each root and using (1.2),

we get

f(x, y) = a3(x− x1y)(x− x2y)(x− x3y).

Depending on the multiplicities of the roots of f(x, y), f(x, y) can be written in one

of the following form:

f(x, y) = a3(x− xi)3

f(x, y) = a3(x− xj)2(x− xk)

f(x, y) = a3(x− x1y)(x− x2y)(x− x3y)

for some i and j. The powers of the factors adds to the degree of the polynomial.

In the chapter on bivariate homogeneous polynomials, we have used the known

result that a univariate polynomial has a multiple root if and only if its discriminant

is zero. This result can be found in, for example, [1, Proposition 34]. And we have

also used the known result that a univariate degree 3 polynomial has 3 identical roots

if and only if its Hessian is zero. This result can be found in, for example, [9, p. 136].

In the trivariate degree 2 case, the polynomial factors if and only if a certain

function R of the coefficients of the polynomial is zero. It will be shown that the

polynomial is a square times a constant if and only if R and three functions Dx, Dy,

and Dz of the coefficients are zero. The proof is fairly straightforward.
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The trivariate degree 3 case is only partially solved. Here are some results

that we found.

(1) If the polynomial factors, then a certain 9 × 3 matrix, which we call V , must

have rank 1 or 0.

(2) If V has rank 1, then we have a candidate factor of f that has to be checked

using long division.

(3) If the polynomial factors completely, then V is the zero matrix.

(4) If the polynomial factors and V 6= 0, then the polynomial can be factored over

the coefficient field.

One of the unanswered questions is: When V has rank 1 or 0, does this imply that f

is reducible?
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CHAPTER 2

Definitions and Preliminary Results

Towards answering those questions that were mentioned earlier, we prove some lem-

mas and theorems that will be helpful later on. First, we introduce definitions that

we will use in the lemmas and theorems. We will use F to denote the coefficient field

of the polynomials that appear throughout this thesis.

Definition 2.1. Let F be a field. A bivariate polynomial f in x and y is a polynomial

in x over the coefficient field F [y]. This is written f ∈ F [y][x] or f ∈ F [x, y]. A

trivariate polynomial g in x, y, and z is a polynomial in x over the coefficient field

F [z][y]. This is written g ∈ F [z][y][x] or g ∈ F [x, y, z]. A multivariate polynomial in

x1, x2, x3, . . . , xm is a polynomial of the ring F [xm][xm−1][xm−2] · · · [x2][x1].

Every nonconstant multivariate polynomial can be written uniquely as the

sum of products of the form cxn1
1 x

n2
2 · · ·xnmm where c ∈ F and x1, x2, . . . , xm are

indeterminates. Each cxn1
1 x

n2
2 · · ·xnmm is called a monomial.

Definition 2.2. The total degree of a nonzero multivariate monomial

cxn1
1 x

n2
2 · · ·xnmm is the sum n1 + n2 + · · · + nm of the degrees in the factors. The

total degree of a nonzero multivariate polynomial f is the highest degree among the

monomials of f . A multivariate polynomial is homogeneous if every one of its mono-

mials has the same total degree. The homogeneous degree k component of a nonzero

multivariate polynomial f is the sum of the degree k monomials of f [1, p. 297] [3].

Definition 2.3. Let F be a field. A nonconstant polynomial f ∈ F [x] is re-

ducible over F if f = gh for some nonconstant polynomials g and h in F [x]. Oth-
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erwise f is irreducible over F . Similarly, a nonconstant multivariate polynomial

f̄ ∈ F [x1, x2, . . . , xm] is reducible over F if f̄ = ḡh̄ for some nonconstant polyno-

mials ḡ, h̄ ∈ F [x1, x2, . . . , xm].

With the above definitions, we are now ready to prove some theorems that we

need in our later discussions. For multivariate polynomials, the (total) degree of a

product of two polynomials is the sum of the degrees of the polynomials [7, p. 114]:

Theorem 2.4. Let F be a field. Let f, g ∈ F [x1, x2, . . . , xn] be nonzero. Then

deg fg = deg f + deg g.

Proof. We can write f and g using their homogeneous components fi and gj as follows

f = f0 + f1 + · · ·+ fd, with deg fi = i for i = 0, 1, . . . , d, and fd 6= 0

g = g0 + g1 + · · ·+ ge, with deg gj = j for j = 0, 1, . . . , e, and ge 6= 0.

When we multiply f and g, we get terms of the form figj having degree i+ j and fg

can be written using its homogeneous components as follows:

fg = f0g0 +(f0g1 +f1g0)+(f0g2 +f1g1 +f2g0)+(f0g3 +f1g2 +f2g1 +f3g0)+ · · ·+fdge.

We know that if D is a domain, then so is D[x1, x2, . . . , xn] [1, p.235]. So since

F [x1, x2, . . . , xn] is a domain and fd 6= 0 and ge 6= 0, we have fdge 6= 0. This is the

homogeneous component of fg having the highest degree. Thus, deg fg = d + e =

deg f + deg g.

We get another similar theorem when we replace total degree with lower degree.

Definition 2.5. Let the lower degree, lower f , of a nonzero polynomial f be the

degree of the smallest nonzero homogeneous term of f .

Theorem 2.6. Let f, g ∈ F [x1, x2, . . . , xn]. Then lower fg = lower f + lower g.
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From the definitions of total degree and lower degree, one sees that:

Fact 2.7.

(1) The lower degree of a polynomial is less than or equal to its total degree, and

(2) A polynomial is homogeneous if and only if its total degree equals its lower

degree.

We now prove a commonly accepted fact about inequality, then we will use this

to prove that if a homogeneous polynomial factors, then the factors are homogeneous

as well.

Lemma 2.8. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers. If ai ≤ bi for

i = 1, 2, . . . , n, and
∑n

i=1 ai =
∑n

i=1 bi, then ai = bi for i = 1, 2, . . . , n.

Proof. Suppose, to the contrary, that ai0 < bi0 for some i0 ∈ {1, 2, . . . , n}. Then

because ai ≤ bi for i = 1, 2, . . . , n, we have
∑n

i=1 ai <
∑n

i=1 bi, which contradicts the

assumption that
∑n

i=1 ai =
∑n

i=1 bi. Thus ai = bi for i = 1, 2, . . . , n.

Theorem 2.9. Let f ∈ F [x1, x2, . . . , xn]. If f is homogeneous and f = gh for some

g, h ∈ F [x1, x2, . . . , xn], then g and h are homogeneous as well.

Proof. Using Fact 2.7, we know that lower g ≤ deg g and lowerh ≤ deg h. By Theo-

rem 2.4 and Theorem 2.6, we have

deg f = deg g + deg h

lower f = lower g + lowerh.

(2.10)

Since f is homogeneous, we have lower f = deg f . Thus we have

lower g + lowerh = deg g + deg h.
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By Lemma 2.8, we have lower g = deg g and lowerh = deg h. Therefore g and h are

homogeneous by Fact 2.7.

We will need to use the Fundamental Theorem of Algebra whose proof can be

found in, for example, [5, p.151]. We want to point out that this is for polynomials

of a single variable.

Theorem 2.11 (Fundamental Theorem of Algebra). Every univariate nonconstant

polynomial over C is completely reducible.

Since every root corresponds to a linear factor, this is equivalent to the alter-

native forms of the theorem:

(1) Every univariate nonconstant polynomial over C has a root in C, or

equivalently,

(2) The field C of complex numbers is an algebraically closed field.

We will also need to use Kronecker’s Theorem whose proof can be found in,

for example, [2, p. 266].

Theorem 2.12 (Kronecker’s Theorem). Given any nonconstant polynomial, there

exist an extension of the base field in which the polynomial factors completely.

Since every root corresponds to a linear factor, this is equivalent to the alter-

native form of the theorem:

Let F be a field and let f(x) be a nonconstant polynomial in F [x]. Then

there exists an extension field E of F and an α ∈ E such that f(α) = 0.

The following relationship among algebraic structures can be found in, for
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example, [1, p. 292].

fields ⊂ Euclidean domains ⊂ PIDs ⊂ UFDs ⊂ integral domains.

Let F be a field. Since F is a field, we have F is a PID. Since F is a PID, we have F

is a UFD. We will use the following theorem. The proof can be found in, for example,

[2, Theorem 45.29], [3, p. 164], and [4].

Theorem 2.13. If D is a UFD, then D[x] is a UFD.

Since F is a UFD, we have F [x1] is a UFD. Since F [x1] is a UFD, we have F

is a UFD. Continuing this process, we find F [x1][x2][x3] · · · [xm−1][xm] is a UFD.

We will use the resultant of two polynomials, so we define it here.

Definition 2.14. Let F be a field. Suppose f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 ∈

F [x] has roots x1, . . . , xn and g(x) = bmx
m + bm−1x

m−1 + · · · + b1x + b0 ∈ F [x] has

roots y1, . . . , ym. The resultant of f(x) and g(x) [1, p. 621]

Resx(f(x), g(x)) = amn b
n
m

∏
1≤i≤n
1≤j≤m

(xi − yj).

This is the same as the determinant of the Sylvester matrix [1, p. 620].

Resx(f(x), g(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 · · · a0
an an−1 · · · a0

an an−1 · · · a0
. . . m rows

. . .

an an−1 · · · a0
bm bm−1 · · · b0

bm bm−1 · · · b0
bm bm−1 · · · b0

. . . n rows
. . .

bm bm−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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CHAPTER 3

Bivariate Homogeneous Polynomials

In this chapter, we give some theorems for the factorization of bivariate homogeneous

degree 2 and degree 3 polynomials. These theorems will be used in later chapters to

find factorizations of trivariate homogeneous polynomials.

We note that any bivariate homogeneous polynomial is completely reducible.

3.1 Bivariate Homogeneous Degree 2 Polynomials

Any bivariate homogeneous degree 2 polynomial will factor completely because of the

Fundamental Theorem of Algebra. The powers of the factors partition the degree;

the issue is, what partition is it. Does the polynomial factor as a square, or as two

linearly independent factors? The following theorem answers this and it is based on

the known result that a univariate polynomial has a multiple root if and only if its

discriminant is zero. This result can be found in, for example, [1, Proposition 34].

Theorem 3.1. Let f(x, y) = ax2 + bxy + cy2 ∈ F [x, y] and let D = b2 − 4ac be the

discriminant of f . Then

(1) D = 0 if and only if f(x, y) = A(a0x+ a1y)2 for some A, a0, a1. If charF 6= 2,

then A, a0, and a1 may be chosen in F . Otherwise a1 may need to be in a

quadratic extension of F .

(2) D 6= 0 if and only if f = (a0x + a1y)(b0x + b1y) with a0b1 − a1b0 6= 0 for some

a0, a1, b0, and b1 in a quadratic extension of F .

Proof. Case I: Suppose a 6= 0. Let ax2 + bx + c have roots α1 and α2 in some field
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extension of F . Then

ax2 + bx+ c = a(x− α1)(x− α2)

= ax2 − a(α1 + α2)x+ aα1α2

(3.2)

and

f = ax2 + bxy + cy2

= a(x− α1y)(x− α2y)

= ax2 − a(α1 + α2)xy + aα1α2y
2.

(3.3)

Matching coefficients, we have b = −a(α1 + α2) and c = aα1α2.

This implies that α1 + α2 = − b
a

, α1α2 =
c

a
, and

D = a2(α1 + α2)
2 − 4a2α1α2

= a2(α2
1 + 2α1α2 + α2

2)− 4a2α1α2

= a2(α1 − α2)
2.

(3.4)

Then (α1−α2)
2 =

D

a2
. So α1−α2 =

√
D

a
∈ F

(√
D
)

. Since α1−α2 =

√
D

a
, we have

D = 0 if and only if α1 − α2 = 0, if and only if α1 = α2.

Case I.A: If D = 0 and F does not have characteristic 2, then since α1 +α2 = −b/a

and α1−α2 = 0, we have α1 = α2 = −b/2a. Then (3.3) becomes f = a

(
x+

b

2a
y

)2

=

1

4a
(2ax+ by)2 which has the form A(a0x+ a1y)2 for some A, a0, a1 ∈ F as claimed.

Case I.B: If D = 0 and F has characteristic 2, then α1 = α2 and (3.3) becomes

f = a(x− α1y)2 (3.5)

which has the form A(a0x+ a1y)2 for some A, a0 ∈ F and a1 in a quadratic extension

of F .

10



We come out of these two subcases (case I.A and case I.B) since assertion

(1) has been shown. However, we continue with case I where a 6= 0 with the goal of

showing assertion (2). Towards this goal, we rewrite (3.3) as f = (ax−aα1y)(x−α2y)

which has the form (a0x+a1y)(b0x+b1y) where a0 = a, a1 = −aα1, b0 = 1, b1 = −α2,

and a0, a1, b0, b1 ∈ F
[√

D
]
. Then a0b1 − a1b0 = −aα2 + aα1 = a(α1 − α2). By (3.4),

we have D 6= 0 if and only if a(α1 − α2) 6= 0. Since a(α1 − α2) = a0b1 − a1b0, the

condition a(α1 − α2) 6= 0 is equivalent to a0b1 − a1b0 6= 0. Thus D 6= 0 if and only if

a0b1 − a1b0 6= 0.

Case II: Suppose a = 0. Then f = bxy + cy2 and D = b2. Then D = 0 if and only

if b = 0 if and only if f = cy2 which has the form A(a0x+ a1y)2 where A, a0, a1 ∈ F .

For the other case, we have D 6= 0 and b 6= 0 and so f = bxy+cy2 = (bx+cy)(0x+y)

which has the form (a0x + a1y)(b0x + b1y) where a0, a1, b0, b1 ∈ F ⊆ F
[√

D
]

and

a0b1 − a1b0 = b 6= 0.

Case I.B. behaves different because F has characteristic 2. We give an example

of this type where D = 0, but f does not factor over the coefficient field F . For these

conditions to hold, F must have an element that does not have a square root in F .

Otherwise, if every element of F has a square root in F , then since D = 0 implies

that f has a multiple root. By (3.5), we have

f = a(x− α1y)2 = a(x2 − 2α1xy + α2
1y

2) = ax2 + aα2
1y

2.

Since the coefficient field of f is F , we would have aα2
1 ∈ F which implies α2

1 ∈ F

since a ∈ F . Since every element of F has a square root in F , we would have α1 ∈ F .

Since f = a(x − α1y)2, f would factor over the coefficient field F which is not what

11



we want. In order to have a coefficient field F that has an element that does have a

square root in F , we must choose F to be an infinite field, because in a finite field of

characteristic p, every element has a pth root [1, Corollary 36].

Example 3.6. We give an example where D = 0, but f does not factor over the

coefficient field F . Let F = Z2(s), the field of rational functions over Z2 with the

indeterminate s. Note charF = 2. First, we show that s ∈ Z2(s) has no square root

in Z2(s). If, to the contrary, α2 = s for some α ∈ Z2(s), then deg s = degα2 = 2 degα

is even, but deg s = 1, and we would have a contradiction. So s ∈ Z2(s) has no square

root in Z2(s). Let f = x2 + sy2. Then D = −4s = 0. Since charF = 2 and a = 1,

case I.B in the proof of Theorem 3.1 applies. By (3.5), we have

f = a(x− α1y)2 = a(x2 − 2α1xy + α2
1y

2) = ax2 + aα2
1y

2.

