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ABSTRACT
Factorizing Bivariate and
Trivariate Polynomials
By
Ronald Chen
This thesis discusses the reducibility of homogeneous trivariate polynomials of
degree 2 and 3. In the degree 2 case, we give necessary and sufficient conditions for
the reducibility of such a polynomial. When a factorization exists, we show how to
find the factors of the polynomial. We also provide necessary and sufficient conditions
for the polynomial to be a perfect square.
The question of the reducibility of degree-3 polynomials is more complicated.
We don’t have a complete answer; we only have partial results. Some information
can be obtained from a certain 9 by 3 matrix V' whose entries are derived from the

coefficients of the polynomial. Specifically,
(1) If the polynomial is reducible, then V has rank 1 or 0.

(2) If V has rank 1, then we have a candidate factor that has to be checked using

long division.
(3) If the polynomial factors completely, then V' is the zero matrix.

(4) If the polynomial is reducible and V' is not the zero matrix, then the polynomial
can be factored over the coefficient field.

The converses of these results are not true and we give counterexamples.

v



TABLE OF CONTENTS

Acknowledgments . . . . . .. L

Abstract
List of F
Chapter

1.

IGUTES . . . o oo

Introduction . . . . . . ..,

Definitions and Preliminary Results . . . . . . .. ... ... ... ..

3. Bivariate Homogeneous Polynomials . . . . . . . ... ... ... ...
3.1.  Bivariate Homogeneous Degree 2 Polynomials . . . . . . . ..

3.2, Bivariate Homogeneous Degree 3 Polynomials . . . . . . . ..

4.  Trivariate Homogeneous Degree 2 Polynomials . . . . . . . .. .. ..
41. Whenls f ASquare . . ... ... ... ... .. .......

4.2.  When Is f Reducible But Not A Square . . . ... ... ...

5. Trivariate Homogeneous Degree 3 Polynomials . . . . . . . .. .. ..
References . . . . . . . . .

il

v

vi



LIST OF FIGURES

Figure
4.1. Symmetry diagram for the coefficients of degree 2 polynomial.

5.1. Symmetry diagram for the ten Ks. . . . . . .. ... ... .. ....

vi



CHAPTER 1
Introduction

This thesis is about the factorizations of homogeneous bivariate and trivariate poly-
nomials having degree 2 or 3. For example, do the following polynomials f and g in
the indeterminates x, y, and z factor at all?

f=a?—6xy — 2y* — 202z — 6yz + 22

g =22 — 32y + 3xy® — y® + 2?2 — 6wyz + 5yt — w2 — Ty + 328
For the answers to the reducibility of these two polynomials, see Example 4.57 and
Example 5.53. We will find some conditions on the coefficients of these polynomials
that determine whether they factor. And if these polynomials factor, do they factor
over the coefficient field or over an extension?

Any bivariate homogeneous polynomial will factor completely because of the

Fundamental Theorem of Algebra. For example, let F' be a field and let

f(ma y) = &3&33 + Clinzy + alxy2 + a0y3 € F[ZZ', y]? as 7é 0.

Then setting y = 1, we get

f(z,1) = asz® + az® + a1z + ao.

By the Fundamental Theorem of Algebra,

f(z,1) = ag(z — x1)(x — x2)(x — x3) (1.1)



where 1, ..., x5 € C are the roots of f(x,1). Matching coefficients, we find

Ao = —($1 + xo + $3)CL3
ap = (fL‘ll‘g + 13 + £L'2$3)a3 (12)
ag = —I1T2T303.

Homogenizing each factor in (1.1) by appending a y after each root and using (1.2),
we get

f(z,y) = az(z — v1y)(z — 22y)(x — 73Y).

Depending on the multiplicities of the roots of f(z,y), f(z,y) can be written in one

of the following form:

f(z,y) = az(x — z;)°
fla,y) = as(z — 2)*(x — @)
f(x,y) = az(x — 21y)(x — 229) (T — 23Y)
for some 7 and j. The powers of the factors adds to the degree of the polynomial.

In the chapter on bivariate homogeneous polynomials, we have used the known
result that a univariate polynomial has a multiple root if and only if its discriminant
is zero. This result can be found in, for example, [1, Proposition 34]. And we have
also used the known result that a univariate degree 3 polynomial has 3 identical roots
if and only if its Hessian is zero. This result can be found in, for example, [9, p. 136].

In the trivariate degree 2 case, the polynomial factors if and only if a certain
function R of the coefficients of the polynomial is zero. It will be shown that the
polynomial is a square times a constant if and only if R and three functions D,, D,,
and D, of the coefficients are zero. The proof is fairly straightforward.
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The trivariate degree 3 case is only partially solved. Here are some results

that we found.

(1) If the polynomial factors, then a certain 9 x 3 matrix, which we call V', must

have rank 1 or 0.

(2) If V has rank 1, then we have a candidate factor of f that has to be checked
using long division.

(3) If the polynomial factors completely, then V' is the zero matrix.

(4) If the polynomial factors and V' # 0, then the polynomial can be factored over
the coefficient field.

One of the unanswered questions is: When V' has rank 1 or 0, does this imply that f

is reducible?



CHAPTER 2
Definitions and Preliminary Results

Towards answering those questions that were mentioned earlier, we prove some lem-
mas and theorems that will be helpful later on. First, we introduce definitions that
we will use in the lemmas and theorems. We will use F' to denote the coefficient field
of the polynomials that appear throughout this thesis.

Definition 2.1. Let F be a field. A bivariate polynomial f in x and y is a polynomial
in = over the coefficient field Fy|. This is written f € Fly|[z] or f € Flz,y]. A
trivariate polynomial g in x, y, and z is a polynomial in x over the coefficient field
Fz][y]. This is written g € F[z|[y][z] or g € F[z,y, z]. A multivariate polynomial in
X1, T2, T3, ..., Ty is a polynomial of the ring F|x,,][Tm—_1][Tm—2] - - - [xa]]21].

Every nonconstant multivariate polynomial can be written uniquely as the

sum of products of the form cx('z3?--- 2l where ¢ € F and xy,29,...,x, are
indeterminates. Each cxi'x5? - -- a2l is called a monomial.

Definition 2.2. The total degree of a nonzero multivariate monomial

critaxy? - xm is the sum ny 4+ ng + -+ + n, of the degrees in the factors. The

total degree of a nonzero multivariate polynomial f is the highest degree among the
monomials of f. A multivariate polynomial is homogeneous if every one of its mono-
mials has the same total degree. The homogeneous degree k component of a nonzero
multivariate polynomial f is the sum of the degree £ monomials of f [1, p. 297] [3].

Definition 2.3. Let F' be a field. A nonconstant polynomial f € F[x] is re-

ducible over F if f = gh for some nonconstant polynomials g and h in F|z]. Oth-



erwise f is drreducible over F. Similarly, a nonconstant multivariate polynomial
f € Flry,29,...,7,)] is reducible over F if f = gh for some nonconstant polyno-
mials g, h € Flx1,29,..., 7]

With the above definitions, we are now ready to prove some theorems that we
need in our later discussions. For multivariate polynomials, the (total) degree of a
product of two polynomials is the sum of the degrees of the polynomials [7, p. 114]:
Theorem 2.4. Let F be a field. Let f,g € Flxy,xo,...,2,] be nonzero. Then

deg fg =deg f + degg.

Proof. We can write f and g using their homogeneous components f; and g; as follows

f=fot+fi+-+f4, with deg f; =ifori=0,1,...,d, and f3 #0
g=go+ g1+ +ge, with degg; =j for 7 =0,1,...,e, and g. # 0.
When we multiply f and g, we get terms of the form f;g; having degree i + j and fg

can be written using its homogeneous components as follows:

fa = fogo+ (fogr+ frg0) + (foga + frgr + f290) + (fogs + frg2 + f291 + fago) +- - -+ fage.

We know that if D is a domain, then so is D[z, zs,...,z,] [1, p.235]. So since
Flxy,x9,...,2,] is a domain and f; # 0 and g, # 0, we have fyg. # 0. This is the
homogeneous component of fg having the highest degree. Thus, deg fg = d + e =
deg f + degg. ]
We get another similar theorem when we replace total degree with lower degree.
Definition 2.5. Let the lower degree, lower f, of a nonzero polynomial f be the
degree of the smallest nonzero homogeneous term of f.
Theorem 2.6. Let f,g € Flxy,29,...,2,]. Then lower fg = lower f + lower g.
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From the definitions of total degree and lower degree, one sees that:

Fact 2.7.
(1) The lower degree of a polynomial is less than or equal to its total degree, and

(2) A polynomial is homogeneous if and only if its total degree equals its lower
degree.

We now prove a commonly accepted fact about inequality, then we will use this
to prove that if a homogeneous polynomial factors, then the factors are homogeneous
as well.

Lemma 2.8. Let ay,as,...,a, and by,bs, ... b, be real numbers. If a; < b; for
i=1,2,...,n,and Y ja; =Y . b, thena; =b; fori=1,2,... n.

Proof. Suppose, to the contrary, that a;, < b;, for some iy € {1,2,...,n}. Then
because a; < b; for i = 1,2,...,n, we have Y, a; < > ., b;, which contradicts the
assumption that > a; =Y b;. Thus q; =b; fori =1,2,...,n. O
Theorem 2.9. Let f € Flxy,x9,...,x,]. If f is homogeneous and f = gh for some
g,h € Flxy,x9,...,1,], then g and h are homogeneous as well.

Proof. Using Fact 2.7, we know that lower g < deg ¢ and lower h < deg h. By Theo-

rem 2.4 and Theorem 2.6, we have

deg f = deg g+ degh
(2.10)
lower f = lower g + lower h.

Since f is homogeneous, we have lower f = deg f. Thus we have

lower g + lower h = deg g + deg h.



By Lemma 2.8, we have lower g = deg g and lower h = deg h. Therefore g and h are
homogeneous by Fact 2.7. O
We will need to use the Fundamental Theorem of Algebra whose proof can be
found in, for example, [5, p.151]. We want to point out that this is for polynomials
of a single variable.
Theorem 2.11 (Fundamental Theorem of Algebra). Fvery univariate nonconstant
polynomial over C is completely reducible.
Since every root corresponds to a linear factor, this is equivalent to the alter-

native forms of the theorem:

(1) Every univariate nonconstant polynomial over C has a root in C, or

equivalently,

(2) The field C of complex numbers is an algebraically closed field.

We will also need to use Kronecker’s Theorem whose proof can be found in,
for example, [2, p. 266].
Theorem 2.12 (Kronecker’s Theorem). Given any nonconstant polynomial, there
exist an extension of the base field in which the polynomial factors completely.