Since a = 1, we have f = x2 + α2
1y

2. Matching coefficients with f , we find α2
1 = s.

Since s ∈ Z2(s) has no square root in Z2(s), we have α1 /∈ Z2(s) = F . Since

f = (x− α1y)2, f does not factor over the coefficient field F .

3.2 Bivariate Homogeneous Degree 3 Polynomials

In this section, we give some theorems for the factorization of bivariate homogeneous

degree 3 polynomials. These theorems will be used in later chapters to factor trivariate

homogeneous degree 3 polynomials.

Let

f(x, y) = ax3 + bx2y + cxy2 + dy3 ∈ F [x, y]. (3.7)

As discussed before, f will factor completely over an extension of F into 3 linear

factors because of the Fundamental Theorem of Algebra. The question is whether f

12



will factor as three linearly independent factors, or as the product of a constant times

a square and a degree 1 factor, or as a constant times a cube. We will show that the

discriminant and the Hessian of f determine which of the 3 ways f factors. Define

the Hessian H of f by,

H = (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2. (3.8)

If charF 6= 2, then H(x, y) = −1

4

(
∂2f

∂x2
∂2f

∂y2
−
(
∂2f

∂x∂y

)2
)

. (In some books, if not

most, the quantity inside the outer parentheses is called the Hessian, for example,

[8].) The discriminant D of f is

D = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd. (3.9)

(This agrees with the discriminant for a monic cubic polymial [1, p. 612] when we set

y = 1 and a = 1 and rename the coefficients.) This discriminant D of f is essentially

the same as the discriminant DH of H where H was defined in (3.8). Let’s calculate

DH :

DH = (bc− 9ad)2 − 4(b2 − 3ac)(c2 − 3bd)

= −3(b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2)

= −3D.

(3.10)

From this equation, we see that

(1) If D = 0, then DH = 0.

(2) If charF 6= 3 and DH = 0, then D = 0.

When does f as in (3.7) factor over the base field F as a cube times a con-

stant? The following theorem answers this and it is based on the known result that a
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univariate degree 3 polynomial has 3 identical roots if and only if its Hessian is zero.

This result can be found in, for example, [10, p. 26] and [9, p. 136].

Theorem 3.11. Let f be a degree 3 bivariate homogeneous polynomial as in (3.7).

Then f(x, y) = A(a0x+ a1y)3 for some A, a0, a1 ∈ F if and only if H = 0.

Proof. Suppose f(x, y) = A(a0x+ a1y)3 for some A, a0, a1. Matching coefficients, we

find

a = a30A

b = 3a20a1A

c = 3a0a
2
1A

d = a31A.

Plugging these into (3.8), we get H = 0.

Conversely, suppose H = 0. If a 6= 0, then b2 − 3ac = 0 implies c =
b2

3a
, and

bc− 9ad = 0 implies d =
bc

9a
=

b3

27a2
. Then

f = ax3 + bx2y + cxy2 + dy3

= ax3 + bx2y +
b2

3a
xy2 +

b3

27a2
y3

= a

(
x3 + 3(x)

(
b

3a
y

)2

+ 3(x)2
(
b

3a
y

)
+

(
b

3a
y

)3
)

= a

(
x+

b

3a
y

)3

,

(3.12)

having the claimed form. If a = 0, then b2 − 3ac = 0 implies b = 0, and c2 − 3bd = 0

implies c = 0. Hence f = dy3, having the claimed form.

Note that if a 6= 0, D = 0, and charF 6= 3, then H = 0 can be replaced by a

simpler one: p = 0 where p = b2− 3ac. We prove this in the following theorem and it
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comes from known results on the discriminant and the Hessian of a cubic polynomial.

These results can be found in, for example, [10, p. 26].

Theorem 3.13. Let p = b2 − 3ac. If a 6= 0, then

(1) H = 0 implies p = 0.

(2) If D = 0 and F does not have characteristic 3, then p = 0 implies H = 0.

Proof. H can be written using p as follows

H = px2 + (bc− 9ad)xy + (c2 − 3bd)y2. (3.14)

To see (1) indirectly, we note that if p 6= 0, then H 6= 0.

To show (2), suppose p = 0. Then b2 − 3ac = 0 (by definition of p) and

D = (bc − 9ad)2. If D = 0, then bc − 9ad = 0. Multiplying bc − 9ad = 0 by b, we

have b2c − 9abd = 0. Multiplying b2 − 3ac = 0 by c, we have b2c − 3ac2 = 0. Then

(b2c− 9abd)− (b2c− 3ac2) = −9abd+ 3ac2 = −3a(3bd− c2) = 0. Since a 6= 0 and F

does not have characteristic 3, we have 3bd− c2 = 0. Thus H = 0.

We give an example of Theorem 3.11.

Example 3.15. Let f = x3 + 3x2y + 3xy2 + y3. Matching coefficients with (3.7), we

find a = 1, b = 3, c = 3, and d = 1. Plugging these into (3.8), we find H = 0. By

Theorem 3.11, we have f = (x+ y)3. For this polynomial, p = b2 − 3ac = 0 which is

a simpler calculation than using (3.8) to calculate H.

When does f as in (3.7) factor into three independent linear factors? The

following theorem answers this and it is based on the known result that a univariate

polynomial has a multiple root if and only if its discriminant is zero. This result can

be found in, for example, [1, Proposition 34] and [10, p. 26].
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Theorem 3.16. Let f be a degree 3 bivariate homogeneous polynomial as in (3.7).

Then

f(x, y) = (a0x+ a1y)(b0x+ b1y)(c0x+ c1y) (3.17)

for some a0, a1, b0, b1, c0, c1 in a degree 6, or less, extension of F with a0b1−a1b0 6= 0,

a0c1 − a1c0 6= 0, and b0c1 − b1c0 6= 0, if and only if D 6= 0.

Proof. First we prove that f is a product of three linear factors—independent of

D and a—because of the Fundamental Theorem of Algebra. Suppose a 6= 0. Let

α1, α2, α3 be the roots of ax3 + bx2 + cx+ d in an extension of F of degree at most 6.

Then

ax3 + bx2 + cx+ d = a(x− α1)(x− α2)(x− α3)

and

f = a(x− α1y)(x− α2y)(x− α3y)

= (ax− aα1y)(x− α2y)(x− α3y)

(3.18)

which is a product of three linear factors. If a = 0, then by Theorem 3.1

f = y(bx2 + cxy + dy2)

= y(a0x+ a1y)(b0x+ b1y)

(3.19)

for some a0, a1, b0, and b1 in a quadratic extension of F . Thus f is a product of three

linear factors.

So independent of D and a, f has the form

f(x, y) = (a0x+ a1y)(b0x+ b1y)(c0x+ c1y). (3.20)
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Matching coefficients, we find

a = a0b0c0

b = a1b0c0 + a0b1c0 + a0b0c1

c = a1b1c0 + a1b0c1 + a0b1c1

d = a1b1c1.

(3.21)

Plugging these into (3.9), we get

D = (a0b1 − a1b0)2(a0c1 − a1c0)2(b0c1 − b1c0)2. (3.22)

From this equation, we have D 6= 0 if and only if a0b1 − a1b0 6= 0, a0c1 − a1c0 6= 0,

and b0c1 − b1c0 6= 0.

We give an example of degree 3 bivariate homogeneous polynomial f that

factors as in (3.17).

Example 3.23. Let f = x3−xy2 + y3 ∈ F [x, y]. Then matching coefficients, we find

a = 1, b = 0, c = −1, and d = 1. Plugging these into (3.9), we find D = −23. By

Theorem 3.16,

f = (x− αy)(x− βy)(x− γy)

for some α, β, and γ in a degree 6, or less, extension of F with −β+α 6= 0, −γ+α 6= 0,

and −γ + β 6= 0.

When does f , as in (3.7), factor as a square times a linear factor? The following

theorem answers this and it is based on the known result that a univariate polynomial

has a multiple root if and only if its discriminant is zero. This result can be found

in, for example, [1, Proposition 34]. And we have also used the known result that a
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univariate degree 3 polynomial has 3 identical roots if and only if its Hessian is zero.

This result can be found in, for example, [10, p. 26] and [9, p. 136]. First, we rewrite

f as a multiple of H plus a remainder in two ways:

(b2−3ac)2f =

a(b2 − 3ac︸ ︷︷ ︸
b0 ∈ F

)x+
(
b3 − 4abc+ 9a2d

)︸ ︷︷ ︸
b1 ∈ F

y

H−D
(
3axy2 + by3

)
. (3.24)

(c2−3bd)2f =

(c3 − 4bcd+ 9ad2
)︸ ︷︷ ︸

b0 ∈ F

x+ d(c2 − 3bd︸ ︷︷ ︸
b1 ∈ F

)y

H−D
(
3dx2y + cx3

)
. (3.25)

These two equations will be used to prove the following theorem.

Theorem 3.26. Let f be a degree 3 bivariate homogeneous polynomial as in (3.7).

Suppose the coefficient field F has characteristic other than 2 and 3. Then the fol-

lowing are equivalent.

(1) f = (a0x+ a1y)2(b0x+ b1y) for some a0, a1, b0, b1 ∈ F such that

a0b1 − a1b0 6= 0.

(2) H 6= 0 and D = 0.

(3) H 6= 0 and H = A(a0x+ a1y)2 for some A, a0, a1 ∈ F .

Proof. First we show (2) ⇔ (3). By (3.10), we have that D = 0 is equivalent to

DH = 0 since charF 6= 3. By Theorem 3.1, we have that DH = 0 is equivalent to

H = A(a0x+ a1y)2 for some A, a0, a1 ∈ F since charF 6= 2.

To show (1)⇒ (2), suppose f = (a0x+a1y)2(b0x+b1y) for some a0, a1, b0, b1 ∈
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F such that a0b1 − a1b0 6= 0. Matching coefficients, we get

a = a20b0

b = a0(2a1b0 + a0b1)

c = a1(a1b0 + 2a0b1)

d = a21b1.

(3.27)

Plugging these into (3.9) and (3.8), we find D = 0 and H = (a0b1−a1b0)2(a0x+a1y)2.

Since a0b1 − a1b0 6= 0, we have a0 6= 0 or a1 6= 0. So H 6= 0.

We now show that (3)⇒ (1). Suppose H 6= 0 and H = A(a0x+a1y)2 for some

A, a0, a1 ∈ F . As we have shown at the beginning of the proof, this is equivalent to

DH = 0 and D = 0. We note that either b2−3ac 6= 0 or c2−3bd 6= 0, since otherwise,

(3.10) together with DH = 0 would imply that bc− 9ad = 0, and by (3.8), H would

be zero contrary to our assumption. Since b2 − 3ac 6= 0 or c2 − 3bd 6= 0, and D = 0

and H 6= 0, we have that (3.24) and (3.25) imply that f is the product of H (which

equals A(a0x+a1y)2) and a linear factor b0x+b1y where b0 and b1 are the underbraced

coefficients in (3.24) and (3.25). That is,

f(x, y) = A(a0x+ a1y)2(b0x+ b1y)

where b0, b1 ∈ F . The constant A can be absorbed in the coefficients b0 and b1 so

that f has the claimed form f(x, y) = (a0x+ a1y)2(b0x+ b1y) where a0, a1, b0, b1 ∈ F .

It remains to prove that a0b1−a1b0 6= 0. Suppose, to the contrary, a0b1−a1b0 =

0. Then f(x, y) = B(a0x + a1y)3 for some B ∈ F , and by Theorem 3.11, we would

have H = 0, which would contradict our assumption.
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We give an example of a degree 3 bivariate homogeneous polynomial having

the three equivalent conditions in Theorem 3.26.

Example 3.28. Let f = x3 − x2y − xy2 − y3 ∈ Q[x, y]. Then matching coefficients

with (3.7), we find a = 1, b = −1, c = −1, and d = 1. Plugging these into (3.8) and

(3.9), we find H = 4(x−y)2 and D = 0. By Theorem 3.26, f = (a0x+a1y)2(b0x+b1y)

for some a0, a1, b0, b1 ∈ F such that a0b1−a1b0 6= 0. This agrees with the factorization

f = (x− y)2(x+ y).

Here is an example that shows that without charF 6= 3, condition (3) of

Theorem 3.26 might not imply conditions (1) or (2).

Example 3.29. Let F = Z3 and let f = x2y + xy2 = xy(x+ y) ∈ F [x, y]. Matching

coefficients with (3.7), we find a = d = 0 and b = c = 1. Then

H = (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2

= x2 + xy + y2

= (x− y)2.

An easy calculation shows that D = 1. In this example, condition (1) of Theorem 3.26

is false, condition (2) is false, and condition (3) is true.

20



CHAPTER 4

Trivariate Homogeneous Degree 2 Polynomials

In this chapter, we consider the reducibility of polynomials of the form

f = C0z
2 + C1xz + C2yz + C4x

2 + C3xy + C5y
2 (4.1)

over some base field F containing the constants Ci in the indeterminates x, y and z.

Throughtout this chapter, we will assume that charF 6= 2. To see if the polynomial

f reduces over F or over some extension of F , the following quantity is important.

Let

R = −C1C2C3 + C0C
2
3 + C2

2C4 + C2
1C5 − 4C0C4C5. (4.2)

The goal is to show that

• If f is reducible over F or over some extension of F , then R = 0, and

• If R = 0, then f is reducible over a quadratic extension of F .

We have looked through a number of literatures that are related to this subject, in

particular, literatures on ternery quadratic forms, for example, [11], [12], and [13]. It

is well known that f can be written in the form

f =
[
x y z

]
M

xy
z


for some symmetric 3× 3 matrix M . But we have not yet seen the quantity R being

given in the literatures that we have looked at.

Where is R coming from? What’s the intuition? There are two possible

explanations. One of them is that R comes from the discriminant of the symmetric
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matrix of the quadratic form f in the basis (x, y, z), see equation (4.18). The second

explanation comes from the remainder of f divided by a general linear polynomial.

We first assume that f factors, and then derive consequences. So suppose

f = (a0z + a1x+ a2y)(b0z + b1x+ b2y) (4.3)

for some a0, a1, a2, b0, b1, and b2 in an extension of F . Suppose a0 6= 0. Then using

polynomial long division to divide f by a0z + a1x+ a2y, treating both as polynomial

in z, we find

a20f = (a0z + a1x+ a2y)Q+ R̂ (4.4)

where

Q = (−a1C0 + a0C1)x+ (−a2C0 + a0C2)y + a0C0z

R̂ = K1x
2 +K2xy +K3y

2

K1 = a21C0 − a0a1C1 + a20C4

K2 = 2a1a2C0 − a0a2C1 − a0a1C2 + a20C3

K3 = a22C0 − a0a2C2 + a20C5.

(4.5)

Since f factors as in (4.3), we have R̂ = 0 and so K1 = K2 = K3 = 0. Let S be the

resultant of K1 and K2, treating both as polynomial in a1 and assuming their leading

coefficients are nonzero. Then

S = a20
(
−a22C0C

2
1 + a0a2C

2
1C2 − a20C1C2C3 + a20C0C

2
3 + 4a22C

2
0C4

−4a0a2C0C2C4 + a20C
2
2C4

)
.

So assuming nonzero leading coefficients, K1 = 0 and K2 = 0 have a common solution

for a1 if and only if S = 0. Since a0 6= 0, the other part of S without the factor of a20
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equals zero. Call this other part T , i.e.,

T = −a22C0C
2
1 +a0a2C

2
1C2−a20C1C2C3 +a20C0C

2
3 + 4a22C

2
0C4−4a0a2C0C2C4 +a20C

2
2C4

and T = 0. Similarly, using resultant and assuming nonzero leading coefficients, we

find that T = 0 and K3 = 0 have a common solution for a2 if and only if

a40C
2
0(−C1C2C3 + C0C

2
3 + C2

2C4 + C2
1C5 − 4C0C4C5︸ ︷︷ ︸

R

)2 = 0.

Suppose C0 6= 0, then since a0 6= 0, we have R = 0.

Towards proving that R = 0 is a necessary and sufficient condition for f to

factor, we first introduce a symmetry diagram that will come in handy when we make

a symmetry argument. If we permute the indeterminates x, y, and z of f , then the new

polynomial is reducible if and only if the original one is. To see how the coefficients

Ci permutes when the indeterminates are permuted, we give a symmetry diagram in

Figure 4.1. For example, interchanging x and y in f means that we interchange C4

x

C4

C1 C3

C0 C2 C5
z y

Figure 4.1: Symmetry diagram for the coefficients of degree 2 polynomial.

and C5, C1 and C2, but C0 and C3 are unchanged. Note that R is unchanged by these

changes or any other symmetry.

Lemma 4.6. If f is reducible over F or over some extension of F , then R = 0.

Proof. If f is reducible, then f is a product of two homogeneous degree 1 polynomials.

Hence f has the form f = (a0z+ a1x+ a2y)(b0z+ b1x+ b2y) where a0, a1, a2, b0, b1, b2
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are in F or in some extension of F . Expanding this expression gives

f = (a0z + a1x+ a2y)(b0z + b1x+ b2y)

= a0b0︸︷︷︸
C0

z2 + (a0b1 + a1b0︸ ︷︷ ︸
C1

)xz + (a0b2 + a2b0︸ ︷︷ ︸
C2

)yz + a1b1︸︷︷︸
C4

x2

+ (a1b2 + a2b1︸ ︷︷ ︸
C3

)xy + a2b2︸︷︷︸
C5

y2.

Matching coefficients, we find

C0 = a0b0

C1 = a0b1 + a1b0

C2 = a0b2 + a2b0

C4 = a1b1

C3 = a1b2 + a2b1

C5 = a2b2.

(4.7)
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Plugging the expressions for the Ci from above into the expression for R, we get

R = −C1C2C3 + C0C
2
3 + C2

2C4 + C2
1C5 − 4C0C4C5

= −(a0b1 + a1b0)(a0b2 + a2b0)(a1b2 + a2b1) + a0b0(a1b2 + a2b1)
2

+ (a0b2 + a2b0)
2a1b1 + (a0b1 + a1b0)

2a2b2 − 4a0b0a1b1a2b2

=
(
− a1a22b20b1 − a0a22b0b21 − a21a2b20b2 − 2a0a1a2b0b1b2

− a20a2b21b2 − a0a21b0b22 − a20a1b1b22
)

+
(
a0a

2
2b0b

2
1 + 2a0a1a2b0b1b2 + a0a

2
1b0b

2
2

)
+
(
a1a

2
2b

2
0b1 + 2a0a1a2b0b1b2 + a20a1b1b

2
2

)
+
(
a21a2b

2
0b2 + 2a0a1a2b0b1b2 + a20a2b

2
1b2
)

− 4a0a1a2b0b1b2

= 0.

It takes more work and more steps to show that if R = 0, then f is reducible

over a quadratic extension of F . Toward this goal, some important quantities are

defined as follows. If we set x = 0, then f = C0z
2 + C2yz + C5y

2. We define Dx as

the discriminant of this polynomial, i.e.,

Dx = C2
2 − 4C0C5. (4.8)

Similarly, if we set y = 0, then f = C0z
2 + C1xz + C4x

2 and we define Dy as

Dy = C2
1 − 4C0C4. (4.9)

Similarly, if we set z = 0, then f = C4x
2 + C3xy + C5y

2 and we define Dz as

Dz = C2
3 − 4C4C5. (4.10)
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Some more important quantities are defined below. They occur in parts of equations

that show the relationship between f and the discriminants defined earlier.

Ex = C1C3 − 2C2C4 (4.11)

Ey = C2C3 − 2C1C5 (4.12)

Ez = C1C2 − 2C0C3 (4.13)

Lx = C1z + 2C4x+ C3y (4.14)

Ly = C2z + C3x+ 2C5y (4.15)

Lz = 2C0z + C1x+ C2y. (4.16)

We will prove some preliminary lemmas about the relationship between f , R,

and the above quantities and use these to prove that if R = 0, then f is reducible

over a quadratic extension of F . Towards showing these relationships, we start by

re-writing f using matrix equations. 2f can be re-written as 2f =
[
x y z

]
M

xy
z


where

M =


2C4 C3 C1

C3 2C5 C2

C1 C2 2C0

 . (4.17)

Calculating the determinant of M is straightforward.

detM = 8C0C4C5 + C1C2C3 + C1C2C3 − 2C2
2C4 − 2C0C

2
3 − 2C2

1C5

= −2R.

(4.18)

Using row one of M to calculate detM , we get

detM = 2C4

∣∣∣∣∣∣2C5 C2

C2 2C0

∣∣∣∣∣∣− C3

∣∣∣∣∣∣C3 C2

C1 2C0

∣∣∣∣∣∣+ C1

∣∣∣∣∣∣C3 2C5

C1 C2

∣∣∣∣∣∣
= −2C4Dx + C3Ez + C2Ey.

(4.19)
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Since detM = −2R, we have 2R = 2C4Dx − C3Ez − C2Ey.

Similarly, using row two of M to calculate detM , we get

detM = −C3

∣∣∣∣∣∣C3 C1

C2 2C0

∣∣∣∣∣∣+ 2C5

∣∣∣∣∣∣2C4 C1

C1 2C0

∣∣∣∣∣∣− C2

∣∣∣∣∣∣2C4 C3

C1 C2

∣∣∣∣∣∣
= C3Ez − 2C5Dy + C2Ex.

(4.20)

Since detM = −2R, we have 2R = −C3Ez + 2C5Dy − C2Ex.

Similarly, using row three of M to calculate detM , we get

detM = C1

∣∣∣∣∣∣ C3 C1

2C5 C2

∣∣∣∣∣∣− C2

∣∣∣∣∣∣2C4 C1

C3 C2

∣∣∣∣∣∣+ 2C0

∣∣∣∣∣∣2C4 C3

C3 2C5

∣∣∣∣∣∣
= C1Ey + C2Ex − 2C0Dz.

(4.21)

Since detM = −2R, we have 2R = 2C0Dz − C1Ey − C2Ex.

Calculating the adjoint of M is straightforward.

adjM =


4C0C5 − C2

2 C1C2 − 2C0C3 C2C3 − 2C1C5

C1C2 − 2C0C3 4C0C4 − C2
1 C1C3 − 2C2C4

C2C3 − 2C1C5 C1C3 − 2C2C4 4C4C5 − C2
3



=


−Dx Ez Ey

Ez −Dy Ex

Ey Ex −Dz


(4.22)

adj adjM =


DyDz − E2

x ExEy +DzEz ExEz +DyEy

ExEy +DzEz DxDz − E2
y EyEz +DxEx

ExEz +DyEy EyEz +DxEx DxDy − E2
z

 . (4.23)

We prove a lemma that gives an alternate way of calculating adj adjM .

Lemma 4.24. Let F be a field, and let n be a natural number greater than or equal

to 2, and let A be an n×n matrix whose entries are elements of F . Then adj adjA =

(detA)n−2A.

27



Proof. Let

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

. . . . . . . . . . . . . . . . . . . . . . .

xn1 xn2 xn3 . . . xnn


where each xij is an indeterminate. Then detX ∈ F [x11, x12, x13, . . . , xnn]. We start

from a known result that can be found in, for example [6, p.137]:

(adjX)X = X(adjX) = (detX)I. (4.25)

Taking the determinant on both sides of the equation, we have

(detX)(det adjX) = (detX)n. (4.26)

Since F [x11, x12, x13, . . . , xnn] is a domain and detX is not the zero polynomial, we

have

(det adjX) = (detX)n−1. (4.27)

Replacing X by adjX in (4.25), we have

(adj(adjX)) adjX = (det adjX)I

= (detX)n−1I by (4.27).

(4.28)

Multiplying both sides by X on the right, we have

(adj(adjX))(adjX)X = (detX)n−1X. (4.29)

Since (adjX)X = (detX)I, we have

(adj(adjX))(detX)I = (detX)n−1X. (4.30)
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Then since F [x11, x12, x13, . . . , xnn] is a domain and detX is not the zero polynomial,

we have

(adj(adjX)) = (detX)n−2X.

Using the evaluation homomorphism to replace the indeterminates xij with entries of

A, we have

(adj(adjA)) = (detA)n−2A.

We apply this lemma to the matrix M that we were discussing earlier. Since

M is a 3×3 matrix, we have n = 3. By Lemma 4.24, we have adj adjM = (detM)M .

Since detM = −2R, we have adj adjM = (detM)M = −2RM . We matching the

diagonal entries in the three equal matrices (detM)M , −2RM , and adj adjM as

given in (4.23):

(detM)(2C4) = −2R(2C4) = −4C4R = DyDz − E2
x

(detM)(2C5) = −2R(2C5) = −4C5R = DxDz − E2
y

(detM)(2C0) = −2R(2C0) = −4C0R = DxDy − E2
z .

(4.31)

Matching the rest of the entries in the three equal matrices, we have

(detM)(C3) = −2R(C3) = −2C3R = ExEy +DzEz

(detM)(C1) = −2R(C1) = −2C1R = ExEz +DyEy

(detM)(C2) = −2R(C2) = −2C2R = EyEz +DxEx.

(4.32)

We put the three equations in (4.31) into a lemma.

Lemma 4.33. With the definitions for the Es and the Ds in (4.8)–(4.13) and the
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definition for R in (4.2) , the following equations are true.

E2
x = DyDz + 4C4R

E2
y = DxDz + 4C5R

E2
z = DxDy + 4C0R.

(4.34)

Proof. One way to show this is to expand the above expressions using the definitions

in (4.8)–(4.16).

E2
x = C2

1C
2
3 − 4C1C2C3C4 + 4C2

2C
2
4

DyDz = C2
1C

2
3 − 4C0C

2
3C4 − 4C2

1C4C5 + 16C0C
2
4C5

4C4R = −4C1C2C3C4 + 4C0C
2
3C4 + 4C2

2C
2
4 + 4C2

1C4C5 − 16C0C
2
4C5

From these, we see that E2
x = DyDz + 4C4R. Because of the symmetry diagram in

Figure 4.1, it suffices to prove only one of the equations.

Alternatively, these equations can be shown to come directly from the diagonal

of the adj adjM in (4.31) as it has been shown earlier.

4.1 When Is f A Square

When charF 6= 2, R = 0 and Dx = Dy = Dz = 0, then f is a square times a constant.

Towards proving this, we first prove a lemma showing the relationship between f , Lx,

Dy, Dz, and Ex.

Lemma 4.35. With the definitions in (4.8)–(4.16), we have the following.

4C4f = L2
x −Dyz

2 −Dzy
2 − 2Exyz

4C5f = L2
y −Dxz

2 −Dzx
2 − 2Eyxz

4C0f = L2
z −Dyx

2 −Dxy
2 − 2Ezxy

(4.36)
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Proof. We will expand L2
z and −Dyx

2 −Dxy
2 − 2Ezxy in the third equation 4C0f =

L2
z −Dyx

2 −Dxy
2 − 2Ezxy using the definitions in (4.8)–(4.16).

L2
z = C2

1x
2 + 2C1C2xy + C2

2y
2 + 4C0C1xz + 4C0C2yz + 4C2

0z
2 (4.37)

−Dyx
2 −Dxy

2 − 2Ezxy = (−C2
1 + 4C0C4)x

2 − (C2
2 − 4C0C5)y

2

− 2(C1C2 − 2C0C3)xy.

(4.38)

Adding these two equations, we get

L2
z −Dyx

2 −Dxy
2 − 2Ezxy = 4C0C1xz + 4C0C2yz + 4C2

0z
2 + 4C0C4x

2

+ 4C0C5y
2 + 4C0C3xy

= 4C0(C1xz + C2yz + C0z
2 + C4x

2 + C5y
2

+ C3xy)

= 4C0f.

(4.39)

Similarly, using the symmetry diagram in Figure 4.1, we get the other two equations.

Equations (4.36) leads to factorizations of f over the base field.

Theorem 4.40. If charF 6= 2 and R = Dx = Dy = Dz = 0, then f factors over the

base field F as a square times a constant.

Proof. Plugging R = Dx = Dy = Dz = 0 into (4.34) in Lemma 4.33, we have

Ex = Ey = Ez = 0. If C0 6= 0, then equation (4.36) says f =
L2
z

4C0

. Similarly, if

C4 6= 0, then f =
L2
x

4C4

. And if C5 6= 0, then f =
L2
y

4C5

. So if one of the C0, C4, or C5

is nonzero, then by Lemma 4.35, f is a square times a constant.

If C0 = C4 = C5 = 0, then by the definitions for Dx, Dy, and Dz in
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(4.8)–(4.10), we have C1 = C2 = C3 = 0 and f = 0, which is a square times a

constant.

It is straightforward to show that the if-condition above is in fact an if-and-

only-if condition.

Theorem 4.41. If charF 6= 2, then f = A(a0z+a1x+a2y)2 for some A, a0, a1, a2 ∈ F

if and only if R = Dx = Dy = Dz = 0.

Proof. (⇐) This direction has been proven in Theorem 4.40.

(⇒) Since f factors, Lemma 4.6 tells us that R = 0. Expanding A(a0z+ a1x+ a2y)2,

and matching coefficients with f , we have

C0 = Aa20

C1 = 2Aa1a0

C2 = 2Aa2a0

C3 = 2Aa1a2

C4 = Aa21

C5 = Aa22.

(4.42)

Plugging these into the definitions for Dx, Dy, and Dz in (4.8)–(4.10), we have

Dx = C2
2 − 4C0C5 = (2Aa2a0)

2 − 4(Aa20)(Aa
2
2) = 0

Dy = C2
1 − 4C0C4 = (2Aa1a0)

2 − 4(Aa20)(Aa
2
1) = 0

Dz = C2
3 − 4C4C5 = (2Aa1a2)

2 − 4(Aa21)(Aa
2
2) = 0.
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4.2 When Is f Reducible But Not A Square

If f(x, y, z) = g(x, y, z)h(x, y, z), then setting y = 0, we have

f(x, 0, z) = g(x, 0, z)h(x, 0, z). So a factorization for the trivariate case gives a fac-

torization for the bivariate case. While the converse does not hold, a factorization

for the bivariate case might give us some information about the factorization for the

trivariate case. We take f as in (4.1) and set y = 0. Then we get the polynomial

C0z
2 + C1xz + C4x

2 whose discriminant is Dy = C2
1 − 4C0C4. The following factor-

izations for f(x, 0, z) = C0z
2 + C1xz + C4x

2, f(0, y, z) = C5y
2 + C2yz + C0z

2, and

f(x, y, 0) = C4x
2 + C3xy + C5y

2 (which correspond to the sides of Figure 4.1) leads

to the factorizations of f that are not a square.