Since every root corresponds to a linear factor, this is equivalent to the alter-

native form of the theorem:

Let F' be a field and let f(z) be a nonconstant polynomial in F'[x]. Then
there exists an extension field £ of F' and an a € E such that f(a) = 0.

The following relationship among algebraic structures can be found in, for



example, [1, p. 292].
fields C Euclidean domains C PIDs C UFDs C integral domains.

Let F' be a field. Since F' is a field, we have F'is a PID. Since F is a PID, we have F'
is a UFD. We will use the following theorem. The proof can be found in, for example,
[2, Theorem 45.29], [3, p. 164], and [4].

Theorem 2.13. If D is a UFD, then D[z] is a UFD.

Since F'is a UFD, we have F'[z4] is a UFD. Since F[z;] is a UFD, we have F
is a UFD. Continuing this process, we find F[zq][xo][z3] - - - [Tm-1][xm] is & UFD.

We will use the resultant of two polynomials, so we define it here.
Definition 2.14. Let F be a field. Suppose f(x) = a,2"+a, 12" '+ -+ax+ag €
F[z] has roots 1, ...,z, and g(x) = bpx™ + bp_12™ 1 + -+ + byx + by € F[z] has
roots yi, ..., Ym. The resultant of f(x) and g(x) [1, p. 621]

Res,(f(2),9(0)) = ay'by, [] (@i —wp).

1<i<n
1<j<m

This is the same as the determinant of the Sylvester matrix [1, p. 620].

Ap  Ap—1 e Qo
an Ap—1 Qo
Qp, Ap—1 ag
' M TOWS
a/n an_ IR a
Res.(/@)g@) = |, 1 ’
&n @wfl e bO
@n @nfl e bO
n TOWS
bm bm—l e bO



CHAPTER 3
Bivariate Homogeneous Polynomials

In this chapter, we give some theorems for the factorization of bivariate homogeneous
degree 2 and degree 3 polynomials. These theorems will be used in later chapters to
find factorizations of trivariate homogeneous polynomials.

We note that any bivariate homogeneous polynomial is completely reducible.

3.1 Bivariate Homogeneous Degree 2 Polynomials

Any bivariate homogeneous degree 2 polynomial will factor completely because of the
Fundamental Theorem of Algebra. The powers of the factors partition the degree;
the issue is, what partition is it. Does the polynomial factor as a square, or as two
linearly independent factors? The following theorem answers this and it is based on
the known result that a univariate polynomial has a multiple root if and only if its
discriminant is zero. This result can be found in, for example, [1, Proposition 34].

Theorem 3.1. Let f(x,y) = ax® + bxy + cy?® € Flz,y] and let D = b* — 4ac be the

discriminant of f. Then
(1) D =0 if and only if f(z,y) = A(aox + a1y)? for some A, ag,a;. If char F # 2,
then A, ag, and a; may be chosen in F. Otherwise ay may need to be in a

quadratic extension of F.

(2) D # 0 if and only if f = (apx + a1y)(box + bry) with agby — arby # 0 for some
ag, ai, by, and by in a quadratic extension of F.

Proof. Case I: Suppose a # 0. Let ax? + bz + ¢ have roots «; and ay in some field



extension of . Then

az® +bx +c=a(r — ay)(z — ay)

(3.2)
= az® — a(og + )r + aciay
and
f = azx* + bry + cy®
=a(r — aqy)(r — agy) (3.3)
= ar® — a(a; + ao)zy + acgany®.
Matching coefficients, we have b = —a(ay + o) and ¢ = aajas.
.. . b c
This implies that ay + s = ——, ayas = —, and
a a
D = a*(aq + an)? — da’aran
= (a2 4 2004 + a2) — 4a’ oy ay (3.4)

= a?*(oy — ap)?.

D D D
Then (o) — ay)? = ot So ap — g = g cF (\/E) Since o — ay = g, we have

D =0 if and only if oy — as = 0, if and only if a1 = as.

Case I.A: If D = 0 and F' does not have characteristic 2, then since a; + s = —b/a
bo\2

and a; —ay = 0, we have a3 = ap = —b/2a. Then (3.3) becomes f = a <:(: + 2—y> =
a

1
4—(2ax + by)? which has the form A(agx + ayy)? for some A, ag,a; € F as claimed.
a

Case I.B: If D = 0 and F' has characteristic 2, then oy = a5 and (3.3) becomes

f=a(x—ay)? (3.5)

which has the form A(agz + a,y)? for some A, ag € F and a; in a quadratic extension

of F.
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We come out of these two subcases (case LA and case 1.B) since assertion
(1) has been shown. However, we continue with case I where a # 0 with the goal of
showing assertion (2). Towards this goal, we rewrite (3.3) as f = (az — a1 y)(x —a2y)
which has the form (agz+a1y)(box + b1y) where ag = a, a; = —aay, by = 1, by = —ao,
and ag, a1, by, by € F [\/5] Then apb; — a1by = —aas + ac; = a(a; — az). By (3.4),
we have D # 0 if and only if a(a; — ag) # 0. Since a(a; — ag) = aghy — aiby, the
condition a(a; — ag) # 0 is equivalent to aghy — aiby # 0. Thus D # 0 if and only if
apby — a1bg # 0.
Case II: Suppose a = 0. Then f = bxy + cy? and D = b*>. Then D = 0 if and only
if b = 0 if and only if f = cy? which has the form A(apz + a,y)? where A, ag,a; € F.
For the other case, we have D # 0 and b # 0 and so f = bxy+cy? = (bx+cy)(0z +y)
which has the form (apz + a1y)(box + b1y) where ag, aq,bp,b; € F C F [\/5] and
apby — a1bp = b # 0. O

Case [.B. behaves different because F' has characteristic 2. We give an example
of this type where D = 0, but f does not factor over the coefficient field F'. For these
conditions to hold, F' must have an element that does not have a square root in F'.
Otherwise, if every element of F' has a square root in F', then since D = 0 implies

that f has a multiple root. By (3.5), we have
f=a(x —a1y)? = a(z® — 2007y + afy?) = ar® + aaiy’.

Since the coefficient field of f is F, we would have aa? € F which implies o? € F
since a € F'. Since every element of F' has a square root in F', we would have a; € F'.

Since f = a(xr — ayy)?, f would factor over the coefficient field F' which is not what

11



we want. In order to have a coefficient field F' that has an element that does have a
square root in F', we must choose F' to be an infinite field, because in a finite field of
characteristic p, every element has a pth root [1, Corollary 36].

Example 3.6. We give an example where D = 0, but f does not factor over the
coefficient field F'. Let F' = Zs(s), the field of rational functions over Z, with the
indeterminate s. Note char F' = 2. First, we show that s € Zs(s) has no square root
in Zy(s). If, to the contrary, a? = s for some o € Zy(s), then deg s = dega?® = 2deg o
is even, but deg s = 1, and we would have a contradiction. So s € Zs(s) has no square
root in Zy(s). Let f = 2? + sy*. Then D = —4s = 0. Since char F = 2 and a = 1,

case I.B in the proof of Theorem 3.1 applies. By (3.5), we have
f=alr —aw)? = a@® — 2010y + 2y?) = ar® + aaty’.

Since a = 1, we have f = 22 + a2y?. Matching coefficients with f, we find o? = s.
Since s € Zy(s) has no square root in Zs(s), we have oy ¢ Zs(s) = F. Since
f = (z — ayy)?, f does not factor over the coefficient field F'.

3.2 Bivariate Homogeneous Degree 3 Polynomials

In this section, we give some theorems for the factorization of bivariate homogeneous
degree 3 polynomials. These theorems will be used in later chapters to factor trivariate
homogeneous degree 3 polynomials.

Let

f(z,y) = ax® + ba*y + coy® + dy® € Flx,y). (3.7)

As discussed before, f will factor completely over an extension of F' into 3 linear
factors because of the Fundamental Theorem of Algebra. The question is whether f

12



will factor as three linearly independent factors, or as the product of a constant times
a square and a degree 1 factor, or as a constant times a cube. We will show that the
discriminant and the Hessian of f determine which of the 3 ways f factors. Define

the Hessian H of f by,

H = (b? — 3ac)x? + (be — 9ad)zy + (¢ — 3bd)y>. (3.8)

O?f o f B 0 f
0x? Oy? 0xy

most, the quantity inside the outer parentheses is called the Hessian, for example,

1 2
If char F' # 2, then H(z,y) = ~1 ( ) ) (In some books, if not

[8].) The discriminant D of f is
D = b*c® — dac® — 4b*d — 27a*d® + 18abcd. (3.9)

(This agrees with the discriminant for a monic cubic polymial [1, p. 612] when we set
y =1 and a = 1 and rename the coefficients.) This discriminant D of f is essentially

the same as the discriminant Dy of H where H was defined in (3.8). Let’s calculate
Dy
Dy = (bc — 9ad)? — 4(b* — 3ac)(c* — 3bd)
— —3(b*? — dac® — 4b>d + 18abed — 27a%d?) (3.10)
= —3D.
From this equation, we see that
(1) If D =0, then Dy = 0.

(2) If char F' # 3 and Dy = 0, then D = 0.
When does f as in (3.7) factor over the base field F' as a cube times a con-
stant? The following theorem answers this and it is based on the known result that a

13



univariate degree 3 polynomial has 3 identical roots if and only if its Hessian is zero.
This result can be found in, for example, [10, p. 26] and [9, p. 136].
Theorem 3.11. Let f be a degree 3 bivariate homogeneous polynomial as in (3.7).
Then f(z,y) = A(apr + a1y)® for some A, ag,a1 € F if and only if H = 0.
Proof. Suppose f(z,y) = A(agx + ay)® for some A, ag, a;. Matching coefficients, we
find

a=ajA

b= 3aja, A

c = 3agalA

d=a}A.
Plugging these into (3.8), we get H = 0.

2
Conversely, suppose H = 0. If a # 0, then b*> — 3ac = 0 implies ¢ = 3q’ and
a

b v
bc — 9ad = 0 implies d = o

% = Tk Then

f = ax® + ba?y + cxy® + dy?
2 b3

b
3 2 2
= +b + —zy” +
@ vy 3a 4 27a?

~a <x +3(2) (33,@) +30 () + (52 y)) (3.12)
—afe+ 3ﬁy)

having the claimed form. If @ = 0, then > — 3ac = 0 implies b = 0, and ¢? — 3bd = 0

y3

implies ¢ = 0. Hence f = dy?, having the claimed form. ]
Note that if a # 0, D = 0, and char F' # 3, then H = 0 can be replaced by a

simpler one: p = 0 where p = b? — 3ac. We prove this in the following theorem and it

14



comes from known results on the discriminant and the Hessian of a cubic polynomial.
These results can be found in, for example, [10, p. 26].