Theorem 4.43. Suppose C0z
2 + C1xz + C4x

2 = (a0z + a1x)(b0z + b1x). Then

Dyf = f1f2 +Ry2 (4.44)

where f1 = dy(a1x+ a0z) + (a1C2− a0C3)y, f2 = dy(b1x+ b0z)− (b1C2− b0C3)y, and

dy = a1b0 − a0b1. Similarly, suppose C5y
2 + C2yz + C0z

2 = (a2y + a0z)(b2y + b0z).

Then

Dxf = g1g2 +Rx2 (4.45)

where g1 = dx(a0z + a2y) + (a0C2− a2C1)x, g2 = dx(b0z + b2y)− (b0C3− b2C1)x, and

dx = a0b2−a2b0. And similarly, suppose C4x
2+C3xy+C5y

2 = (a1x+a2y)(b1x+b2y).

Then

Dzf = h1h2 +Rz2 (4.46)

where h1 = dz(a2y+ a1x) + (a2C1− a1C2)z, h2 = dz(b2y+ b1x)− (b2C1− b1C2)z, and

dz = a2b1 − a1b2.
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Proof. Matching coefficients in C0z
2 +C1xz +C4x

2 = (a0z + a1x)(b0z + b1x), we get

C4 = a1b1

C1 = a1b0 + a0b1

C0 = a0b0.

Plugging these into (4.1) and (4.9), we find

Dyf = (−4a0a1b0b1 + (a1b0 + a0b1)
2)

× (a1b1x
2 + C3xy + C5y

2 + (a1b0 + a0b1)xz + C2yz + a0b0z
2)

= (a31b
2
0b1 − 2a0a

2
1b0b

2
1 + a20a1b

3
1)x

2

+ (a21b
2
0C5 − 2a0a1b0b1C5 + a20b

2
1C5)y

2

+ (a21b
2
0C2 − 2a0a1b0b1C2 + a20b

2
1C2)yz

+ (a0a
2
1b

3
0 − 2a20a1b

2
0b1 + a30b0b

2
1)z

2

+ (a21b
2
0C3 − 2a0a1b0b1C3 + a20b

2
1C3)xy

+ (a31b
3
0 − a0a21b20b1 − a20a1b0b21 + a30b

3
1)xz.

(4.47)

Plugging the same set of substitutions for Ci into f1, f2, and R, we find

f1 = (a21b0 − a0a1b1)x+ (a1C2 − a0C3)y + (a0a1b0 − a20b1)z (4.48)

f2 = (a1b0b1 − a0b21)x+ (−b1C2 + b0C3)y + (a1b
2
0 − a0b0b1)z (4.49)
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f1f2 = (a31b
2
0b1 − 2a0a

2
1b0b

2
1 + a20a1b

3
1)x

2

+ (−a1b1C2
2 + a1b0C2C3 + a0b1C2C3 − a0b0C2

3)y2

+ (a21b
2
0C2 − 2a0a1b0b1C2 + a20b

2
1C2)yz

+ (a0a
2
1b

3
0 − 2a20a1b

2
0b1 + a30b0b

2
1)z

2

+ (a21b
2
0C3 − 2a0a1b0b1C3 + a20b

2
1C3)xy

+ (a31b
3
0 − a0a21b20b1 − a20a1b0b21 + a30b

3
1)xz

(4.50)

R = a1b1C
2
2 − a1b0C2C3 − a0b1C2C3 + a0b0C

2
3 + a21b

2
0C5 − 2a0a1b0b1C5

+ a20b
2
1C5.

(4.51)

From these equations, we can almost see that Dyf = f1f2+Ry2. Almost all the terms

of Dyf appear in f1f2. Only the y2-term requires a bit of thoughts. The four terms

in the coefficient of y2 in f1f2 cancels with the first four terms in the coefficient of y2

in Ry2. The remaining three terms in the coefficient of y2 in Ry2 gives the coefficients

of y2 in Dyf . Similarly, by rotating the triangle diagram in Figure 4.1, we get the

other two assertions.

An immediate consequence of Lemma 4.43 is the following.

Theorem 4.52. If R = 0, and one of Dx, Dy, or Dz is nonzero, then f factors over

a quadratic extension of F as in Lemma 4.43, and f is not a square.

Proof. If Dy 6= 0, then by Theorem 3.1, C0z
2 +C1xz+C4x

2 = (a0z+ a1x)(b0z+ b1x)

for some a0, a1, b0, and b1 in F
[√

Dy

]
. The ai and bi can then be used to construct f1

and f2 as in Lemma 4.43. Since R = 0 and Dy 6= 0, we have f =
f1f2
Dy

by Lemma 4.43.

Similarly, if Dx or Dz is nonzero, then f factors over F
[√
Dx

]
or F

[√
Dz

]
.

We combine Lemma 4.6, Theorem 4.40, and Theorem 4.52 to get an if-and-
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only-if condition for f to factor over F or over an extension of F .

Theorem 4.53. Suppose charF 6= 2. Then f is reducible over F or over an extension

of F if and only if R = 0.

Proof. (⇒) This direction was proven in Lemma 4.6.

(⇐) Assume R = 0. If Dx = Dy = Dz = 0, then by Theorem 4.40, f factors over the

base field F as a square times a constant. If one of Dx, Dy, or Dz is nonzero, then

by Theorem 4.52, f factors over a quadratic extension of F as in Lemma 4.43.

When does f factor over the base field F without the need to go to an extension

of F? Towards answering this question, we start with the following lemma.

Lemma 4.54. If R = 0 and one of the followings holds

(1) 0 6= Dz is a square in F , or

(2) 0 6= Dy is a square in F , or

(3) 0 6= Dx is a square in F ,

then f factors over F .

Proof. Suppose Dz is a square in F . Then C4x
2+C3xy+C5y

2 = (a1x+a2y)(b1x+b2y)

for some ai, bi ∈ F . Then the following expressions, as defined in Theorem 4.43,

dz = a2b1 − a1b2 is in F , and h1 = dz(a2y + a1x) + (a2C1 − a1C2)z and h2 = dz(b2y +

b1x)− (b2C1 − b1C2)z are in F [x, y]. By (4.46), f =
h1h2
Dz

factors over F .

Similarly, if Dy is a square in F , then f =
f1f2
Dy

factors over F where f1 and

f2 are as defined in Theorem 4.43.

Similarly, if Dx is a square in F , then f =
g1g2
Dx

factors over F where g1 and

g2 are as defined in Theorem 4.43.
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We now give an if-and-only-if condition for f to factor over the base field F .

Theorem 4.55. If charF 6= 2, then f factors over F if and only if R = 0 and Dx,

Dy, and Dz are squares in F .

Proof. (⇐) Assume R = 0 and Dx, Dy, and Dz are squares in F . If Dx = Dy =

Dz = 0, then by Theorem 4.40, f factors over F as a square times a constant. If one

of the Dx, Dy, or Dz is nonzero, then by Lemma 4.54, f factors over F .

(⇒) Suppose f factors over F as f = (a0z + a1x + a2y)(b0z + b1x + b2y) for some

ai, bi ∈ F . Then the coefficents of f are given by (4.7) Plugging these coefficients into

Dz = C2
3 − 4C4C5, we have

Dz = (a2b1 + a1b2)
2 − 4(a1b1)(a2b2)

= a22b
2
1 + 2a1a2b1b2 + a21b

2
2 − 4a1a2b1b2

= a22b
2
1 − 2a1a2b1b2 + a21b

2
2

= (a2b1 − a1b2)2

(4.56)

and a2b1− a1b2 is in F since ai, bi ∈ F . Thus, Dz is a square in F . Similarly, Dy and

Dx are squares in F .

Example 4.57. Let F be a field. Let f = x2−6xy−2y2−20xz−6yz+z2 ∈ F [x, y, z].

We will use (4.44) in Lemma 4.43 to obtain a factorization of f . The other two

equations (4.45) and (4.46) in the same lemma gives factorizations of f that are

essentially the same as the one obtained from (4.44) except for order and a constant
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factor, because F [x, y, z] is a UFD. Matching coefficients of f with (4.1), we get

C0 = 1

C1 = −20

C2 = −6

C3 = −6

C4 = 1

C5 = −2.

(4.58)

We calculate R, Dy, Dx, and Dz.

R = −C1C2C3 + C0C
2
3 + C2

2C4 + C2
1C5 − 4C0C4C5

= 720 + 36 + 36− 800 + 8

= 0

Dy = C2
1 − 4C0C4 = 400− 4 = 396 = 62 · 11

Dx = C2
2 − 4C0C5 = 36 + 8 = 44 = 22 · 11

Dz = C2
3 − 4C4C5 = 36 + 8 = 22 · 11.

(4.59)

Consider the polynomial C0z
2 +C1xz +C4x

2 = z2 − 20xz + x2. By Theorem 3.1, we
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have

C0z
2 + C1xz + C4x

2 = z2 − 20xz + x2

=
1

4C0

(
2C0z +

(
C1 −

√
C2

1 − 4C0C4

)
x

)
×
(

2C0z +

(
C1 +

√
C2

1 − 4C0C4

)
x

)
=

1

4

(
2z +

(
−20− 6

√
11
)
x
)

×
(

2z +
(
−20 + 6

√
11
)
x
)

=
(
z +

(
−10− 3

√
11
)
x
)

×
(
z +

(
−10 + 3

√
11
)
x
)
.

(4.60)

We set a0 = 1, a1 = −10 − 3
√

11, b0 = 1, and b1 = −10 + 3
√

11. Then dy =

a1b0 − a0b1 = −6
√

11,

f1 = −6
√

11
((
−10− 3

√
11
)
x+ z

)
+
((
−10− 3

√
11
)

(−6) + 6
)
y

= 6
[(

33 + 10
√

11
)
x+

(
11 + 3

√
11
)
y −
√

11z
] (4.61)

f2 = −6
√

11
((
−10 + 3

√
11
)
x+ z

)
−
((
−10 + 3

√
11
)

(−6) + 6
)
y

= 6
[(
−33 + 10

√
11
)
x+

(
−11 + 3

√
11
)
y −
√

11z
] (4.62)

By (4.44), we have

f =
1

62 · 11

(
6
[(

33 + 10
√

11
)
x+

(
11 + 3

√
11
)
y −
√

11z
])

×
(

6
[(
−33 + 10

√
11
)
x+

(
−11 + 3

√
11
)
y −
√

11z
])

=
[(

10 + 3
√

11
)
x+

(
3 +
√

11
)
y − z

]
×
[(

10− 3
√

11
)
x+

(
3−
√

11
)
y − z

]
.

(4.63)
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We will show that f is a difference of squares when R = 0. We first rewrite f

by completing the square, treating f as a polynomial in x:

f = C0z
2 + C1xz + C2yz + C3xy + C4x

2 + C5y
2

= C4x
2 + (C1z + C3y)x+ (C0z

2 + C5y
2 + C2yz).

(4.64)

With Lx as defined in (4.14), we have

4C4f = (2C4x+ C1z + C3y)2 − ((C1z + C3y)2 − 4C4(C0z
2 + C5y

2 + C2yz))

= L2
x − (C2

1z
2 + 2C1C3yz + C2

3y
2 − 4C0C4z

2 − 4C4C5y
2 − 4C4C2yz)

= L2
x − ((C2

1 − 4C0C4)z
2 + (C2

3 − 4C4C5)y
2 + 2(C1C3 − 2C2C4)yz)

= L2
x − (Dyz

2 + 2Exyz +Dzy
2).

(4.65)

This equation is exactly the same as (4.36). Then we rewrite the second term

−(Dyz
2 + 2Exyz +Dzy

2) by completing the square, treating it as a polynomial in y:

Dz(4C4f − L2
x) = −(D2

zy
2 + 2DzExyz +DyDzz

2)

= −((Dzy + Exz)2 − E2
xz

2 +DyDzz
2)

= −((Dzy + Exz)2 + (DyDz − E2
x)z2)

= −((Dzy + Exz)2 − 4C4Rz
2) by (4.34).

(4.66)

From this, we can solve for 4DzC4f :

4DzC4f = DzL
2
x − (Dzy + Exz)2 + 4C4Rz

2. (4.67)

Similarly, and by symmetry using Figure 4.1, we have five other equations:

4DzC5f = DzL
2
y − (Dzx+ Eyz)2 + 4C5Rz

2. (4.68)

4DxC0f = DxL
2
z − (Dxy + Ezx)2 + 4C0Rx

2. (4.69)
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4DxC5f = DxL
2
y − (Dxz + Eyx)2 + 4C5Rx

2. (4.70)

4DyC0f = DyL
2
z − (Dyx+ Ezy)2 + 4C0Ry

2. (4.71)

4DyC4f = DyL
2
x − (Dyz + Exy)2 + 4C4Ry

2. (4.72)

From (4.67), if R = 0 and DzC4 6= 0, then f is a difference of squares

f =
1

4DzC4

(
DzL

2
x − (Dzy + Exz)2

)
. (4.73)

Similarly, if R = 0 and DzC5 6= 0, then f is a difference of squares

f =
1

4DzC5

(
DzL

2
y − (Dzx+ Eyz)2

)
. (4.74)

Similarly, if R = 0 and DxC0 6= 0, then f is a difference of squares

f =
1

4DxC0

(
DxL

2
z − (Dxy + Ezx)2

)
. (4.75)

Similarly, if R = 0 and DxC5 6= 0, then f is a difference of squares

f =
1

4DxC5

(
DxL

2
y − (Dxz + Eyx)2

)
. (4.76)

Similarly, if R = 0 and DyC0 6= 0, then f is a difference of squares

f =
1

4DyC0

(
DyL

2
z − (Dyx+ Ezy)2

)
. (4.77)

Similarly, if R = 0 and DyC4 6= 0, then f is a difference of squares

f =
1

4DyC4

(
DyL

2
x − (Dyz + Exy)2

)
. (4.78)

Otherwise if we are not in any one of the cases above, then suppose R = 0 and

C4Dz = C5Dz = 0

C0Dx = C5Dx = 0

C0Dy = C4Dy = 0.

(4.79)
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If all the discriminants Dz, Dy, and Dx are zero, then by Theorem 4.41, we are done.

The remaining case is that one of the discriminants is nonzero. So, WLOG,

suppose Dz 6= 0. Then by (4.79), we have C4 = C5 = 0, which implies Dz = C2
3 . By

Lemma 4.54, f =
h1h2
Dz

where h1 and h2 are as defined in Lemma 4.43 and are in

F [x, y, z]. Since f factors over F , f can be readily rewritten as a difference of squares

with coefficients in F :

f =
h1h2
Dz

=
1

4Dz

(
(h1 + h2)

2 − (h1 − h2)2
)
.

(4.80)

Similarly, if Dy or Dx is nonzero, then f can be factored as a difference of squares

with coefficients in F .