Theorem 3.13. Let p = b? — 3ac. If a # 0, then
(1) H =0 implies p = 0.

(2) If D=0 and F does not have characteristic 3, then p =0 implies H = 0.

Proof. H can be written using p as follows
H = px* + (be — 9ad)zy + (¢* — 3bd)y*. (3.14)

To see (1) indirectly, we note that if p # 0, then H # 0.

To show (2), suppose p = 0. Then b* — 3ac = 0 (by definition of p) and
D = (bc — 9ad)?. If D = 0, then bc — 9ad = 0. Multiplying bc — 9ad = 0 by b, we
have b%c — 9abd = 0. Multiplying b* — 3ac = 0 by ¢, we have b*c — 3ac®> = 0. Then
(b%c — 9abd) — (b*c — 3ac?) = —9abd + 3ac* = —3a(3bd — ¢*) = 0. Since a # 0 and F
does not have characteristic 3, we have 3bd — ¢ = 0. Thus H = 0. O

We give an example of Theorem 3.11.

Example 3.15. Let f = 2% + 322y + 3zy* + y3. Matching coefficients with (3.7), we
finda =1,b=3, c=3, and d = 1. Plugging these into (3.8), we find H = 0. By
Theorem 3.11, we have f = (x + y)3. For this polynomial, p = b* — 3ac = 0 which is
a simpler calculation than using (3.8) to calculate H.

When does f as in (3.7) factor into three independent linear factors? The
following theorem answers this and it is based on the known result that a univariate
polynomial has a multiple root if and only if its discriminant is zero. This result can
be found in, for example, [1, Proposition 34] and [10, p. 26].

15



Theorem 3.16. Let [ be a degree 3 bivariate homogeneous polynomial as in (3.7).

Then

f(z,y) = (apx + ary)(box + bry)(cox + c1y) (3.17)
for some ag, ay, by, by, co, c1 in a degree 6, or less, extension of F with agby —a1by # 0,
apcy — a1co # 0, and bycy — bicg # 0, if and only if D # 0.
Proof. First we prove that f is a product of three linear factors—independent of
D and a—because of the Fundamental Theorem of Algebra. Suppose a # 0. Let
a1, (g, ag be the roots of ax® + bx? + cx + d in an extension of F' of degree at most 6.
Then

az® + bz’ +cx +d = a(zr — ay)(z — az)(z — az)
and

f=alz = ay)(z — ay)(z — azy)

(3.18)
= (az — aoy)(z — agy)(z — asy)
which is a product of three linear factors. If a = 0, then by Theorem 3.1
f=yb2* + cxy + dy?)
(3.19)

= y(aoz + a1y)(box + b1y)
for some ag, a1, by, and by in a quadratic extension of F'. Thus f is a product of three
linear factors.

So independent of D and a, f has the form

f(z,y) = (aor + ary)(boz + bry)(cox + 1y). (3.20)

16



Matching coefficients, we find

a = aoboco

b= alb()Co + (IoblCQ + a0b061

(3.21)
Cc = a1b160 + a1b001 + a01)101
d= alblcl.
Plugging these into (3.9), we get
D= (a0b1 — a1b0)2<a001 - a1€0)2(b061 - b160)2. (322)

From this equation, we have D # 0 if and only if agb; — a1by # 0, agcy — ajco # 0,

and byc; — bycy # 0. O
We give an example of degree 3 bivariate homogeneous polynomial f that

factors as in (3.17).

Example 3.23. Let f = 23 —2y? + 1> € F[z,y]. Then matching coefficients, we find

a=1,b=0,c=—1, and d = 1. Plugging these into (3.9), we find D = —23. By

Theorem 3.16,

f=(—ay)(z—By)(r—y)

for some «, 3, and v in a degree 6, or less, extension of F' with —f4+a # 0, —y+a # 0,
and —y + 8 # 0.

When does f, asin (3.7), factor as a square times a linear factor? The following
theorem answers this and it is based on the known result that a univariate polynomial
has a multiple root if and only if its discriminant is zero. This result can be found

in, for example, [1, Proposition 34]. And we have also used the known result that a
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univariate degree 3 polynomial has 3 identical roots if and only if its Hessian is zero.
This result can be found in, for example, [10, p. 26] and [9, p. 136]. First, we rewrite

f as a multiple of H plus a remainder in two ways:

(0> =3ac)’f = | a(b® — 3ac)z + (b* — dabc + 9a*d) y | H— D (3azy® + by®) . (3.24)

- 7

g

by € F mEF

(2 =3bd)*f = | (¢* — 4bed + 9ad®) x + d(c* — 3bd)y | H— D (3da*y + cz®) . (3.25)
by € F b€ F

These two equations will be used to prove the following theorem.
Theorem 3.26. Let f be a degree 3 bivariate homogeneous polynomial as in (3.7).

Suppose the coefficient field F' has characteristic other than 2 and 3. Then the fol-

lowing are equivalent.

(1) f = (apz + a1y)*(box + bry) for some ag,ay, by, by € F such that

apby — a1bg # 0.

(2) H#0 and D = 0.

(3) H#0 and H = A(agz + a1y)? for some A, ag,a; € F.
Proof. First we show (2) < (3). By (3.10), we have that D = 0 is equivalent to
Dy = 0 since char F' # 3. By Theorem 3.1, we have that Dy = 0 is equivalent to
H = A(agz + ayy)? for some A, ag,a; € F since char F' # 2.

To show (1) = (2), suppose f = (apz +a1y)*(boz +byy) for some ag, ay, by, b1 €
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F such that agb; — a1by # 0. Matching coefficients, we get
a = agby
b = ag(2a1by + aghy)
(3.27)
¢ = aj(a1by + 2apby)
d = ajb,.
Plugging these into (3.9) and (3.8), we find D = 0 and H = (agh; —a1bp)?(apz +a1y)?>.
Since agb; — a1by # 0, we have ag # 0 or a1 # 0. So H # 0.
We now show that (3) = (1). Suppose H # 0 and H = A(agz +ayy)? for some
A ag,a; € F. As we have shown at the beginning of the proof, this is equivalent to
Dy = 0and D = 0. We note that either b> — 3ac # 0 or ¢ — 3bd # 0, since otherwise,
(3.10) together with Dy = 0 would imply that bc — 9ad = 0, and by (3.8), H would
be zero contrary to our assumption. Since b? — 3ac # 0 or ¢ — 3bd # 0, and D = 0
and H # 0, we have that (3.24) and (3.25) imply that f is the product of H (which
equals A(apr+ayy)?) and a linear factor byx +byy where by and b; are the underbraced

coefficients in (3.24) and (3.25). That is,

f(x,y) = Alapz + a1y)*(box + bry)

where by, b; € F. The constant A can be absorbed in the coefficients by and b; so
that f has the claimed form f(z,y) = (aoz + a1y)*(box + b1y) where ag, ay, b, b1 € F.

It remains to prove that agb; —a1by # 0. Suppose, to the contrary, agh; —a by =
0. Then f(z,y) = B(apr + a1y)? for some B € F, and by Theorem 3.11, we would

have H = 0, which would contradict our assumption. O

19



We give an example of a degree 3 bivariate homogeneous polynomial having
the three equivalent conditions in Theorem 3.26.
Example 3.28. Let f = 2® — 2%y — xy? — y® € Qlx,y]. Then matching coefficients
with (3.7), we find a = 1, b = —1, ¢ = —1, and d = 1. Plugging these into (3.8) and
(3.9), we find H = 4(x—y)? and D = 0. By Theorem 3.26, f = (apz+a1y)?(box+b1y)
for some ag, ay, by, by € F such that agb; —a1by # 0. This agrees with the factorization
f=(@-y?*z+y).

Here is an example that shows that without char I’ # 3, condition (3) of
Theorem 3.26 might not imply conditions (1) or (2).
Example 3.29. Let F' = Z3 and let f = 2%y + zy* = zy(x + y) € F|x,y]. Matching

coefficients with (3.7), we find a =d = 0 and b = ¢ = 1. Then
H = (b* — 3ac)z® + (bc — Yad)xy + (> — 3bd)y”
=22+ Ty + y2
= (z—y)*.
An easy calculation shows that D = 1. In this example, condition (1) of Theorem 3.26

is false, condition (2) is false, and condition (3) is true.
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CHAPTER 4
Trivariate Homogeneous Degree 2 Polynomials

In this chapter, we consider the reducibility of polynomials of the form
f=Cy2* + Cixz + Coyz + Cya® + Cszy + Csy? (4.1)

over some base field F' containing the constants C; in the indeterminates z, y and z.
Throughtout this chapter, we will assume that char F' # 2. To see if the polynomial
f reduces over F' or over some extension of F', the following quantity is important.
Let

R = —010,C3 + CyC2 + C3C, + CC5 — 4CyC4Cs. (4.2)
The goal is to show that
e If f is reducible over F' or over some extension of F', then R = 0, and

e If R =0, then f is reducible over a quadratic extension of F.
We have looked through a number of literatures that are related to this subject, in
particular, literatures on ternery quadratic forms, for example, [11], [12], and [13]. It

is well known that f can be written in the form

X
f=lz y z] M|y
ya

for some symmetric 3 x 3 matrix M. But we have not yet seen the quantity R being
given in the literatures that we have looked at.
Where is R coming from? What’s the intuition? There are two possible

explanations. One of them is that R comes from the discriminant of the symmetric
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matrix of the quadratic form f in the basis (z, v, 2), see equation (4.18). The second
explanation comes from the remainder of f divided by a general linear polynomial.

We first assume that f factors, and then derive consequences. So suppose
f = (apz + a1z + asy)(boz + bix + boy) (4.3)

for some ag, ay, as, by, by, and by in an extension of F. Suppose ag # 0. Then using
polynomial long division to divide f by agz + a1x + asy, treating both as polynomial

in z, we find

~

apf = (apz + a1z + axy)Q + R (4.4)
where
Q = (—a1Co + agCh)z + (—a2Cy + aoCs)y + a¢Coz
R= K%+ Koxy + K3y2
K, = a%C’O — aga1Cy + a(2)04 (4.5)
Ky = 2a1a5Cy — agasC1 — aga1Cy + CL(2)03
K3 = a3Cy — agayCy + 0%05.
Since f factors as in (4.3), we have R = 0 and so K; = Ky = K3 = 0. Let S be the

resultant of K7 and Ks, treating both as polynomial in a; and assuming their leading

coefficients are nonzero. Then
S = ag (—a%C’on + aoangCg - a3010203 + a%COC'g + 4a§00204
—4agasCoCyCy + a802204) )
So assuming nonzero leading coefficients, i1 = 0 and Ky = 0 have a common solution
for a; if and only if S = 0. Since ag # 0, the other part of S without the factor of a3
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equals zero. Call this other part T, i.e.,
T = —0300012 + CL()CL201202 — &(2)010203 + agC’ng + 4&30304 — 4&0&2000204 + CL?)02204

and 7" = 0. Similarly, using resultant and assuming nonzero leading coefficients, we
find that T'= 0 and K3 = 0 have a common solution for a, if and only if
&éCg(\-ClCQCg + C()Cg + 02204 + 01205 — 4000405;)2 = 0.

R
Suppose Cy # 0, then since ag # 0, we have R = 0.

Towards proving that R = 0 is a necessary and sufficient condition for f to
factor, we first introduce a symmetry diagram that will come in handy when we make
a symmetry argument. If we permute the indeterminates x, y, and z of f, then the new
polynomial is reducible if and only if the original one is. To see how the coefficients
C; permutes when the indeterminates are permuted, we give a symmetry diagram in

Figure 4.1. For example, interchanging z and y in f means that we interchange C}

T
Cy
C, G

Co Cy G5
4 Y

Figure 4.1: Symmetry diagram for the coefficients of degree 2 polynomial.

and C5, C and Cy, but Cy and C3 are unchanged. Note that R is unchanged by these
changes or any other symmetry.

Lemma 4.6. If f is reducible over F' or over some extension of F, then R = 0.
Proof. If f is reducible, then f is a product of two homogeneous degree 1 polynomials.
Hence f has the form f = (apz + a1 + asy)(boz + b1z + boy) where ag, a1, as, by, by, bo
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are in F' or in some extension of F. Expanding this expression gives

f = (aoz + a1z + asy)(boz + b1z + bay)

= aobo 22 + (a0b1 + albo)xz + (aobg + GQbo)yZ + a1b1 1’2
~— —_—— —_— ~—
Co Cl CQ 04

+ (a1by + aghy)xy + ashy 32
—_—— <~
Cs Cs

Matching coefficients, we find
Co = agby
C1 = agby + a1by
Cy = apby + azby
Cy = a1by
C3 = a1by + asby

05 = a2b2.
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Plugging the expressions for the C; from above into the expression for R, we get
R - —010203 + 00032 + 02204 + 01205 - 4000405

= —(agb1 + a1by)(agbs + asby)(aiby + azby) + agbo(aiby + a2b1)2

+ (aghy + aghy)*aiby + (aghy + aiby)?agbs — 4agboa,biasbs
= ( — alagbgbl — aoagbobf — a%angbg — 2aga1a9bgb1by

— agagb%bQ - aga%bobg — a%alblbg)

+ (aoagbob% + 2apaiasbob by + aoa%bobg)

+ (a1a3biby + 2agaiasbobibs + ajaibib)

+ (a%agbgbg + 2apaiazbobiby + a3a2bfb2)

— dagaiasbgb1be

= 0. O

It takes more work and more steps to show that if R = 0, then f is reducible
over a quadratic extension of F'. Toward this goal, some important quantities are
defined as follows. If we set = 0, then f = Cyz? + Coyz + Csy?. We define D, as

the discriminant of this polynomial, i.e.,

D, = C% — 4CyCs. (4.8)
Similarly, if we set y = 0, then f = Cyz? + Ciaz + Cyz? and we define D, as

D, = C} — 4C,Cy. (4.9)
Similarly, if we set z = 0, then f = Cy2? + Cszy + C5y* and we define D, as
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Some more important quantities are defined below. They occur in parts of equations

that show the relationship between f and the discriminants defined earlier.

E, =C1C3 — 20,0, (4.11)
E, = CyC5 — 2C,C} (4.12)
E, = C1Cy —2CCy (4.13)
L, =Ciz+2Cyx + Csy (4.14)
L, = Cyz 4 Csx + 2C5y (4.15)
L, =2Cyz + Cix + Cyy. (4.16)

We will prove some preliminary lemmas about the relationship between f, R,
and the above quantities and use these to prove that if R = 0, then f is reducible

over a quadratic extension of F'. Towards showing these relationships, we start by

x
re-writing f using matrix equations. 2f can be re-written as 2f = [x Yy z} M |y
z
where
20y Cs5 O
Cy Oy 20
Calculating the determinant of M is straightforward.
det M = 8C,C4Cs + C1CyC5 + C1CyC5 — 20350, — 2C,C3 — 2C2C5
(4.18)
= —2R.
Using row one of M to calculate det M, we get
205 C Cs; C. Cs; 2C
det M =20, " l-cs| P Ty P T
CQ 200 Cl 20(] Cl CQ (419)

= —204D, + C3E. + C4E,,
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Since det M = —2R, we have 2R = 204D, — CsE, — C3F,,.
Similarly, using row two of M to calculate det M, we get

03 Cl 204 Cl 204 03
det M = —03 + 205 - CQ
CQ 200 Cl 200 Cl CQ (420)
= CgEZ - 2C5Dy + CgEx
Since det M = —2R, we have 2R = —C3E, 4+ 2C5 D, — Cyo F,.

Similarly, using row three of M to calculate det M, we get

Cs O 20, ¢4 20, G
det M = Cl - 02 + 200
205 CQ 03 CQ Cg 205 (421)
- ClEy + CQEx - QCoDz
Since det M = —2R, we have 2R = 2C,D, — C1 £, — Cy2 F,.
Calculating the adjoint of M is straightforward.
[ 40,05 — C2  C1Ch — 2C,C5 CoCly — 2C1C
adJ M = 0102 - 20003 40()04 - 012 0103 - 20204
CyC3 — 2C,C5 C1C3 —2C,Cy  4C,Cs — C2
- (4.22)
-D, E, E,
=|E -D, E,

E, E, —-D,

D,D.—E* FE,E,+D.E. E,E.+ D,E,
adjadj M = |E,E, + D.E. D,D, - E> E,E.+D,E,|. (4.23)
E,E.+ D,E, E,E.+D,E, D,D,— E?

We prove a lemma that gives an alternate way of calculating adjadj M.
Lemma 4.24. Let F' be a field, and let n be a natural number greater than or equal

to 2, and let A be an n X n matrix whose entries are elements of F'. Then adjadj A =

(det A)"2A.
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Proof. Let

11 Ti12 T13 ... Tin
To1 T2 T23 ... Top
X =
_xnl Tp2 Tp3z .- xnn_
where each x;; is an indeterminate. Then det X € F[z11, Z12, 213, . - ., Tnp). We start

from a known result that can be found in, for example [6, p.137]:

(adj X)X = X (adj X) = (det X)I. (4.25)

Taking the determinant on both sides of the equation, we have

(det X)(det adj X) = (det X)". (4.26)

Since Fxi1,%12,%13,- .., Znp| is a domain and det X is not the zero polynomial, we
have

(det adj X) = (det X)" . (4.27)

Replacing X by adj X in (4.25), we have

(adj(adj X)) adj X = (detadj X)I

(4.28)
= (det X)"'T by (4.27).
Multiplying both sides by X on the right, we have
(adj(adj X))(adj X)X = (det X)" ' X. (4.29)
Since (adj X)X = (det X)I, we have
(adj(adj X))(det X)I = (det X)" ' X, (4.30)
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Then since F[x11, 12, 13, - - -, Tnp) 18 @ domain and det X is not the zero polynomial,

we have

(adj(adj X)) = (det X )" *X.

Using the evaluation homomorphism to replace the indeterminates x;; with entries of

A, we have

(adj(adj A)) = (det A)" 2 A.

]

We apply this lemma to the matrix M that we were discussing earlier. Since

M is a 3 x 3 matrix, we have n = 3. By Lemma 4.24, we have adjadj M = (det M) M.

Since det M = —2R, we have adjadj M = (det M)M = —2RM. We matching the

diagonal entries in the three equal matrices (det M )M, —2RM, and adjadj M as

given in (4.23):
(det M)(2Cy) = —2R(2Cy) = —4C4R = D,D, — E>
(det M)(2C5) = —2R(2C5) = —4C5R = D, D, — E.
(det M)(2Cy) = —2R(2Cy) = —4CyR = D, D, — E>.

Matching the rest of the entries in the three equal matrices, we have
(det M)(C3) = —2R(C3) = —2C3R = E,E, + D, E,
(det M)(Cy) = —2R(C4) = —2C1R = E,E, + D E,
(det M)(Cy) = —2R(Cy) = —2C32R = E,E, + D, E,.

We put the three equations in (4.31) into a lemma.

(4.31)

(4.32)

Lemma 4.33. With the definitions for the Es and the Ds in (4.8)—(4.13) and the
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definition for R in (4.2) , the following equations are true.
E?=D,D, +4C,R
B2 = D,D, +4C5R (4.34)
E?=D,D, + 4CyR.

Proof. One way to show this is to expand the above expressions using the definitions

in (4.8)—(4.16).

E? = CC3 — 4C,Co050, + 4C3C2
D,D, = C{C3 — 4C,C3C, — ACTC4Cs + 16C,CiCs

4C4R = —4C,Cy03C, + 4CoC3C, + 4C3CT + 4C3C1Cs — 16CoCECs

From these, we see that E2 = D,D, + 4C4R. Because of the symmetry diagram in
Figure 4.1, it suffices to prove only one of the equations.

Alternatively, these equations can be shown to come directly from the diagonal
of the adjadj M in (4.31) as it has been shown earlier. O

4.1 When Is f A Square

When char F' # 2, R =0and D, = D, = D, = 0, then f is a square times a constant.
Towards proving this, we first prove a lemma showing the relationship between f, L,,
D,, D,, and E,.
Lemma 4.35. With the definitions in (4.8)—(4.16), we have the following.

4Cyf = L2 — Dy22 — D.y* —2E,yz

ACsf = L2 — D,2* — D.a* — 2E,xz (4.36)

4Cof = L? — D2 — D,y* — 2E.xy
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Proof. We will expand L? and —D,2? — D,y* — 2E,zy in the third equation 4Cyf =

L? — D,2* — D,y* — 2E,xy using the definitions in (4.8)-(4.16).