From (4.73), f can be readily factored as a difference of squares:

Theorem 4.81. Suppose charF 6= 2. If C4Dz 6= 0, and R = 0, then

f =
1

4C4Dz

(
Lx

√
Dz + (Dzy + Exz)

)(
Lx

√
Dz − (Dzy + Exz)

)
. (4.82)

Similarly, if C5Dz 6= 0, and R = 0, then

f =
1

4C5Dz

(
Ly

√
Dz + (Dzx+ Eyz)

)(
Ly

√
Dz − (Dzx+ Eyz)

)
. (4.83)

Similarly, if C0Dx 6= 0, and R = 0, then

f =
1

4C0Dx

(
Lz

√
Dx + (Dxy + Ezx)

)(
Lz

√
Dx − (Dxy + Ezx)

)
. (4.84)

Similarly, if C5Dx 6= 0, and R = 0, then

f =
1

4C5Dx

(
Ly

√
Dx + (Dxz + Eyx)

)(
Ly

√
Dx − (Dxz + Eyx)

)
. (4.85)
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Similarly, if C0Dy 6= 0, and R = 0, then

f =
1

4C0Dy

(
Lz

√
Dy + (Dyx+ Ezy)

)(
Lz

√
Dy − (Dyx+ Ezy)

)
. (4.86)

Similarly, if C4Dy 6= 0, and R = 0, then

f =
1

4C4Dy

(
Lx

√
Dy + (Dyz + Exy)

)(
Lx

√
Dy − (Dyz + Exy)

)
. (4.87)

One might be curious about whether R = 0 and Dx = Dy = 0 implies Dz = 0.

This is false because of the following counterexample.

Counterexample 4.88. Let f = x2 + y2. Matching coefficients, we find C0 =

C1 = C2 = C3 = 0 and C4 = C5 = 1. Then R = −C1C2C3 + C0C
2
3 + C2

2C4 +

C2
1C5 − 4C0C4C5 = 0, Dx = C2

2 − 4C0C5 = 0 and Dy = C2
1 − 4C0C4 = 0, but

Dz = C3 − 4C4C5 = −4 6= 0.

However, the statement is almost true because if we add C0 6= 0 to the as-

sumption, then we will be able to prove Dz = 0.

Theorem 4.89. If C0 6= 0 and R = Dx = Dy = 0, then Dz = 0.

Proof. Plugging R = Dx = Dy = 0 into (4.34), we have Ez = 0. From the definition

of Dx, Dy, and Ez, we have

Dx = 0 =⇒ C2
2 = 4C0C5

Dy = 0 =⇒ C2
1 = 4C0C4

Ez = 0 =⇒ C1C2 = 2C0C3.

(4.90)
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We use these to calculate the following:

4C2
0Dz = 4C2

0(C2
3 − 4C4C5)

= (2C0C3)
2 − (4C0C4)(4C0C5)

= (C1C2)
2 − C2

1C
2
2

= 0.

(4.91)

Since C0 6= 0, we have Dz = 0.

Let A and B be elements of a field F . How does a general symmetric degree 2

trivariate polynomial f = A(x2 + y2 + z2) +B(xy+xz+ yz) factor when it does? We

will show either f = 4A2(x + y + z)2, or f = A(x + ωz + ω2y)(x + ω2z + ωy) where

ω = e
2πi
3 is a root of x2 + x+ 1.

Example 4.92. With f defined as in (4.1) and f = A(x2+y2+z2)+B(xy+xz+yz),

matching coefficients, we have C4 = C5 = C0 = A and C3 = C1 = C2 = B. Plugging

these values into R, we find R = −(2A−B)2(A+B). Suppose f is reducible over an

extension of F . Then B = 2A or B = −A.

Case (1): If B = 2A, then

f = A(x2 + y2 + z2) + 2A(xy + xz + yz) = A(x+ y + z)2.

Case (2): If B = −A, then

f = A(x2 + y2 + z2)− A(xy + xz + yz). (4.93)

Matching coefficients, we find C0 = C4 = C5 = A, C1 = C2 = C3 = −A. Then

Dx = Dy = Dz = A2 − 4A2 = −3A2. If A = 0, then Dx = Dy = Dz = 0 and

f = 0. If A 6= 0, then Dx = Dy = Dz = −3A2 6= 0. By Lemma 4.43, Dyf = Dxf =
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Dzf = −3A2f = f1f2 = g1g2 = h1h2. Then C0z
2 + C1xz + C4x

2 factors as in (4.44).

C0z
2+C1xz+C4x

2 = Az2−Axz+Ax2 = (Ax+Aωz)(x+ω2z) = (a0z+a1x)(b0z+b1x).

Then a0 = Aω, a1 = A, b0 = ω2, and b1 = 1. Then dy = Aω2−Aω, dyω
2 = A(ω− 1),

f1 = dy(Ax+ Aωz) + (−A2 + A2ω)y

= dyA(x+ ωz) + A · A(ω − 1)︸ ︷︷ ︸
dyω

2

y

= Ady(x+ ωz + ω2y)

(4.94)

f2 = dy(x+ ω2z)− (−A+ Aω2)y

= dy(x+ ω2z)− A(ω − 1)︸ ︷︷ ︸
dyω

2

(ω + 1)y

= dy(x+ ω2z − (1 + ω2)y)

= dy(x+ ω2z + ωy).

(4.95)

Then

−3A2f = f1f2

= Ad2y(x+ ωz + ω2y)(x+ ω2z + ωy).

(4.96)

Since A 6= 0, we have

f =
d2y
−3A

(x+ ωz + ω2y)(x+ ω2z + ωy)

= A(x+ ωz + ω2y)(x+ ω2z + ωy)

(4.97)

since d2y = (A(ω2 − ω))2 = A2(ω − 2 + ω2) = −3A2.

We will show that the field extensions obtained by adjoining the square root

of Dx 6= 0, Dy 6= 0, or Dz 6= 0 are in fact the same extension. Towards proving this,

we first prove some similar assertions in a more general context.
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Theorem 4.98. Let α, β ∈ F . If F (
√
α) = F

(√
β
)
, then αβ = s2 for some s ∈ F .

Proof. (1) If F (
√
α) = F

(√
β
)

= F , then α = s2 and β = t2 for some s, t ∈ F . Then

αβ = s2t2 = (st)2.

(2) If F (
√
α) = F

(√
β
)
6= F , then

√
α = a + b

√
β for some a, b ∈ F . Then

α = a2 + 2ab
√
β+ b2β. This can be rewritten as 0 = (−α+ a2 + b2β) + 2ab

√
β. Since

√
β /∈ F , we have

−α + a2 + b2β = 0 (4.99)

and 2ab = 0. The latter implies a = 0 or b = 0. If a = 0, then (4.99) implies α = b2β.

Then αβ = b2β2 = (bβ)2.

If b = 0, then then (4.99) implies α = a2. Then F (
√
α) = F (a) = F which

contradicts our assumption. Therefore F (
√
α) 6= F .

Theorem 4.100. If αβ = s2 6= 0 for some s ∈ F , then F (
√
α) = F

(√
β
)
.

Proof. From αβ = s2, we have
√
α
√
β = s. Since s 6= 0, we have β 6= 0 and

√
β 6= 0.

Since
√
α
√
β = s, we have

√
α =

s√
β
∈ F

(√
β
)
. So F (

√
α) ⊆ F

(√
β
)
. Similarly,

F (
√
α) ⊇ F

(√
β
)
.

We are now ready to prove that the field extensions obtained by joining either

Dx, Dy, or Dz are in fact the same.

Theorem 4.101. If R = 0, Dx 6= 0, and Dy 6= 0, then F
(√

Dx

)
= F

(√
Dy

)
.

Proof. Plugging R = 0 into E2
z = DxDy + 4C0R, we find DxDy = E2

z 6= 0 since

Dx and Dy are nonzero. By (4.13), we have Ez ∈ F since C1, C2, C0, C3 ∈ F . By

Theorem 4.100, we have F
(√

Dx

)
= F

(√
Dy

)
.
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CHAPTER 5

Trivariate Homogeneous Degree 3 Polynomials

We do not have complete answer to the question of reducibility of trivariate homo-

geneous degree 3 polynomials. We only have partial results. We will show that for

a trivariate homogeneous degree 3 polynomial f over a field F , the rank of a 3 × 3

matrix M , derived from the coefficients of f , gives us some information about the

reducibility of f over F or over an extension of F . Specifically,

(1) If f factors, then M has rank 1 or 0.

(2) If f factors completely over F or over an extension of F , then M is the zero

matrix.

(3) If rankM = 1, then we have a candidate factor for f that has to be checked

using long division.

(4) If f factors and M 6= 0, then f can be factored over the coefficient field F .

Later on, we will extend M to a 9 × 3 matrix V by appending six rows to M . All

of the results mentioned above will continue to hold when M is replaced by V . For

example, if f factors, then V has rank 1 or 0. We will show an example where f does

not factor and M has rank 1 but V has rank 3. This shows that V has an advantage

in telling when f is irreducible. We will show an example where V = 0 and f factors

over F , but f does not factor completely. One of the unanswered questions is:

When V has rank 1 or 0, does this imply that f is reducible?

Towards showing the mentioned results, we start by defining f and then show

some consequences when f is reducible over F or over an extension of F . Let F be
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a field, and let C0, C1, C2, . . . , C9 ∈ F , and let

f(x, y, z) = C0z
3 + C1xz

2 + C2yz
2 + C4x

2z + C3xyz + C5y
2z + C6x

2y + C7xy
2

+ C8x
3 + C9y

3

(5.1)

with f not equal to the zero polynomial. Suppose

f(x, y, z) = (a0z + a1x+ a2y)(b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2) (5.2)

for some ai and bi in an extension of F , where not all the ai are zero and not all the

bi are zero.

Consider the change of variable in x, y, and z with new variables u, v, and w

where

x = −ua0 + wa2 y = −va0 − wa1 z = ua1 + va2.

If you make this change in f(x, y, z) in (5.2), then the first factor in that equation

becomes zero:

a0z + a1x+ a2y

= a0(ua1 + va2) + a1(−ua0 + wa2) + a2(−va0 − wa1)

= ua0a1 + va0a2 − ua0a1 + wa1a2 − va0a2 − wa1a2

= 0.

(5.3)

Hence making this change in f(x, y, z), we get 0.

So f(−ua0 + wa2︸ ︷︷ ︸
x

,−va0 − wa1︸ ︷︷ ︸
y

, ua1 + va2︸ ︷︷ ︸
z

) = 0. Plugging these underbraced quanti-
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ties into (5.1) (using a computer algebra system), we find

f(−ua0 + wa2,−va0 − wa1, ua1 + va2)

= (Kw3)w3 + (Kuw2)uw2 + (Kvw2)vw2 + (Ku2w)u2w + (Kuvw)uvw

+ (Kv2w)v2w + (Ku3)u3 + (Ku2v)u
2v + (Kuv2)uv

2 + (Kv3)v
3

= 0

(5.4)

where

Kw3 = −a1a22C6 + a21a2C7 + a32C8 − a31C9

Kuw2 = −a21a2C3 + a1a
2
2C4 + a31C5 + 2a0a1a2C6 − a0a21C7 − 3a0a

2
2C8

Ku2w = a21a2C1 − a31C2 + a0a
2
1C3 − 2a0a1a2C4 − a20a1C6 + 3a20a2C8

Ku3 = a31C0 − a0a21C1 + a20a1C4 − a30C8

Kvw2 = −a1a22C3 + a32C4 + a21a2C5 − a0a22C6 + 2a0a1a2C7 − 3a0a
2
1C9

Kv2w = a32C1 − a1a22C2 − a0a22C3 + 2a0a1a2C5 + a20a2C7 − 3a20a1C9

Kv3 = a32C0 − a0a22C2 + a20a2C5 − a30C9

Ku2v = 3a21a2C0 − 2a0a1a2C1 − a0a21C2 + a20a1C3 + a20a2C4 − a30C6

Kuv2 = 3a1a
2
2C0 − a0a22C1 − 2a0a1a2C2 + a20a2C3 + a20a1C5 − a30C7

Kuvw = a1a
2
2C1 − a21a2C2 − a0a22C4 + a0a

2
1C5 + a20a2C6 − a20a1C7.

(5.5)

Since f(ua1 + va2,−ua0 +wa2,−va0 −wa1) = 0 ∈ F [u, v, w], all the ten Ks must be

zero.

Thus we have the following theorem.

Theorem 5.6. If a0z+a1x+a2y divides f , then all the ten Ks in (5.5) must be zero.

(Curiously, Kuvw is irrelevant in the argument for the converse.)
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Theorem 5.7. If a0z + a1x + a2y 6= 0 and all the ten Ks in (5.5) are zero, then

a0z + a1x+ a2y divides f .

Proof. To facilitate our discussion, see Figure 5.1 for a symmetry diagram for the ten

Ks in (5.5).

w

Kw3

Kuw2Kvw2

Rx Ry

Ku2wKuvwKv2w

Ku3 Ku2v Kuv2 Kv3

u Rz
v

Figure 5.1: Symmetry diagram for the ten Ks.

We can write a0f , a1f , and a2f each as a multiple of a0z + a1x + a2y plus a

remainder as follows:

a30f = (a0z + a1x+ a2y)Qz +Rz

a31f = (a0z + a1x+ a2y)Qx +Rx

a32f = (a0z + a1x+ a2y)Qy +Ry

(5.8)
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where

Qz = (a21C0 − a0a1C1 + a20C4)x
2 + (a22C0 − a0a2C2 + a20C5)y

2

+ (−a0a2C0 + a20C2)yz + a20C0z
2

+ (2a1a2C0 − a0a2C1 − a0a1C2 + a20C3)xy + (−a0a1C0 + a20C1)xz

Rz = −(Ku3)x3 − (Ku2v)x
2y − (Kuv2)xy

2 − (Kv3)y
3

Qx = a21C8x
2 + (a21C6 − a1a2C8)xy + (−a1a2C6 + a21C7 + a22C8)y

2

+ (a21C4 − a0a1C8)xz + (a21C3 − a1a2C4 − a0a1C6 + 2a0a2C8)yz

+ (a21C1 − a0a1C4 + a20C8)z
2

Rx = −(Kw3)y3 + (Kuw2)y2z − (Ku2w)yz2 + (Ku3)z3

Qy = (a22C6 − a1a2C7 + a21C9)x
2 + (a22C7 − a1a2C9)xy

+ a22C9y
2 + (a22C3 − a1a2C5 − a0a2C7 + 2a0a1C9)xz

+ (a22C5 − a0a2C9)yz + (a22C2 − a0a2C5 + a20C9)z
2

Ry = (Kw3)x3 + (Kvw2)x2z + (Kv2w)xz2 + (Kv3)z
3.

(5.9)

Since all the ten Ks are zero, we have Rz = Rx = Ry = 0. Since a0z + a1x+ a2y 6= 0,

we have a0 6= 0, a1 6= 0, or a2 6= 0. Then one of the three equations in (5.8) implies

that a0z + a1x+ a2y divides f .