L? = C%4? + 20, Cyxy 4 Cy? + 4C,Chaz + 4C,Coyz + 4C2 22 (4.37)

—Dyz* — Dyy? — 2E,2y = (—CF +4CCy)a* — (CF — 4CoCs)y°
(4.38)

—2(C1Cy — 2C,C3)zy.
Adding these two equations, we get
L? — DyxZ — Dyy? — 2B,y = 4CyCraz 4+ 4C)Coyz + 46’32'2 + 4C,Cya?
+4C,Csy? + 4CyCszy
= 4C,(Chaz + Coyz + Co2® + Cya® + Csy? (4.39)
+ C3xy)
=4C,f.
Similarly, using the symmetry diagram in Figure 4.1, we get the other two equations.
O

Equations (4.36) leads to factorizations of f over the base field.

Theorem 4.40. If char F' # 2 and R = D, = D, = D, =0, then f factors over the
base field F' as a square times a constant.

Proof. Plugging R = D, = D, = D, = 0 into (4.34) in Lemma 4.33, we have

L2
E, =FE,=E, =0. If Cy # 0, then equation (4.36) says f = —-. Similarly, if

40y
L2 L2 |
Cy # 0, then f = 403”4. And if C5 # 0, then f = 4—5’,5 So if one of the Cy, Cy, or (5

is nonzero, then by Lemma 4.35, f is a square times a constant.

If Cy = Cy = C5 = 0, then by the definitions for D,, D,, and D, in

31



(4.8)-(4.10), we have C; = Cy = C3 = 0 and f = 0, which is a square times a

constant. O
It is straightforward to show that the if-condition above is in fact an if-and-

only-if condition.

Theorem 4.41. Ifchar F # 2, then f = A(agz+a1x+agy)? for some A, ag, a1,as € F

if and only iof R= D, =D, =D, = 0.

Proof. (<) This direction has been proven in Theorem 4.40.

(=) Since f factors, Lemma 4.6 tells us that R = 0. Expanding A(agz + a7 + asy)?,

and matching coefficients with f, we have

O() = ACL(Q)
Cl == 2Aa1a0
CQ = 2ACL26L0
(4.42)
03 = 2Aa1a2
04 = Aa?
05 = ACL%

Plugging these into the definitions for D,, D,, and D, in (4.8)-(4.10), we have

D, = C3 — 4C,Cs = (2Aasag)® — 4(Aag)(Aa3) =0
D, = C} — ACyCy = (2Aa1a0)* — 4(Aad)(Aal) = 0

D, = C3 — 4C,Cs = (2Aaya)* — 4(Aa?)(Aa3) = 0. O
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4.2 When Is f Reducible But Not A Square

If f(x,y,2) = g(z,y,2)h(z,y, z), then setting y = 0, we have

f(x,0,2) = g(x,0,2)h(x,0,2). So a factorization for the trivariate case gives a fac-
torization for the bivariate case. While the converse does not hold, a factorization
for the bivariate case might give us some information about the factorization for the
trivariate case. We take f as in (4.1) and set y = 0. Then we get the polynomial
Co2% + Cyzz + Cyx? whose discriminant is D, = O — 4C,Cy. The following factor-
izations for f(z,0,2) = Cpz? + Crxz + Cyz?, f(0,y,2) = Csy* + Coyz + Cypz?, and
f(x,y,0) = Cyx?® + Cszy + Csy? (which correspond to the sides of Figure 4.1) leads
to the factorizations of f that are not a square.

Theorem 4.43. Suppose Cyz? + Cizz + Cyx? = (agz + a12)(boz + byw). Then
Dyf = fuf2 + Ry’ (4.44)

where fi = dy(a17 + apz) + (a1Cy — agCs)y, fo = dy(bix +boz) — (01Cy — byCs)y, and
d, = aiby — agby. Similarly, suppose Csy* + Coyz + Coz* = (asy + apz)(bay + boz).
Then

D.f = g192 + Ra? (4.45)
where g1 = dy(apz + agy) + (agCy — aCh)x, g2 = dy(boz + bay) — (boC3 — b2Ch)x, and
dy = aghy —asby. And similarly, suppose Cyx?+ Cszy+Csy? = (a12+ asy) (b1 + bay).
Then

D.f = hihy + R2* (4.46)
where hy = d,(asy + a1x) + (a2Cy — a1C2)z, he = d,(boy + biz) — (b2C1 — b1Cs) 2, and
d, = asb; — a1bs.
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Proof. Matching coefficients in Cyz? + Cyzz + Cyx?® = (agz + ayz)(boz + biz), we get

04 = Cl1b1
Cy = aiby + apby

C() = aobo.

Plugging these into (4.1) and (4.9), we find

Dyf = (—4(10@1[)0()1 + (a1b0 + a0b1)2)
X (a1b12? + Csxy + Csy® + (arby + aght)zz + Coyz + aghoz?)
= (ajb3by — 2apaibob; + aja,b?)r?

+ (a?b3Cs — 2apa1bob1Cs + a2biCs)y?

(4.47)
+ (a%b(Q)C'g — 2@0&1[)06102 + a%b?Cg)yz
+ (apalbl — 2agabiby + albob?)z?
+ (a%bgCg - 2@0@1()01)103 + CL%b%Cg).Ty
+ (a2 — apalbiby — agaibb? + agh?)wz.
Plugging the same set of substitutions for C; into fi, f2, and R, we find
f1 = (a%bo — aoalbl):p + (a102 - ang)y + (a0a1b0 - CL(Q)bl)Z (448>
fa = (a1boby — aghi)z + (—b1Cs + boC3)y + (a1bg — agboby)z (4.49)
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f1f2 = (ai’bgbl — ana%bobf + agalb:{’)ﬁ
+ (—albng + a1b00203 + a/(]bICQCg — aobng)gf

+ (CL%Z)SCQ — 2&0a1b0b102 + CL%b%CQ)iyZ

(4.50)
+ (apaiby — 2a5a1b3by + ajbobi)z?
+ (a%bgc& — 2a0albob103 + a%b%C’d)wy
+ (a3b} — apatbiby — adaibob? + agh? )z
R = albng — a1b00203 — aobngC'g + aobgC§ + a%bgC}, - 2@0@1()0[)16’5 ( )
4.51

+ ajbiCs.
From these equations, we can almost see that D, f = f; fo+ Ry*. Almost all the terms
of D, f appear in f;fo. Only the y*-term requires a bit of thoughts. The four terms
in the coefficient of y? in f; fo cancels with the first four terms in the coefficient of 1/
in Ry?. The remaining three terms in the coefficient of 3? in Ry? gives the coefficients
of y* in D, f. Similarly, by rotating the triangle diagram in Figure 4.1, we get the
other two assertions. 0
An immediate consequence of Lemma 4.43 is the following.

Theorem 4.52. If R =0, and one of D,, D,, or D, is nonzero, then f factors over
a quadratic extension of F' as in Lemma 4.43, and f is not a square.

Proof. It D, # 0, then by Theorem 3.1, Cyz? 4+ Cix2 4+ Cya? = (apz + a1z)(boz + byz)

for some ag, a1, by, and by in F [\ /Dy]. The a; and b; can then be used to construct f;

and f5 as in Lemma 4.43. Since R = 0 and D, # 0, we have f = % by Lemma 4.43.
y
Similarly, if D, or D, is nonzero, then f factors over F [\/Dz] or F [\/DZ]. O

We combine Lemma 4.6, Theorem 4.40, and Theorem 4.52 to get an if-and-
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only-if condition for f to factor over F' or over an extension of F.

Theorem 4.53. Suppose char F' # 2. Then f is reducible over F' or over an extension

of F if and only if R = 0.

Proof. (=) This direction was proven in Lemma 4.6.

(<) Assume R =0. If D, = D, = D, = 0, then by Theorem 4.40, f factors over the

base field F' as a square times a constant. If one of D,, D,, or D, is nonzero, then

by Theorem 4.52, f factors over a quadratic extension of F' as in Lemma 4.43. m
When does f factor over the base field F' without the need to go to an extension

of F? Towards answering this question, we start with the following lemma.

Lemma 4.54. If R = 0 and one of the followings holds
(1) 0 # D, is a square in F, or
(2) 0+# D, is a square in F, or

(3) 0+# D, is a square in F,
then f factors over F.
Proof. Suppose D, is a square in F. Then Cy2?+Cszy+Csy* = (a1x+asy) (biz+boy)
for some a;,b; € F. Then the following expressions, as defined in Theorem 4.43,
d, = asby —arby is in F, and hy = d,(asy + a1x) + (a2Cy — a;Cy)z and hy = d,(boy +

hih
bix) — (boCy — b1Cs)z are in Flz,y]. By (4.46), f = 11) 2 factors over F.

fifa

factors over F' where f; and

Similarly, if D, is a square in F', then f =
y

f2 are as defined in Theorem 4.43.
9192

T

Similarly, if D, is a square in F', then f =

factors over F' where g; and

go are as defined in Theorem 4.43. n
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We now give an if-and-only-if condition for f to factor over the base field F'
Theorem 4.55. If char F' # 2, then f factors over F if and only if R =0 and D,,
Dy, and D, are squares in F'.

Proof. (<=) Assume R = 0 and D,, D,, and D, are squares in F. If D, = D, =
D, = 0, then by Theorem 4.40, f factors over F' as a square times a constant. If one
of the D,, D,, or D, is nonzero, then by Lemma 4.54, f factors over F'.

(=) Suppose f factors over F' as f = (apz + a1z + agy)(boz + byz + boy) for some
a;,b; € F. Then the coefficents of f are given by (4.7) Plugging these coefficients into

D, = C2% — 4C,C5, we have

D, = (agby + aibs)? — 4(a1b1)(azhy)
= a%b% + 2aia9b1by + a%bg — 4daia9b1by
(4.56)

= a2b? — 2a,a5b1by + a3

= (a261 - a1b2)2
and agb; — a1by is in F since a;,b; € F. Thus, D, is a square in F. Similarly, D, and
D, are squares in F'. O
Example 4.57. Let F be a field. Let f = 22 —6xy—2y*—20x2—6yz+22 € Flz,vy, z|.
We will use (4.44) in Lemma 4.43 to obtain a factorization of f. The other two

equations (4.45) and (4.46) in the same lemma gives factorizations of f that are

essentially the same as the one obtained from (4.44) except for order and a constant

37



factor, because F|x,y, z] is a UFD. Matching coefficients of f with (4.1), we get

Co=1
Cl = —20
Co=—6
(4.58)
C;=—6
Cy=1
Cy = -2
We calculate R, Dy, D,, and D,.
R = —01Cy,C3 + CyCi + C3C, + CFCs — 4C,CyCs
=720+ 36 + 36 — 800 + 8
=0
(4.59)

D, = C} —4CyCy = 400 — 4 = 396 = 6 - 11
D,=C; —4C,C5 =36 +8 =44 =211
D,=C; —4C,C5 =36 +8 =27 - 11.