Notice that Theorem 5.7 is true if

a0 6= 0 and Ku3 = Ku2v = Kuv2 = Kv3 = 0, or if

a1 6= 0 and Kw3 = Kuw2 = Ku2w = Ku3 = 0, or if

a2 6= 0 and Kw3 = Kvw2 = Kv2w = Kv3 = 0.

We combine Theorem 5.6 and Theorem 5.7 into one theorem below.
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Theorem 5.10. Suppose l = a0z+ a1x+ a2y 6= 0. Then l divides f if and only if all

of the ten Ks in (5.5) are zero.

This theorem will lead to the test, that we mentioned at the beginning, for

the reducibility of f when the rank of M is 1. First we need to define the matrix M .

Towards this goal, we recall that when f factors as in (5.2), we have a0 6= 0, a1 6= 0,

or a2 6= 0. If a1 6= 0, then (5.8) implies that Rx = 0 and (5.9) implies that Kw3 =

Kuw2 = Ku2w = Ku3 = 0. We calculate the resultant (defined in the Introduction

chapter) of Ku2w and Ku3 , treating them as polynomials in a0 and assuming that their

leading coefficients are nonzero. In order for Ku2w = Ku3 = 0 to hold, this resultant

must be zero. Since this resultant contains a factor of a61 6= 0, the other part of the

resultant without the factor of a61 must be zero. We call this other part Rxz:

Rxz =
1

a61
Resa0 (Ku2w, Ku3) .

Then we use polynomial long division to divide Rxz by Kw3 , treating them as poly-

nomials in a2 and assuming that their leading coefficients are nonzero. Then Rxz =

Kw3Q+R for some quotient Q and some remainder R. The remainder R contains a

factor of a21. Since Rxz = 0 and Kw3 = 0, we have R = 0. Since a1 6= 0, the other

part of R without the factor of a21 must be zero. We call this other part Rxzy and it

looks like the following:

Rxzy = (−m32)a2 + (m33)a1
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where

m32 = −C2
1C3C4C6 + 4C0C3C

2
4C6 + C3

1C
2
6 − 4C0C1C4C

2
6

+ C2
1C

2
4C7 − 4C0C

3
4C7 + C2

1C
2
3C8 − C1C2C3C4C8

− 3C0C
2
3C4C8 + C2

2C
2
4C8 + 2C2

1C2C6C8

− 3C0C1C3C6C8 − 6C0C2C4C6C8 + 9C2
0C

2
6C8

− 4C3
1C7C8 + 18C0C1C4C7C8 − 3C1C

2
2C

2
8

+ 9C0C2C3C
2
8 − 27C2

0C7C
2
8

m33 = −C1C2C3C4C6 + C0C
2
3C4C6 + C2

2C
2
4C6 + C2

1C2C
2
6

− C0C1C3C
2
6 − 2C0C2C4C

2
6 + C2

0C
3
6 + C1C2C

2
3C8

− C0C
3
3C8 − C2

2C3C4C8 − 2C1C
2
2C6C8 + 3C0C2C3C6C8

+ C3
2C

2
8 + C2

1C
2
4C9 − 4C0C

3
4C9 − 4C3

1C8C9

+ 18C0C1C4C8C9 − 27C2
0C

2
8C9.

(5.11)

The first quantity m32 is the entries of M in row 3, column 2. The second quantity

m33 is the entries of M in row 3, column 3.

Using similar technique, but performing the previously described operations

with respect to a different variable at each stage, we get the other entries of M :

Define

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (5.12)
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where

m11 = C4C
2
5C

2
6 − C3C4C5C6C7 + C2

4C5C
2
7 + C0C

2
6C

2
7

− C3C
2
5C6C8 + C2

3C5C7C8 − 2C4C
2
5C7C8 − 4C0C

3
7C8

+ C3
5C

2
8 + C2

3C4C6C9 − 2C2
4C5C6C9 − 4C0C

3
6C9

− C3C
2
4C7C9 − C3

3C8C9 + 3C3C4C5C8C9 + 18C0C6C7C8C9

+ C3
4C

2
9 − 27C0C

2
8C

2
9

m12 = −C3C4C6C
2
7 + C1C

2
6C

2
7 + C2

4C
3
7 + C2

5C
2
6C8

− C3C5C6C7C8 + C2
3C

2
7C8 + 2C4C5C

2
7C8 − 4C1C

3
7C8

− 3C2
5C7C

2
8 + 4C3C4C

2
6C9 − 4C1C

3
6C9 − 4C2

4C6C7C9

− 3C2
3C6C8C9 − 6C4C5C6C8C9 − 3C3C4C7C8C9

+ 18C1C6C7C8C9 + 9C3C5C
2
8C9 + 9C2

4C8C
2
9

− 27C1C
2
8C

2
9

m13 = C2
5C

3
6 − C3C5C

2
6C7 + C2C

2
6C

2
7 − 4C2

5C6C7C8

+ 4C3C5C
2
7C8 − 4C2C

3
7C8 + C2

3C
2
6C9 + 2C4C5C

2
6C9

− 4C2C
3
6C9 − C3C4C6C7C9 + C2

4C
2
7C9 − 3C3C5C6C8C9

− 3C2
3C7C8C9 − 6C4C5C7C8C9 + 18C2C6C7C8C9

+ 9C2
5C

2
8C9 − 3C2

4C6C
2
9 + 9C3C4C8C

2
9 − 27C2C

2
8C

2
9

(5.13)
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m21 = −C1C2C3C
2
5 + C0C

2
3C

2
5 + C2

2C4C
2
5 + C2

1C
3
5

− 4C0C4C
3
5 − C0C2C3C5C7 + 2C0C1C

2
5C7 + C0C

2
2C

2
7

− 3C2
0C5C

2
7 + 4C1C

2
2C3C9 − 3C0C2C

2
3C9 − 4C3

2C4C9

− 4C2
1C2C5C9 − 3C0C1C3C5C9 + 18C0C2C4C5C9

− 6C0C1C2C7C9 + 9C2
0C3C7C9 + 9C0C

2
1C

2
9 − 27C2

0C4C
2
9

m22 = −C1C2C3C5C7 + C0C
2
3C5C7 + C2

1C
2
5C7 + C1C

2
2C

2
7

− C0C2C3C
2
7 − 2C0C1C5C

2
7 + C2

0C
3
7 + C2

2C
2
5C8

− 4C0C
3
5C8 + C1C2C

2
3C9 − C0C

3
3C9 − C2

1C3C5C9

− 2C2
1C2C7C9 + 3C0C1C3C7C9 − 4C3

2C8C9

+ 18C0C2C5C8C9 + C3
1C

2
9 − 27C2

0C8C
2
9

m23 = C2
2C

2
5C6 − 4C0C

3
5C6 − C2

2C3C5C7 + 4C0C3C
2
5C7

+ C3
2C

2
7 − 4C0C2C5C

2
7 + C2

2C
2
3C9 − C1C2C3C5C9

− 3C0C
2
3C5C9 + C2

1C
2
5C9 − 4C3

2C6C9 + 18C0C2C5C6C9

+ 2C1C
2
2C7C9 − 3C0C2C3C7C9 − 6C0C1C5C7C9

+ 9C2
0C

2
7C9 − 3C2

1C2C
2
9 + 9C0C1C3C

2
9 − 27C2

0C6C
2
9

(5.14)
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m31 = −C1C2C3C
2
4 + C0C

2
3C

2
4 + C2

2C
3
4 + C2

1C
2
4C5

− 4C0C
3
4C5 − C0C1C3C4C6 + 2C0C2C

2
4C6 + C0C

2
1C

2
6

− 3C2
0C4C

2
6 + 4C2

1C2C3C8 − 3C0C1C
2
3C8

− 4C1C
2
2C4C8 − 3C0C2C3C4C8 − 4C3

1C5C8

+ 18C0C1C4C5C8 − 6C0C1C2C6C8 + 9C2
0C3C6C8

+ 9C0C
2
2C

2
8 − 27C2

0C5C
2
8

m32 = −C2
1C3C4C6 + 4C0C3C

2
4C6 + C3

1C
2
6 − 4C0C1C4C

2
6

+ C2
1C

2
4C7 − 4C0C

3
4C7 + C2

1C
2
3C8 − C1C2C3C4C8

− 3C0C
2
3C4C8 + C2

2C
2
4C8 + 2C2

1C2C6C8

− 3C0C1C3C6C8 − 6C0C2C4C6C8 + 9C2
0C

2
6C8

− 4C3
1C7C8 + 18C0C1C4C7C8 − 3C1C

2
2C

2
8

+ 9C0C2C3C
2
8 − 27C2

0C7C
2
8

m33 = −C1C2C3C4C6 + C0C
2
3C4C6 + C2

2C
2
4C6 + C2

1C2C
2
6

− C0C1C3C
2
6 − 2C0C2C4C

2
6 + C2

0C
3
6 + C1C2C

2
3C8

− C0C
3
3C8 − C2

2C3C4C8 − 2C1C
2
2C6C8 + 3C0C2C3C6C8

+ C3
2C

2
8 + C2

1C
2
4C9 − 4C0C

3
4C9 − 4C3

1C8C9

+ 18C0C1C4C8C9 − 27C2
0C

2
8C9.

(5.15)
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Let’s see what happens when f factors as in (5.2). Matching the coefficients

in (5.2), and we find

C0 = a0b0

C1 = a1b0 + a0b1

C2 = a2b0 + a0b2

C3 = a2b1 + a1b2 + a0b3

C4 = a1b1 + a0b4

C5 = a2b2 + a0b5

C6 = a1b3 + a2b4

C7 = a2b3 + a1b5

C8 = a1b4

C9 = a2b5.

(5.16)

With the definitions for the entries mij of the matrix M , one could use (5.16)

to substitute the Cs in the definitions of mij with the as and the bs in (5.16), but this

is unwieldy and tedious by hand. However, using a computer algebra system, this

can easily be done. After the substitutions are made and the entries factored, one

will find that

M =


a0d

2
zE a1d

2
zE a2d

2
zE

a0d
2
xE a1d

2
xE a2d

2
xE

a0d
2
yE a1d

2
yE a2d

2
yE

 (5.17)
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where

dz = −a1a2b3 + a22b4 + a21b5

dx = a22b0 − a0a2b2 + a20b5

dy = a21b0 − a0a1b1 + a20b4

E = −b1b2b3 + b0b
2
3 + b22b4 + b21b5 − 4b0b4b5.

(5.18)

From this, we get the following three theorems.

Theorem 5.19. If f factors over F or over an extension of F , then rankM = 0 or 1.

Proof. Since f factors over F or over an extension of F , M has the form in (5.17)

which has rank 1 or 0.

Theorem 5.20. If f factors completely over F or over an extension of F , then M

is the zero matrix.

Proof. Since f factors, f can be written as in (5.2). Then M has the form in (5.17).

Since f factors completely, the second factor b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2

in (5.2) is reducible. By Lemma 4.6, we have E = 0 and M is the zero matrix.

Theorem 5.21. If f factors over F or over an extension of F and M = 0, then one

or both of the following holds:

(1) E = 0 and f factors completely over F or over an extension of F , or

(2) dz = dx = dy = 0.

Proof. Again, since f factors, f can be written as in (5.2) and M has the form in

(5.17) and at least one of the a0, a1, and a2 is nonzero. If a0 6= 0, then since M = 0,

the first column of M as given in (5.17) says that E = 0 or dz = dx = dy = 0.

Similarly, if a1 6= 0 or if a2 6= 0, then E = 0 or dz = dx = dy = 0.
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We now describe the test for the reducibility of f when the rank of M is 1.

Recall equation (5.17). It says that if M has rank 1 and f factors over F or over an

extension of F , then one of the rows in (5.12) is nonzero and that row has entries

that are essentially a0, a1, and a2 up to a constant multiple.

Thus if M has rank 1 and we do not know whether f is reducible, we could

choose a nonzero row of M and use the entries of that row as a0, a1, and a2. If a0 6= 0,

then we can use the first equation in (5.8) to determine whether f factors. We plug

the values of a0, a1, and a2 into Rz as in (5.9) which in turn plugs the values of a0,

a1, and a2 into the definitions for Ku3 , Ku2v, Kuv2 , and Kv3 as in (5.5). By the first

equation in (5.8), f factors if and only if Rz = 0. Similarly, if a1 6= 0, then f factors

if and only if Rx = 0. And similarly, if a2 6= 0, then f factors if and only if Ry = 0.

Knowing only rankM = 1 is not sufficient for f to factor. We give an example.

Example 5.22. Let f = x2y+ xy2 + x2z+ y2z+ xz2 + yz2. Then calculating M , we

find

M =


2 2 2

2 2 2

2 2 2

 .
Since M has rank 1 and all the entries are equal, we can apply our test with a0 =

a1 = a2 = 1. We plug these values into the coefficients of Rx. These coefficients are

Kw3 , Kuw2 , Ku2w, and Ku3 as in (5.5), and we find

Kw3 = 0 Kuw2 = 3 Ku2w = −3 Ku3 = 0

Rx = −(Kw3)y3 + (Kuw2)y2z − (Ku2w)yz2 + (Ku3)z3

= 3y2z + 3yz2.
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Since Rx 6= 0, equation (5.8) implies that the only candidate x + y + z that might

be a factor of f (up to a constant multiple) is in fact not a factor of f . Hence f is

irreducible over any field.

If f is reducible and M 6= 0, then f can be factored over the base field F . We

prove this in the following theorem.

Theorem 5.23. Let f be as given in (5.1). If f = (a0z + a1x + a2y)(b0z
2 + b1xz +

b2yz+ b4x
2 + b3xy+ b5y

2) for some ai and bj in an extension of F and M 6= 0, where

M is as given in (5.12), then f can be factored over the base field F .

Proof. The entries mij of M as defined in (5.13) consist of the Cs which are in the

coefficient field F . So mij ∈ F for all i and j. Since f factors, M has the form in

(5.17) where each row of M is a multiple of (a0, a1, a2). So the rank of M must be 0

or 1. Since M 6= 0, we have rankM 6= 0. So M as in (5.17) must have rank 1 and it

must have a nonzero row. We can choose that nonzero row to replace a0, a1, and a2

in a factorization of f . Since every row of M is in F , we have ai ∈ F . We can divide

f by a0z+a1x+a2y using polynomial long division to find the bs. Since f ∈ F [x, y, z]

and a0, a1, a2 ∈ F , the polynomial long division gives bj ∈ F for all j.

Suppose f factors as in (5.2) and let

A(x, y, z) = a1x+ a2y + a0z

B(x, y, z) = b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2.

Consider the change of variable in x, y, and z with new variables u, v, and w where

x = −ua0 + wa2 y = −va0 − wa1 z = ua1 + va2.
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Suppose a1x + a2y + a0z divides b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2. Then

since A(−ua0 + wa2,−va0 − wa1, ua1 + va2) = 0 as was shown in (5.3), and since

A(−ua0 +wa2,−va0−wa1, ua1 + va2) divides B(−ua0 +wa2,−va0−wa1, ua1 + va2),

we have

B(−ua0 + wa2,−va0 − wa1, ua1 + va2) = 0.

Calculating B(−ua0 + wa2,−va0 − wa1, ua1 + va2), we find

B(−ua0 + wa2,−va0 − wa1, ua1 + va2)

= dyu
2 + dxv

2 + dxzvw + dzw
2 + dxyuv − dyzuw

= 0

where dx, dy, and dz are as defined in (5.18), and

dxz = a22b1 − a1a2b2 − a0a2b3 + 2a0a1b5

dxy = 2a1a2b0 − a0a2b1 − a0a1b2 + a20b3

dyz = −a1a2b1 + a21b2 − a0a1b3 + 2a0a2b4.

(5.24)

Thus if f factors as in (5.2) and a1x+ a2y + a0z divides b0z
2 + b1xz + b2yz + b4x

2 +

b3xy + b5y
2, then dx = dy = dz = dxy = dxz = dyz = 0.

Conversely, suppose f factors as in (5.2) and dx = dy = dz = dxy = dxz =

dyz = 0. We first re-write b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2 in the following

three ways:

a20B = (a1x+ a2y + a0z)qz + (dyx
2 + dxyxy + dxy

2)

a21B = (a1x+ a2y + a0z)qx + (dzy
2 + dyzyz + dyz

2)

a22B = (a1x+ a2y + a0z)qy + (dzx
2 + dxzxz + dxz

2)

(5.25)
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where

qz = (−a1b0 + a0b1)x+ (−a2b0 + a0b2)y + a0b0z

qx = a1b4x+ (a1b3 − a2b4)y + (a1b1 − a0b4)z

qy = (a2b3 − a1b5)x+ a2b5y + (a2b2 − a0b5)z.

Since dx = dy = dz = dxy = dxz = dyz = 0, equation (5.25) implies that a1x+a2y+a0z

divides b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2.

We record these results in the following theorem.

Theorem 5.26. Suppose f factors as in (5.2). Then a1x+ a2y + a0z divides b0z
2 +

b1xz + b2yz + b4x
2 + b3xy + b5y

2 if and only if dx = dy = dz = dxy = dxz = dyz = 0.

The three newly introduced quantities dxy, dxz, and dyz will allow us to extend

the 3 × 3 matrix M to a 9 × 3 matrix V such that all the previous theorems that

contain M will continue to hold when M is replaced by V . We now describe how

the matrix M is extended. Recall the matrix Mas given in (5.17). It says that if f

factors as in (5.2), then the entries of M factors as shown in (5.17). For example, row

2 column 1 of M factors into a0d
2
xE when f factors as in (5.2). We note that the dx

as given in (5.18) contains two as and one b as factors in each one of its terms. And

the E as given in (5.18) contains three bs as factors in each one of its terms. So a0d
2
xE

contains five as and five bs as factors in each one of its terms. Looking at (5.14), we

see that m21 the entries of M in row 2 column 2 has five Cs in each one of its terms.

When f factors as in (5.2), the relationship between the Cs and the as and the bs

are as given in (5.16). In (5.16), each one of the Cs contains one a and one b in each

one of its term. Since m21 as in (5.14) contains five Cs in each one of its terms, m21

must contain five a and five bs in each one of its terms. Since m21 = a0d
2
xE when f
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factors as in (5.2), the five as and the five bs in m21 must match the number of as

and the number of bs in a0d
2
xE, and they do because our previous counting indicated

so. Since a0d
2
xE came from m21 as defined in (5.14), one might speculate whether

a0d
2
xyE can be written in terms of the Cs as a0d

2
xE can be written terms of the Cs as

given by m21 in (5.14). Using a computer algebra system, one can show that a0d
2
xyE

cannot be written in terms of the Cs, but a0dxdxyE can.

We now describe how to write a0dxdxyE in terms of the Cs. (The process is

also used to show that a0d
2
xyE cannot be written in terms of the Cs.) First, we note

that a0dxdxyE contains five as and five bs as factors in each one of its terms. Since

each Cs as given in (5.16) contains one a and one b, our expression for a0dxdxyE in

terms of the Cs must contain five Cs in each one of its terms. Let X, Y , and Z be

indeterminates

f̄ = f(Xx, Y y, Zz)

= (C0Z
3)z3 + (C1XZ

2)xz2 + (C2Y Z
2)yz2 + (C4X

2Z)x2z + (C3XY Z)xyz

+ (C5Y
2Z)y2z + (C6X

2Y )x2y + (C7XY
2)xy2 + (C8X

3)x3 + (C9Y
3)y3

= [(a0Z)z + (a1X)x+ (a2Y )y]

×
[
(b0Z

2)z2 + (b1XZ)xz + (b2Y Z)yz + (b4X
2)x2 + (b3XY )xy + (b5Y

2)y2
]
.

63



Let

C̄0 = C0Z
3 C̄1 = C1XZ

2 C̄2 = C2Y Z
2

C̄4 = C4X
2Z C̄3 = C3XY Z C̄5 = C5Y

2Z

C̄6 = C6X
2Y C̄7 = C7XY

2 C̄8 = C8X
3

C̄9 = C9Y
3 (5.27)

ā0 = a0Z ā1 = a1X ā2 = a2Y

b̄0 = b0Z
2 b̄1 = b1XZ b̄2 = b2Y Z

b̄3 = b3XY b̄4 = b4Y
2 b̄5 = b5Y

2.

We note that the C̄i, āi, and b̄i are in F [X, Y, Z]. Let d̄x be the same as the definition

for dx in (5.18) but with bars for ai and bi, i.e.,

d̄x = ā22b̄0 − ā0ā2b̄2 + ā20b̄5.

Similarly, we define Ē using the definition in (5.18) but with bars. Let

Ē = −b̄1b̄2b̄3 + b̄0b̄
2
3 + b̄22b̄4 + b̄21b̄5 − 4b̄0b̄4b̄5.
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Let’s calculate ā0d̄
2
xĒ. But first we calculate d̄2x and Ē.

d̄x = ā22b̄0 − ā0ā2b̄2 + ā20b̄5

= a22Y
2b0Z

2 − a0Za2Y b2Y Z + a20Z
2b5Y

2

= Y 2Z2(a22b0 − a0a2b2 + a20b5)

= Y 2Z2dx

Ē = −b1XZb2Y Zb3XY + b0Z
2b23X

2Y 2 + b22Y
2Z2b4X

2 + b21X
2Z2b5Y

2

− 4b0Z
2b4X

2B5Y
2

= X2Y 2Z2(−b1b2b3 + b0b
2
3 + b22b4 + b21b5 − 4b0b4b5)

= X2Y 2Z2E.

Then

ā0d̄
2
xĒ = (a0Z)(Y 4Z4d2x)(X2Y 2Z2E)

= a0d
2
xE(X2Y 6Z7).

We note that this is a polynomial in F [X, Y, Z] and it has total degree 15. We want

to write this in terms of the C̄s. Since each C̄i as in (5.27) has total-degree 3, we

will need five C̄s in each one of our terms, and the five C̄s must have multi-degree

X2Y 6Z7. One can use a computer algebra system to look for all possibilities for the

five C̄s, and one will find that these possibilities are precisely the monomials in the

definition for m21 as in (5.14) but with a bar over each Ci. For example,

C̄1C̄2C̄3C̄
2
5 = (C1XZ

2)(C2Y Z
2)(C3XY Z)(C5Y

2Z)2 = C1C2C3C
2
5X

2Y 6Z7

C̄0C̄
2
3 C̄

2
5 = (C0Z

3)(C3XY Z)2(C5Y
2Z)2 = C0C

2
3C

2
5X

2Y 6Z7

...

C̄2
0 C̄4C̄

2
9 = (C0Z

3)2(C4X
2Z)(C9Y

3)2 = C2
0C4C

2
9X

2Y 6Z7.

(5.28)
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Using a computer algebra system, one can look for linear combination of the mono-

mials without the bars such that the linear combination equals a0d
2
xE, and it will

show that the only linear combination is the one that is given in the definition of m21

as in (5.14).

Using similar technique, one can show that a0d
2
xyE cannot be written in terms

of the Cs, but the following 18 quantities can be written in terms of the Cs, and

these expressions in the Cs are used to defined the entries in the six rows that are

appended to M to form V :

aidxdxyE

aidxdxzE

aidydxyE

aidydyzE

aidzdxzE

aidzdyzE.

We now extend the 3× 3 matrix M as defined in (5.12), and call the extended 9× 3

matrix V : Let

V =



m11 m12 m13

m21 m22 m23

m31 m32 m33

v41 v42 v43

v51 v52 v53
...

...
...

v91 v92 v93


(5.29)
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where

v41 = C1C
2
5C

2
6 − C1C3C5C6C7 − C2C4C5C6C7 + C0C5C

2
6C7

+ 2C1C4C5C
2
7 + C0C3C6C

2
7 − 2C0C4C

3
7 − C2C

2
5C6C8

+ 2C2C3C5C7C8 − 2C1C
2
5C7C8 − 6C0C5C

2
7C8 + C1C

2
3C6C9

+ 2C2C3C4C6C9 − 4C1C4C5C6C9 − 6C0C3C
2
6C9 − 2C1C3C4C7C9

− C2C
2
4C7C9 + 9C0C4C6C7C9 − 3C2C

2
3C8C9 + 3C1C3C5C8C9

+ 3C2C4C5C8C9 + 9C0C5C6C8C9 + 9C0C3C7C8C9 + 3C1C
2
4C

2
9

− 27C0C4C8C
2
9

(5.30)

v42 = −C3C4C5C6C7 + C1C5C
2
6C7 + 2C2

4C5C
2
7

− C2C4C6C
2
7 + C0C

2
6C

2
7 + C3C

2
5C6C8 − C2C5C6C7C8

+ 2C2C3C
2
7C8 − 4C1C5C

2
7C8 − 4C0C

3
7C8 − 2C3

5C
2
8

+ 2C2
3C4C6C9 − 4C2

4C5C6C9 − 2C1C3C
2
6C9 + 4C2C4C

2
6C9

− 4C0C
3
6C9 − 3C3C

2
4C7C9 + C1C4C6C7C9 − C3

3C8C9

+ 3C3C4C5C8C9 − 6C2C3C6C8C9 + 3C1C5C6C8C9

+ 6C1C3C7C8C9 − 3C2C4C7C8C9 + 18C0C6C7C8C9

+ 9C2C5C
2
8C9 + 4C3

4C
2
9 − 9C1C4C8C

2
9 − 27C0C

2
8C

2
9

(5.31)
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v43 = C3C
2
5C

2
6 − C2

3C5C6C7 − 2C4C
2
5C6C7 + 2C3C4C5C

2
7

+ C2C3C6C
2
7 − 2C2C4C

3
7 − 2C3

5C6C8 + 2C3C
2
5C7C8

− 2C2C5C
2
7C8 + C3

3C6C9 − 4C2C3C
2
6C9 + 2C1C5C

2
6C9

− 2C2
3C4C7C9 − 2C2

4C5C7C9 − C1C3C6C7C9 + 8C2C4C6C7C9

+ 2C1C4C
2
7C9 − 3C2

3C5C8C9 + 6C4C
2
5C8C9 + 6C2C5C6C8C9

+ 3C2C3C7C8C9 − 6C1C5C7C8C9 + 3C3C
2
4C

2
9 − 6C1C4C6C

2
9

+ 9C1C3C8C
2
9 − 18C2C4C8C

2
9

(5.32)

v51 = 2C2C4C5C
2
6 − 2C0C5C

3
6 − C2C3C4C6C7 − C1C4C5C6C7

+ C0C3C
2
6C7 + C2C

2
4C

2
7 + C0C4C6C

2
7 − 2C2C3C5C6C8

− C1C
2
5C6C8 + C2C

2
3C7C8 + 2C1C3C5C7C8

− 4C2C4C5C7C8 + 9C0C5C6C7C8 − 6C0C3C
2
7C8

+ 3C2C
2
5C

2
8 + 2C1C3C4C6C9 − 2C2C

2
4C6C9

− 6C0C4C
2
6C9 − C1C

2
4C7C9 − 3C1C

2
3C8C9

+ 3C2C3C4C8C9 + 3C1C4C5C8C9 + 9C0C3C6C8C9

+ 9C0C4C7C8C9 − 27C0C5C
2
8C9

(5.33)
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v52 = 2C3C4C5C
2
6 − 2C1C5C

3
6 − C2

3C4C6C7 − 2C2
4C5C6C7

+ C1C3C
2
6C7 + C3C

2
4C

2
7 − 2C2

3C5C6C8 − 2C4C
2
5C6C8

+ 2C2C5C
2
6C8 + C3

3C7C8 − C2C3C6C7C8 + 8C1C5C6C7C8

− 4C1C3C
2
7C8 + 2C2C4C

2
7C8 + 3C3C

2
5C

2
8

− 6C2C5C7C
2
8 + 2C3C

2
4C6C9 − 2C1C4C

2
6C9 − 2C3

4C7C9

− 3C2
3C4C8C9 + 6C2

4C5C8C9 + 3C1C3C6C8C9

− 6C2C4C6C8C9 + 6C1C4C7C8C9 + 9C2C3C
2
8C9

− 18C1C5C
2
8C9

(5.34)

v53 = 2C4C
2
5C

2
6 − C3C4C5C6C7 − C1C5C

2
6C7 + C2C4C6C

2
7

+ C0C
2
6C

2
7 − 3C3C

2
5C6C8 + 2C2

3C5C7C8 − 4C4C
2
5C7C8

+ C2C5C6C7C8 − 2C2C3C
2
7C8 + 4C1C5C

2
7C8 − 4C0C

3
7C8

+ 4C3
5C

2
8 + 2C1C3C

2
6C9 − 4C2C4C

2
6C9 − 4C0C

3
6C9

+ C3C
2
4C7C9 − C1C4C6C7C9 − C3

3C8C9 + 3C3C4C5C8C9

+ 6C2C3C6C8C9 − 3C1C5C6C8C9 − 6C1C3C7C8C9

+ 3C2C4C7C8C9 + 18C0C6C7C8C9 − 9C2C5C
2
8C9

− 2C3
4C

2
9 + 9C1C4C8C

2
9 − 27C0C

2
8C

2
9

(5.35)
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v61 = −C1C2C
2
5C6 + 2C0C3C

2
5C6 − C1C2C3C5C7 + C2

2C4C5C7

+ 2C2
1C

2
5C7 − 4C0C4C

2
5C7 − C0C2C5C6C7 + C0C2C3C

2
7

− 2C2
0C

3
7 + C2

2C
2
5C8 − 4C0C

3
5C8 + 2C1C2C

2
3C9

− C0C
3
3C9 − 2C2

2C3C4C9 − 3C2
1C3C5C9 + C1C2C4C5C9

+ 6C0C3C4C5C9 + 4C1C
2
2C6C9 − 6C0C2C3C6C9

− 3C0C1C5C6C9 − 4C2
1C2C7C9 + 3C0C1C3C7C9

+ 3C0C2C4C7C9 + 9C2
0C6C7C9 − 4C3

2C8C9

+ 18C0C2C5C8C9 + 4C3
1C

2
9 − 9C0C1C4C

2
9 − 27C2

0C8C
2
9

(5.36)

v62 = −C2C3C4C5C7 + 2C1C4C
2
5C7 − C1C2C5C6C7

+ 2C0C3C5C6C7 + C2
2C4C

2
7 − 2C0C4C5C

2
7 − C0C2C6C

2
7

+ C2C3C
2
5C8 − 2C1C

3
5C8 + C2

2C5C7C8 − 6C0C
2
5C7C8

+ C2C
2
3C4C9 − 2C1C3C4C5C9 + 2C1C2C3C6C9

− 3C0C
2
3C6C9 − C2

1C5C6C9 − 4C1C2C4C7C9

+ 3C0C3C4C7C9 + 3C0C1C6C7C9 − 6C2
2C3C8C9

+ 9C1C2C5C8C9 + 9C0C3C5C8C9 + 9C0C2C7C8C9

+ 3C2
1C4C

2
9 − 27C0C1C8C

2
9

(5.37)
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v63 = C2C3C
2
5C6 − 2C1C