Consider the polynomial Cyz? + Cizz + Cya? = 22 — 202z + 2. By Theorem 3.1, we
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have

Coz? + Chiaz + Cya? = 22 — 2022 + 22

4é0 (QCOZ + ((J1 - \/m) x)
(st (604 T30 )
i (224 (—20 - 6v11) o) (4.60)
x (224 (~20+ 6vTT) )
= (=+ (-10-3v1l) 2)
x (24 (-1043V11) 2).
We set ag = 1, ay = —10 — 3V/11, by = 1, and by = —10 + 3v/11. Then d, =
arby — aghy = —6/11,
fi = —6V11 ((—10 _ 3\/ﬁ> z+ z>
+((~10-3V11) (=6) +6) y (4.61)
= 6[(33+10V1T) 2+ (11+3V11) y - V11|

2
2

fo = =611 ((—10 + 3\/ﬁ> T+ z)
~ ((~10+3V11) (~6) +6) y (4.62)

=6 [ (=83 +10v/11) 2+ (11 +3V11) y — VI12]
By (4.44), we have

f= 62'111 <6 [(33+10\/ﬁ>x+ (11+3\/ﬁ)y—\/ﬁz]>
x (6 [(—33+10\/ﬁ> T+ (—11+3\/ﬁ> y— \/ﬁzD
_ [(10+3\/ﬁ)x+ <3+\/ﬁ>y—z]

« [(10—3\/ﬁ>x+<3—\/ﬁ)y—z].

(4.63)
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We will show that f is a difference of squares when R = 0. We first rewrite f

by completing the square, treating f as a polynomial in x:

f=Co2% + Crazz + Coyz + Cazy + Cuz® + Csy?

(4.64)
= Oy + (Crz + Cay)x + (Co2® + Csy? + Coyz).
With L, as defined in (4.14), we have
4C4f = (2041’ + ClZ + 03y>2 - ((012 + ng)2 - 404(0022 + C5y2 + ngz))
= Li — (01222 + 2Cngyz + Cg? 2_ 4000422 — 404053}2 — 404023/2)
(4.65)

= L2 — ((C} — 4C,Cy)2* + (O3 — 4C,Cs)y* + 2(C1C3 — 205,Cy)y2)
= L2 — (D,2* + 2E,yz + D.y?).
This equation is exactly the same as (4.36). Then we rewrite the second term
—(Dyz* + 2E,yz + D.y*) by completing the square, treating it as a polynomial in y:
D.(4Cyf — L2) = —(D2y* + 2D.E,yz + D,D.2*)

=—((D,y + E$z)2 — ngz2 + DyD222)

(4.66)
= —((D.y + E.2)* + (D,D., — E2)z?%)
= —((D.y + E,2)* —4C4R2*) by (4.34).
From this, we can solve for 4D,Cy f:
4D,Cyf = DL — (D.y + E,2)* + 4C4R2*. (4.67)
Similarly, and by symmetry using Figure 4.1, we have five other equations:
AD.Csf = D.L? — (D.x + E,z)* + 4C5Rz". (4.68)
4D,Cof = D, L?* — (Duy + E.x)* + 4CyRa”. (4.69)
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AD,Csf = D, L2 — (Dyz 4 Eyx)® + 4C5 Ra?.
4D,Cof = D,L? — (Dyx + E.y)* + 4Co Ry,

4D,Cyf = D,L2 — (Dyz + E.y)* + 4C4Ry”.

From (4.67), if R =0 and D,C, # 0, then f is a difference of squares

1

f= 4D.C,

(D.L? — (D.y + E.2)?).

Similarly, if R =0 and D.C5 # 0, then f is a difference of squares

1

f= 4D.C

(D.L2 — (D.x + E,2)*) .

Similarly, if R =0 and D,Cjy # 0, then f is a difference of squares

1
- 4D,C,

Similarly, if R =0 and D,C5 # 0, then f is a difference of squares

1
~ 4D,Cs

f (D.L2 — (Dyz + Eyx)?) .

Similarly, if R =0 and D,Cj # 0, then f is a difference of squares

1
~ 4D,Cy

f (DyL? — (Dyx + E.y)*) .

Similarly, if R =0 and D,C4 # 0, then f is a difference of squares

1
~ 4D,Cy

f (DyL2 — (Dyz + E,y)?) .

(4.70)
(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

Otherwise if we are not in any one of the cases above, then suppose R = 0 and

O4DZ - Cg,Dz - O
CoD, =Cs5D, =0
CODy — C4Dy — 0
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If all the discriminants D, D,, and D, are zero, then by Theorem 4.41, we are done.
The remaining case is that one of the discriminants is nonzero. So, WLOG,

suppose D, # 0. Then by (4.79), we have Cy = C5 = 0, which implies D, = C2. By
hihs

z

where h; and hy are as defined in Lemma 4.43 and are in

Lemma 4.54, f =
F[z,y, z]. Since f factors over F, f can be readily rewritten as a difference of squares

with coeflicients in F':

hihg

f= D.

(4.80)

= 1D, ((h1 + ha)® = (h1 — ho)?) .
Similarly, if D, or D, is nonzero, then f can be factored as a difference of squares
with coefficients in F.

From (4.73), f can be readily factored as a difference of squares:

Theorem 4.81. Suppose char F' £ 2. If C4D, # 0, and R =0, then

f= (L VD, + (D.y + Emz)> (Lx\/D_Z —(Dy+ Emz)) . (4.82)

404

Similarly, if CsD, # 0, and R =0, then

po 1 <Ly\/ﬁz+(sz+Ez)(L\/_ Da:—i—Ez)) (4.83)

A4C5D

Similarly, if CoD, # 0, and R =0, then

/= 400 (L VD. + (Day+ Boa)) (Lv/De = (Day + Bo)) . (484)

Similarly, if CsD, # 0, and R =0, then

fzmle(Ly\/EHDxHEg;)(L\/_ (D2 +Byr)).  (489)
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Similarly, if CoD, # 0, and R =0, then

f= 4C’iDy (Lz\/ﬁy—i— (Dyx + E.y ) (L \/_ (Dyx + Ezy)> (4.86)

Similarly, if C4yDy # 0, and R = 0, then

f= 4011)@, (Lov/Dy + (Dyz + Euy)) (Lay/Dy = (Dy2 + Eay) ). (4.87)

One might be curious about whether R = 0 and D, = D, = 0 implies D, = 0.
This is false because of the following counterexample.
Counterexample 4.88. Let f = 22 + y%. Matching coefficients, we find C, =
C,=C=0C3=0and C;, = Cs = 1. Then R = —C,C5C3 + CoC2 + C3Cy +
CiCs — 4C,CyCs = 0, D, = C3 —4CyC5 = 0 and D, = C? — 4C,Cy = 0, but
D, =C3—4C,C5 = —4 # 0.

However, the statement is almost true because if we add Cy # 0 to the as-
sumption, then we will be able to prove D, = 0.
Theorem 4.89. IfCy #0 and R =D, = D, =0, then D, = 0.
Proof. Plugging R = D, = D, = 0 into (4.34), we have E, = 0. From the definition

of D, Dy, and E,, we have

D, =0 = (O3 =4CyCs
D, =0 = C? = 4C,C,4 (4.90)

E,=0 = 0102 = 20005
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We use these to calculate the following:
4C3D, = 4C3(C: — 4C4Cs)
= (2CoC3)* — (4CoCy) (4CoCs)
(4.91)
= (C1Cy)? — C2C?
= 0.
Since Cy # 0, we have D, = 0. O
Let A and B be elements of a field F'. How does a general symmetric degree 2
trivariate polynomial f = A(z%+ y* + 2?) + B(vy + 2z +yz) factor when it does? We
will show either f = 4A%(x +y + 2)2, or f = A(x + w2z + w?y)(r + w?z + wy) where
w=e3 isaroot of 2%+ z + 1.
Example 4.92. With f defined as in (4.1) and f = A(z?+y?+2%)+ B(zy+x2+yz2),
matching coefficients, we have Cy = C5 = Cy = A and C3 = C; = Cy = B. Plugging
these values into R, we find R = —(2A — B)?(A + B). Suppose f is reducible over an
extension of F. Then B =2A or B = —A.

Case (1): If B = 2A, then
f=A@"+y*+2%) + 2A(zy + 22 + yz) = Az +y + 2)°.

Case (2): If B = —A, then

f=A@*+y*+2*) — A(zy + 22 + y2). (4.93)

Matching coefficients, we find Cy = Cy = C5 = A, C; = C3 = C3 = —A. Then
D, =D, =D, = A*—4A? = —3A% If A =0, then D, = D, = D, = 0 and
f=0.If A#0, then D, = D, = D, = —3A% # 0. By Lemma 4.43, D,f = D, f =
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D.f = —=3A%f = fify = g1g2 = h1hy. Then Cyz? + Cyzz + Cyx? factors as in (4.44).

Coz?+Chaz+Cya? = A2 — Azz+Ax? = (Az+Awz)(v+w?z) = (apz+ai1)(boz+b11).

Then ap = Aw, a1 = A, by = w?, and by = 1. Then d, = Aw? — Aw, dyw? = A(w — 1),

fi =dy(Az + Awz) + (—A* + A%w)y

=dAlr+wz)+A-Alw—-1)y
—_——
dyw?

= Ady(z + wz + w’y)

fo=d,(z+ W) — (A + Aw?)y

=d,(r+w?2) — Alw—-1)(w+1)y
—_———
dyw?

= dy(z +w?z — (1+w?)y)

= d, (7 + Wz + wy).
Then

—3A°f = fifs

— 2 2 2
= Ad, (7 + wz + wy)(z + w2z + wy).

Since A # 0, we have

d2
f= _3yA(x +wz + w?y)(z + Wz + wy)

= Az + wz + W) (z + w2 + wy)

since d) = (A(w? —w))? = A*(w — 2+ w?) = —3A4%

(4.94)

(4.95)

(4.96)

(4.97)

We will show that the field extensions obtained by adjoining the square root

of D, #0, D, # 0, or D, # 0 are in fact the same extension. Towards proving this,

we first prove some similar assertions in a more general context.
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Theorem 4.98. Let o, § € F. If F (Ja) = F (v/B), then a8 = s* for some s € F.
Proof. (1) If F (y/a) = F (y/B) = F, then a = s* and g = ¢ for some s,¢ € F. Then
aff = s%t? = (st)%

(2) If F(ya) = F(yVB) # F, then \Ja = a + by/B for some a,b € F. Then
a = a®+ 2ab\/B + b?B. This can be rewritten as 0 = (—a + a® + b?3) + 2aby/B. Since

VB ¢ F, we have

—a+ad>+bv5=0 (4.99)

and 2ab = 0. The latter implies a = 0 or b = 0. If a = 0, then (4.99) implies a = b2f.
Then af = b?5% = (bB)>.