3
5C6 − C2C

2
3C5C7 + 2C1C3C

2
5C7

− 2C0C
2
5C6C7 + C2

2C3C
2
7 − 2C1C2C5C

2
7 + 2C0C3C5C

2
7

− 2C0C2C
3
7 + C2C

3
3C9 − 2C1C

2
3C5C9 − C2C3C4C5C9

+ 2C1C4C
2
5C9 − 4C2

2C3C6C9 + 8C1C2C5C6C9

+ 3C0C3C5C6C9 − 3C0C
2
3C7C9 + 2C2

2C4C7C9

− 2C2
1C5C7C9 − 6C0C4C5C7C9 + 6C0C2C6C7C9

+ 6C0C1C
2
7C9 + 3C2

1C3C
2
9 − 6C1C2C4C

2
9

+ 9C0C3C4C
2
9 − 18C0C1C6C

2
9

(5.38)

v71 = −C1C2C
2
3C5 + C0C

3
3C5 + C2

2C3C4C5 + C2
1C3C

2
5

− 4C0C3C4C
2
5 − C0C2C3C5C6 + 2C0C1C

2
5C6

+ 2C1C
2
2C3C7 − 2C0C2C

2
3C7 − 2C3

2C4C7 − 2C2
1C2C5C7

+ 8C0C2C4C5C7 + 2C0C
2
2C6C7 − 6C2

0C5C6C7

− 2C0C1C2C
2
7 + 3C2

0C3C
2
7 + 2C2

1C2C3C9

− 3C0C1C
2
3C9 − 2C1C

2
2C4C9 + 3C0C2C3C4C9

− 2C3
1C5C9 + 6C0C1C4C5C9 − 6C0C1C2C6C9

+ 9C2
0C3C6C9 + 6C0C

2
1C7C9 − 18C2

0C4C7C9

(5.39)
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v72 = −C1C2C3C5C6 + C0C
2
3C5C6 + C2

1C
2
5C6 − C1C2C4C5C7

+ 2C0C3C4C5C7 + 2C1C
2
2C6C7 − 2C0C2C3C6C7

− 4C0C1C5C6C7 − C0C2C4C
2
7 + 3C2

0C6C
2
7 + C2

2C3C5C8

+ C1C2C
2
5C8 − 6C0C3C

2
5C8 − 2C3

2C7C8 + 9C0C2C5C7C8

+ 2C1C2C3C4C9 − 3C0C
2
3C4C9 − C2

1C4C5C9

− 2C2
1C2C6C9 + 3C0C1C3C6C9 + 3C0C1C4C7C9

− 6C1C
2
2C8C9 + 9C0C2C3C8C9 + 9C0C1C5C8C9

− 27C2
0C7C8C9

(5.40)

v73 = C1C2C
2
5C6 − 2C0C3C

2
5C6 − C1C2C3C5C7 + 2C0C

2
3C5C7

− C2
2C4C5C7 + 4C0C4C

2
5C7 + C0C2C5C6C7 + 2C1C

2
2C

2
7

− 3C0C2C3C
2
7 − 4C0C1C5C

2
7 + 4C2

0C
3
7 + C2

2C
2
5C8

− 4C0C
3
5C8 − C0C

3
3C9 + 2C2

2C3C4C9 + C2
1C3C5C9

− C1C2C4C5C9 − 6C0C3C4C5C9 − 4C1C
2
2C6C9

+ 6C0C2C3C6C9 + 3C0C1C5C6C9 + 3C0C1C3C7C9

− 3C0C2C4C7C9 − 9C2
0C6C7C9 − 4C3

2C8C9

+ 18C0C2C5C8C9 − 2C3
1C

2
9 + 9C0C1C4C

2
9 − 27C2

0C8C
2
9

(5.41)
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v81 = −C1C2C3C4C6 + 2C2
2C

2
4C6 + C2

1C4C5C6 − 4C0C
2
4C5C6

+ C0C1C3C
2
6 − 2C2

0C
3
6 − C1C2C

2
4C7 + 2C0C3C

2
4C7

− C0C1C4C6C7 + 2C1C2C
2
3C8 − C0C

3
3C8 − 3C2

2C3C4C8

− 2C2
1C3C5C8 + C1C2C4C5C8 + 6C0C3C4C5C8

− 4C1C
2
2C6C8 + 3C0C2C3C6C8 + 3C0C1C5C6C8

+ 4C2
1C2C7C8 − 6C0C1C3C7C8 − 3C0C2C4C7C8

+ 9C2
0C6C7C8 + 4C3

2C
2
8 − 9C0C2C5C

2
8 + C2

1C
2
4C9

− 4C0C
3
4C9 − 4C3

1C8C9 + 18C0C1C4C8C9 − 27C2
0C

2
8C9

(5.42)

v82 = −C1C
2
3C4C6 + 2C2C3C

2
4C6 + C2

1C3C
2
6 − 2C1C2C4C

2
6

+ 2C0C3C4C
2
6 − 2C0C1C

3
6 + C1C3C

2
4C7 − 2C2C

3
4C7

− 2C0C
2
4C6C7 + C1C

3
3C8 − 2C2C

2
3C4C8 − C1C3C4C5C8

+ 2C2C
2
4C5C8 − 3C0C

2
3C6C8 − 2C2

2C4C6C8

+ 2C2
1C5C6C8 − 6C0C4C5C6C8 + 6C0C2C

2
6C8

− 4C2
1C3C7C8 + 8C1C2C4C7C8 + 3C0C3C4C7C8

+ 6C0C1C6C7C8 + 3C2
2C3C

2
8 − 6C1C2C5C

2
8

+ 9C0C3C5C
2
8 − 18C0C2C7C

2
8

(5.43)
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v83 = −C1C3C4C5C6 + 2C2C
2
4C5C6 + C2

1C5C
2
6 − 2C0C4C5C

2
6

− C1C2C4C6C7 + 2C0C3C4C6C7 − C0C1C
2
6C7 + C1C

2
3C5C8

− 2C2C3C4C5C8 − 4C1C2C5C6C8 + 3C0C3C5C6C8

+ 2C1C2C3C7C8 − 3C0C
2
3C7C8 − C2

2C4C7C8

+ 3C0C2C6C7C8 + 3C2
2C5C

2
8 + C1C3C

2
4C9 − 2C2C

3
4C9

+ C2
1C4C6C9 − 6C0C

2
4C6C9 − 6C2

1C3C8C9

+ 9C1C2C4C8C9 + 9C0C3C4C8C9 + 9C0C1C6C8C9

− 27C0C2C
2
8C9

(5.44)

v91 = −C1C2C
2
3C4 + C0C

3
3C4 + C2

2C3C
2
4 + C2

1C3C4C5

− 4C0C3C
2
4C5 + 2C2

1C2C3C6 − 2C0C1C
2
3C6

− 2C1C
2
2C4C6 − 2C3

1C5C6 + 8C0C1C4C5C6

− 2C0C1C2C
2
6 + 3C2

0C3C
2
6 − C0C1C3C4C7

+ 2C0C2C
2
4C7 + 2C0C

2
1C6C7 − 6C2

0C4C6C7

+ 2C1C
2
2C3C8 − 3C0C2C

2
3C8 − 2C3

2C4C8 − 2C2
1C2C5C8

+ 3C0C1C3C5C8 + 6C0C2C4C5C8 + 6C0C
2
2C6C8

− 18C2
0C5C6C8 − 6C0C1C2C7C8 + 9C2

0C3C7C8

(5.45)
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v92 = −C1C2C3C4C6 + 2C0C
2
3C4C6 − C2

1C4C5C6 + 4C0C
2
4C5C6

+ 2C2
1C2C

2
6 − 3C0C1C3C

2
6 − 4C0C2C4C

2
6 + 4C2

0C
3
6

+ C1C2C
2
4C7 − 2C0C3C

2
4C7 + C0C1C4C6C7 − C0C

3
3C8

+ C2
2C3C4C8 + 2C2

1C3C5C8 − C1C2C4C5C8

− 6C0C3C4C5C8 + 3C0C2C3C6C8 − 3C0C1C5C6C8

− 4C2
1C2C7C8 + 6C0C1C3C7C8 + 3C0C2C4C7C8

− 9C2
0C6C7C8 − 2C3

2C
2
8 + 9C0C2C5C

2
8 + C2

1C
2
4C9

− 4C0C
3
4C9 − 4C3

1C8C9 + 18C0C1C4C8C9 − 27C2
0C

2
8C9

(5.46)

v93 = −C1C2C4C5C6 + 2C0C3C4C5C6 − C0C1C5C
2
6 − C1C2C3C4C7

+ C0C
2
3C4C7 + C2

2C
2
4C7 + 2C2

1C2C6C7 − 2C0C1C3C6C7

− 4C0C2C4C6C7 + 3C2
0C

2
6C7 + 2C1C2C3C5C8

− 3C0C
2
3C5C8 − C2

2C4C5C8 + 3C0C2C5C6C8

− 2C1C
2
2C7C8 + 3C0C2C3C7C8 + C2

1C3C4C9 + C1C2C
2
4C9

− 6C0C3C
2
4C9 − 2C3

1C6C9 + 9C0C1C4C6C9

− 6C2
1C2C8C9 + 9C0C1C3C8C9 + 9C0C2C4C8C9

− 27C2
0C6C8C9.

(5.47)
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With these definitions for the entries of V , if f factors as in (5.2), then each row of

V is a multiple of (a0, a1, a2):

v11 = a0d
2
zE v42 = a1d

2
zE v43 = a2d

2
zE

v21 = a0d
2
xE v42 = a1d

2
xE v43 = a2d

2
xE

v31 = a0d
2
yE v42 = a1d

2
yE v43 = a2d

2
yE

v41 = a0dzdxzE v42 = a1dzdxzE v43 = a2dzdxzE

v51 = a0dzdyzE v52 = a1dzdyzE v53 = a2dzdyzE

v61 = a0dxdxzE v62 = a1dxdxzE v63 = a2dxdxzE (5.48)

v71 = a0dxdxyE v72 = a1dxdxyE v73 = a2dxdxyE

v81 = a0dydyzE v82 = a1dydyzE v83 = a2dydyzE

v91 = a0dydxyE v92 = a1dydxyE v93 = a2dydxyE.

(We did not define the v’s this way, because if f does not factor, then the v’s may

not factor this way.) So if f factors, then V has the form in (5.48) which has rank 1

or 0. We record this in the following theorem.

Theorem 5.49. If f as in (5.1) factors, then V as defined in (5.29) has rank 1 or 0.

Example 5.50. Recall Example 5.22 where f = x2y + xy2 + x2z + y2z + xz2 + yz2
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does not factor and M has rank 1. For this polynomial, we have

V =



2 2 2

2 2 2

2 2 2

2 2 −4

2 −4 2

2 2 −4

−4 2 2

2 −4 2

−4 2 2.


The rank of V is greater than 1. By Theorem 5.49, f does not factor. This shows

that V has an advantage over M in telling when f is irreducible.

By Theorem 4.53, we have that b0z
2 + b1xz + b2yz + b4x

2 + b3xy + b5y
2 as in

(5.2) is reducible if and only if E as given in (5.18) is zero. Since each entry of V in

(5.48) contains E as a factor, if f factors completely, then V = 0. We record this in

the following theorem.

Theorem 5.51. If f as given in (5.1) factors completely, then V as given in (5.29)

is the zero matrix.

If f is reducible and V 6= 0, then f factors over the coefficient field. We state

this in the following theorem.

Theorem 5.52. Let f be as given in (5.1). If f = (a0z + a1x + a2y)(b0z
2 + b1xz +

b2yz + b4x
2 + b3xy + b5y

2) and V 6= 0, where V is as given in (5.29), then ai, bj ∈ F

for all i, j.

This result comes from the same proof as that of Theorem 5.23, but with M

replaced by V and mij replaced by vij.
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Suppose we do not know whether f is reducible. And suppose that the rank

of V is 1 (where V is as defined in (5.29)). Then there is a test for the reducibility

of f , and we describe it here. Since V has rank 1, V has a nonzero row that is a

multiple of (a0, a1, a2), and we can use this row or a constant multiple of it as a0, a1,

and a2 since the factorization is only unique up to a constant multiple. If a0 6= 0,

then (5.8) implies that if Rz = 0, then f factors. To check if Rz as given in (5.9) is

zero, we calculate its four coefficients Ku3 , Ku2v, Kuv2 , and Kv3 as given in (5.5) and

see if they are all zero. If these four Ks are zero, then f factors. Similarly, if a1 or a2

is nonzero, then we calculate Rx or Ry as given in (5.9), which in turn, leads to the

calculation of their corresponding four Ks as defined in (5.5), and if they are zero,

then f factors.

We give an example of this test for the reducibility of f when f has rank 1:

Example 5.53. Let f = 2x3−3x2y+3xy2−y3+x2z−6xyz+5y2z−xz2−7yz2+3z3.

Matching coefficients with (5.1) and calculating V using a computer algebra system,

we find

V =



108 72 −36

192 128 −64

4332 2888 −1444

144 96 −48

−360 −240 120

192 128 −64

−192 −128 64

−2280 −1520 760

−912 −608 304.


Every row in this matrix is a multiple of (3, 2,−1). So V has rank 1 and we can

choose a0 = 3, a1 = 2, and a2 = −1 as a candidate for the factorization in (5.2). To
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check if f really have a linear factor with these coefficients, we pick a nonzero value

among the three coefficients. Suppose we pick a2. Then (5.8) tells us that if Ry = 0,

then a32f = (a0z + a1x+ a2y)Qy where Ry and Qy are given in (5.9). The coefficients

of Ry, as given in (5.9), are Kw3 , Kvw2 , Kv2w, and Kv3 which are defined in (5.5).

Using a computer algebra system, we find that these four Ks are zero. So Ry = 0

and

a32f = (a0z + a1x+ a2y)Qy

= (3z + 2x− y)(−x2 + xy − y2 + xz + 2yz − z2).

Since we have chosen a2 = −1, we have

f = (3z + 2x− y)(x2 − xy + y2 − xz − 2yz + z2).

If f is reducible and V = 0, does this imply that f is completely reducible?

We give a counterexample for this.

Counterexample 5.54. Let f = z(xy + z2). We note that f is not completely

reducible. Matching coefficients with (5.1) and (5.2), we find a0 = 1, a1 = a2 = 0,

b0 = b3 = 1, and b1 = b2 = b4 = b5 = 0. Plugging these into (5.18), we find

dx = dy = dz = 0. Since each entry of V in (5.48) contains either dx, dy, or dz as a

factor, we have V = 0.
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