If b = 0, then then (4.99) implies « = a®. Then F(y/a) = F(a) = F which
contradicts our assumption. Therefore F (y/a) # F. O

Theorem 4.100. If a3 = s*> # 0 for some s € F, then F (\/a) = F (\/B)

Proof. From aff = s%, we have /a\/8 = s. Since s # 0, we have § # 0 and /5 # 0.
Since v/ay/ = s, we have /a = % € F(vB). So F(y/a) C F(y/B). Similarly,
F (&) 2 F (VB). =
We are now ready to prove that the field extensions obtained by joining either
D,, Dy, or D, are in fact the same.
Theorem 4.101. I[f R =0, D, # 0, and D, # 0, then F (\/D_x) =F (\/D_y)
Proof. Plugging R = 0 into E? = D,D, + 4CyR, we find D,D, = E? # 0 since
D, and D, are nonzero. By (4.13), we have E, € F since Cy,Cy,Cy,C5 € F. By

Theorem 4.100, we have F' (\/Dx) =F (\ /Dy). O
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CHAPTER 5
Trivariate Homogeneous Degree 3 Polynomials

We do not have complete answer to the question of reducibility of trivariate homo-
geneous degree 3 polynomials. We only have partial results. We will show that for
a trivariate homogeneous degree 3 polynomial f over a field F', the rank of a 3 x 3
matrix M, derived from the coefficients of f, gives us some information about the

reducibility of f over F' or over an extension of F'. Specifically,
(1) If f factors, then M has rank 1 or 0.

(2) If f factors completely over F' or over an extension of F, then M is the zero

matrix.

(3) If rank M = 1, then we have a candidate factor for f that has to be checked

using long division.

(4) If f factors and M # 0, then f can be factored over the coefficient field F.
Later on, we will extend M to a 9 x 3 matrix V' by appending six rows to M. All
of the results mentioned above will continue to hold when M is replaced by V. For
example, if f factors, then V has rank 1 or 0. We will show an example where f does
not factor and M has rank 1 but V' has rank 3. This shows that V' has an advantage
in telling when f is irreducible. We will show an example where V' = 0 and f factors
over F', but f does not factor completely. One of the unanswered questions is:
When V' has rank 1 or 0, does this imply that f is reducible?

Towards showing the mentioned results, we start by defining f and then show
some consequences when f is reducible over F' or over an extension of F'. Let F' be
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a field, and let Cy, C1,Cy, ..., Cy € F, and let

f(2,y,2) = Co2® + Craz? + Coy2® + Cua’z + Cywyz + Csy’z + Cor’y + Cray’
+ 08.773 + ng3
(5.1)

with f not equal to the zero polynomial. Suppose

f(z,y,2) = (apz + a1z + agy)(b022 + bixz + boyz + bax? + bsxy + b5y2) (5.2)

for some a; and b; in an extension of F, where not all the a; are zero and not all the
b; are zero.
Consider the change of variable in x, y, and z with new variables u, v, and w

where

T = —uag + was Y = —vay — way Z = uai + vas.

If you make this change in f(z,y,z) in (5.2), then the first factor in that equation
becomes zero:
apZ + a1 + aqy
= ap(uay + vasg) + a1 (—uay + waz) + as(—vag — way )
(5.3)
= uGpa1 + Vagaz — UAa] + Wa1ady — VaAgGy — WaA1A3

=0.

Hence making this change in f(x,y, z), we get 0.

So f(—uag + wag, —vag — way, uay + vag) = 0. Plugging these underbraced quanti-

x Y z

48



ties into (5.1) (using a computer algebra system), we find

where

f(—uag + wag, —vag — way, uay + vay)

= (Kw3)w3 + (Kuw2)uw2 + (Kva)'UwZ + (Kqu)U/Zw + (Kuvw)uvw

(5.4)
()02 + (Koo + (K)o + (o Jut® + (K)o
=0

K3 = —a1a3Cs + a2ayCr + a3Cs — a3 Cy

K,.2 = _G%GQOg + a1a§C’4 + a:{’C’5 + 2apa;a,Cq — aoafc% — 3a0a§C’8

K20 = a2a5C) — a}Cy + agaiCs — 2apa1a20, — agalC’g + 3a§a2C8

Ky = a;Cy — apaiCy + aja;Cy — ajCyg

K2 = —alagCg + a§C4 + afaQCg) — aoang; + 2aga;a2,C7 — 3a0a%09 5.5
5.5

Pﬂﬂw ::agCh_—-alagCE —-aoagC&-+-2aga1azCk +—a3a2CE —-3&%&1C@
_K;ﬁ =:a§Ch —-a0a§C5‘+fa3a2C% —-ang

K2, = 3aiasCy — 2 C1 — apa;Cy + agaiCs + agasCy — aiC,
w2y = 9070200 aparaz2Cy — apa;Cs + agai1Cs + agasCy — agls
K2 = 3a1a5Co — aga3Cy — 2 Ch + agasCs + ajai Cs — ajC:
wp2 = 901090 apayLn apa1a9 2—|—a0a2 3+(IOCL1 5 (0%

2 2 2 2 2 2
Koipw = a105C) — ajasCy — agasCy + apaiCs + agasCs — ajaCr.

Since f(uay + vag, —uag + was, —vag — way) = 0 € Flu, v, w], all the ten K's must be

Zero.

Thus we have the following theorem.

Theorem 5.6. If agz+ a1z +asy divides f, then all the ten Ks in (5.5) must be zero.

(Curiously, K., is irrelevant in the argument for the converse.)
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Theorem 5.7. If apz + a1z + azy # 0 and all the ten Ks in (5.5) are zero, then
apz + ar1x + asy divides f.
Proof. To facilitate our discussion, see Figure 5.1 for a symmetry diagram for the ten

Ksin (5.5).
w
K,
K, 2K 2
Rx uw VW Ry
Kqu Kuvw Kv2w

Ky Ky Kype Ky
u Rz v

Figure 5.1: Symmetry diagram for the ten Ks.

We can write agf, a1 f, and asf each as a multiple of agz + a1z + asy plus a

remainder as follows:
agf = (apz + a1z + a2y)Q. + R.
a}f = (aoz + ax + a2y) Qs + R, (5.8)

asf = (apz + a1z + a2y)Q, + R,
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where
Q. = (a3Cy — apa1Cy + aiCy)x® + (a5Cy — apasCy + a3Cs)y”
+ (—apaxCy + agCg)yz + a%C’oz2
+ (2a1a2Cy — apazCy — apa,Cy + ajCs)zy + (—aga;Co + ajCh) w2
R, = —(Kp)2® = (Ky2)2?y — (Kue)ry® — (Kus)y®
Q. = a2Csz? + (a3Cs — a1a2,C8)wy + (—a1a2Cs + a2 C7 + a53Cy)y?
+ (a2Cy — apa1Cs)zz + (a3C3 — a1a,Cy — aga,Cs + 2a0asCy)yz
(5.9)
+ (a2Cy — apa,Cy + aiCy)2?
Ry = —(Kys)y* + (Kuw2)y?z — (Ky2w)yz® + (Ku3)2°
Q, = (a5Cs — a1a,C7 + a3 Co)z” + (a5C7 — ayasCy)wy
+ a3Coy* + (a3C3 — a1a2Cs — agasCr + 2apa;Cy) 2
+ (a5C5 — apasCy)yz + (a3Cs — agasCs + agCy) 2>
R, = (Kus)2® + (Kyu2) 2%z + (Ky2p)12? + (Ky3)2°.
Since all the ten Ks are zero, we have R, = R, = R, = 0. Since apz + a1z + axy # 0,
we have ag # 0, a3 # 0, or ag # 0. Then one of the three equations in (5.8) implies
that apz + a1z + aqy divides f. O]

Notice that Theorem 5.7 is true if
ap # 0 and K3 = K2, = K2 = K3 =0, or if
a; # 0 and K3 = K2 = K2y = K3 =0, or if
as # 0 and K3 = K2 = K2 = K3 = 0.

We combine Theorem 5.6 and Theorem 5.7 into one theorem below.
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Theorem 5.10. Suppose | = apz + a1z + asy # 0. Then | divides f if and only if all
of the ten Ks in (5.5) are zero.

This theorem will lead to the test, that we mentioned at the beginning, for
the reducibility of f when the rank of M is 1. First we need to define the matrix M.
Towards this goal, we recall that when f factors as in (5.2), we have ag # 0, a; # 0,
or ag # 0. If ay # 0, then (5.8) implies that R, = 0 and (5.9) implies that K,s =
Ky = K2y = K3 = 0. We calculate the resultant (defined in the Introduction
chapter) of K2, and K3, treating them as polynomials in ay and assuming that their
leading coefficients are nonzero. In order for K,2,, = K,3 = 0 to hold, this resultant
must be zero. Since this resultant contains a factor of a® # 0, the other part of the

resultant without the factor of a(f must be zero. We call this other part R,.:
1
R,. = P Resay (K2, Ku3) -
1

Then we use polynomial long division to divide R,, by K3, treating them as poly-
nomials in as and assuming that their leading coefficients are nonzero. Then R,, =
K,3Q + R for some quotient () and some remainder R. The remainder R contains a
factor of a?. Since R,, = 0 and K,s = 0, we have R = 0. Since a; # 0, the other
part of R without the factor of a? must be zero. We call this other part R,., and it
looks like the following:

szy = (_mSZ)a2 + (m33)a1
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where
Mgy = —CF030,Cs + 4CoC5C2Cy + C3C2 — 4CC1C4CE
+ CiCICr — AC,CiCr + CFC3Cs — C105C3C4Cy
—3C,C30,Cs + C53C3Cs + 2C7C,CsCy
— 30,C1C3CsC5 — 6C,CoC4CsCs + 9CECE Oy
— 4C3CCg 4 18C,C1C4C7Cs — 3C1C3C3
+ 9CCoC3C2 — 27C2C7C2 (5.11)
maz = —C01CyC3C,Cs + CoC3C,Cf + C3C2Cs + CRCLC2
— CoC1 0508 — 20,CyC4CE + C20E + C1C,C3Cy
— CoC3Cs — C303C,Cy — 20,03 CsCs + 3C,CoC5C6C
+ C3C3 4+ CRCTCy — 4C,C3Cy — 403 C5Cy
+ 18C,C1C4CsCy — 27CZC2Cy.
The first quantity mss is the entries of M in row 3, column 2. The second quantity
mg3 is the entries of M in row 3, column 3.
Using similar technique, but performing the previously described operations

with respect to a different variable at each stage, we get the other entries of M:

Define

mip Miz2 Ma3
M = Mao1 Moz M23 (5'12)

m3; M3z 133
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where

my = C4C2CE — C3C,C5CsCr + C1C5C3 + CoC3032
— C3C2CCx + C3C5C,Cy — 20,02C7Cs — 4C,C2Cy
+ C3C3 4 C3C1CsC4y — 202 C5C5Co — 4C,Ca Oy
— 0303070y — C3C3Cy + 3C30,C5C5Cy + 18CoCsC7CsCy
+ CCF — 21C,CE 03

miy = —C3C4CeC7 + C1C5C7 + CC3 + CECFCy
— C3C5CsC7Cs + C3C2Cs + 2C,05C2C05 — 4C1C2Cy
— 3020703 + 4050,C3Cy — 4C,CECy — 402 CsC7Cy

(5.13)

— 302CsC5Cy — 6C,C5CsC3Cy — 3C50,C7C3Cy
+ 180, CC7CsCy + 9C3C5C5Cy + 9CTCCF
—27C,C3C3

mz = C2Cy — C3C5C5Cy + Cy,C5C7 — 402 CsC7Cy
+4C3C5C2Cy — 4C,C3Cy + C3CECy + 2C,C5C¢ Co
— 4C,CECy — C3C4CeC1Co + C3C2Cy — 3C3C5CsCsCo
— 302C7C5Cy — 6C4C5C7CsCy + 18C,CCCsCy

+9C2C2Cy — 3C2CEC2 + 9C5C,C5C2 — 27C,C2CE
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Moy = —C1CLC3C2 + CoC2C2 + C2C,C2 + C2C8
— 40, CC2 — CoCyC3CsCr 4 2C,CLC2C + CoC2C2
— 3C2C5C2 + 40,C2C5Cy — 3CoCL,C2Cy — 4C3C,Co
— AC2C,C5Cy — 3CoC1C5C5Cy + 18CCoC4CsCo
— 6C,C1CyCCy + 9C2C5C1Cy + 9C,C2C2 — 21C2C,C2
Mgy = —C1CLC3C5Cy + CoC2C5Ch + C2C2C; + CLC2C2
— CyCyC502 — 2C,C1C5C2 + C2C8 4+ C2C2Cy
— 4CyCEC% + C1CyC2Cy — CoC3Cy — C?C3C5C, (5.14)
— 2020, Cy + 3CHC,C3C7Cy — 4C5CsCly
+18C,CyC5CsCq + C7Cy — 27CFCCy
Mg = C2C2Cs — 4C,CECs — C2C5C5Cr 4+ 4C,C5C2Cy
+ C302 — 4C,CyC5C2 + C202Cy — C1CyC3C5Cy
— 3CC2C5Cy + C2C2Cy — 4C3CCy + 18C,CyC5CsCy
+20,C2CCy — 3C,CoC5C7Cy — 6CC1C5C+Co

+ 9C2C2C, — 3C2CHC2 + 9CCyC5C2 — 27C2CCE
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ms =

msa =

mss =

—C1CoC3C2 + CyC2C% 4 C2C3 + C2C2 0y

— 4G C3C5 — CoCyC5C,C6 4 2CoCLC2C + CoC2C2
— 3C2C,4C2 4 4C2C,C5Cs — 3C,CLC2Cy

— 40, C2C4Cs — 3C,CyC5C,Cs — 4C3C5Cs

+ 18CHC1C4C5Cs — 6CyC1CoCsCy + 9C2C3CsCs
+9C,C2CE — 271C2C5C2

—C203C,C5 + 4C,C5C2Cq + C3C2 — 4C,C1C,C2

+ C2C2C; — 4C,C3Cr + C2C2C5 — C1C,C5C,Cy

— 3C,C2C,Cs + C2C2Cy + 2020, C6Cs (5.15)
— 3001 C3C6Cs — 6CoC2CCeCs + IC2C2Cy

— 4C3CHCs + 18C,CLC1C7Cs — 3CLC2C2

+ 9C)CoC3C2 — 27C2C7C2
—C1CyC5C,Cs + CoC2C,C + C3C3C, + C2C,C2

— CyC1C5C2 — 20,C,C4C2 + C2C8 4 CLCL,C2Ck

— CyC3Cs — C2C5C,Cs — 20,C2C6Cs + 3CCHC3CC s
+ C3C2 4+ C2C2Cy — ACC3Cy — 4C3C5Cy

+18C,C1C4CsCly — 2TC2C2C,.
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Let’s see what happens when f factors as in (5.2)

in (5.2), and we find

CQ = Qo bo

Ol = a1b0 + (lobl

Cg = agbo + a0b2

Cg = (lgbl + a1b2 + a0b3

04 = CL1b1 + Clob4

05 = Clgbz + CLob5

Cs = a1bz + asby

07 = a2b3 + (1155

Cg = a1b4

Cg = a2b5.

. Matching the coefficients

(5.16)

With the definitions for the entries m;; of the matrix M, one could use (5.16)

to substitute the Cs in the definitions of m;; with the as and the bs in (5.16), but this

is unwieldy and tedious by hand. However, using a computer algebra system, this

can easily be done. After the substitutions are made and the entries factored, one

will find that

aodEE aleE (J,ngE
M = aodiE (lldgE agdgE
ad,E a1 diE  aydlE
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where

d, = —aiasbs + a3by + a?bs

d, = a%bo — agagby + a§b5

(5.18)
dy, = a%bo — aga1by + a§b4
E = —bybabs + bob3 + b3bs + bibs — 4bobabs.
From this, we get the following three theorems.

Theorem 5.19. If f factors over F' or over an extension of F', thenrank M =0 or 1.
Proof. Since f factors over F' or over an extension of F'; M has the form in (5.17)
which has rank 1 or 0. O
Theorem 5.20. If f factors completely over F' or over an extension of F', then M
s the zero matriz.
Proof. Since f factors, f can be written as in (5.2). Then M has the form in (5.17).
Since f factors completely, the second factor byz? + byxz + boyz + byx? + bsxy + bsy?
in (5.2) is reducible. By Lemma 4.6, we have E' = 0 and M is the zero matrix. = [
Theorem 5.21. If f factors over F' or over an extension of F' and M = 0, then one

or both of the following holds:

(1) E=0 and f factors completely over F' or over an extension of F, or

Proof. Again, since f factors, f can be written as in (5.2) and M has the form in
(5.17) and at least one of the ag, a;, and as is nonzero. If ag # 0, then since M = 0,
the first column of M as given in (5.17) says that £ = 0 or d, = d, = d, = 0.

Similarly, if a; # 0 or if ag # 0, then E=0ord, =d, =d, = 0. O
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We now describe the test for the reducibility of f when the rank of M is 1.
Recall equation (5.17). It says that if M has rank 1 and f factors over F' or over an
extension of F', then one of the rows in (5.12) is nonzero and that row has entries
that are essentially ag, a;, and as up to a constant multiple.

Thus if M has rank 1 and we do not know whether f is reducible, we could
choose a nonzero row of M and use the entries of that row as ag, a;, and as. If ag # 0,
then we can use the first equation in (5.8) to determine whether f factors. We plug
the values of ag, aj, and as into R, as in (5.9) which in turn plugs the values of ay,
ay, and ay into the definitions for K3, K,2,, K2, and K, as in (5.5). By the first
equation in (5.8), f factors if and only if R, = 0. Similarly, if a; # 0, then f factors
if and only if R, = 0. And similarly, if as # 0, then f factors if and only if R, = 0.

Knowing only rank M = 1 is not sufficient for f to factor. We give an example.
Example 5.22. Let f = 2%y + zy? + 222 + y*2 + 122 + y2%. Then calculating M, we

find
2 2 2

M=12 2 2
2 2 2

Since M has rank 1 and all the entries are equal, we can apply our test with ay =

a; = ay = 1. We plug these values into the coefficients of R,. These coefficients are

Ky, Kyw2, K2, and Kys as in (5.5), and we find

Ky =0 Ky = 3 Ky = —3 Ky =0

R$ = _(KwS)yg + (KuwQ)yQZ - (Ku2w>y22 + (KuS)Zg

= 3y*z + 3yz*.
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Since R, # 0, equation (5.8) implies that the only candidate x + y + 2z that might
be a factor of f (up to a constant multiple) is in fact not a factor of f. Hence f is
irreducible over any field.

If f is reducible and M = 0, then f can be factored over the base field F'. We
prove this in the following theorem.
Theorem 5.23. Let f be as given in (5.1). If f = (apz + a1x + agy)(bo2® + bizz +
boyz + by + bsxy + bsy?) for some a; and b; in an extension of F' and M # 0, where
M is as given in (5.12), then f can be factored over the base field F.
Proof. The entries m;; of M as defined in (5.13) consist of the C's which are in the
coefficient field F'. So m,; € F for all ¢ and j. Since f factors, M has the form in
(5.17) where each row of M is a multiple of (ag, a1, az2). So the rank of M must be 0
or 1. Since M # 0, we have rank M # 0. So M as in (5.17) must have rank 1 and it
must have a nonzero row. We can choose that nonzero row to replace ag, a1, and as
in a factorization of f. Since every row of M is in F', we have a; € F. We can divide
f by apz+ a1 + ay using polynomial long division to find the bs. Since f € F|x,y, 2]
and ag, a1, az € F, the polynomial long division gives b; € F' for all j. m

Suppose f factors as in (5.2) and let

Az, y,z) = a1z + agy + agz
B(z,y, 2) = boz® + bixz + byyz + by + bszy + bsy”.

Consider the change of variable in z, y, and z with new variables u, v, and w where

T = —uag + was Y = —vay — way Z = uai + vas.
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Suppose a1z + asy + agz divides byz? + byxz + boyz + byx® + bsxy + bsy®>. Then
since A(—uag + wag, —vag — way, ua; + vag) = 0 as was shown in (5.3), and since
A(—uag +wag, —vag — way, uay + vag) divides B(—uag + wag, —vag — way, uay +vas),
we have

B(—uag + wag, —vag — way, uay + vag) = 0.

Calculating B(—uag + was, —vag — way, ua; + vay), we find

B(—uay + wag, —vag — way, uay + vas)
= alyu2 + dv? + dyow + dyw? + dgyuv — dyyuw
=0
where d,, d,, and d, are as defined in (5.18), and
dy, = agbl — ajagsby — agasbs + 2agaqbs
dyy = 2a1a2by — apazby — apaiby + a%bg (5.24)
dy. = —aiasby + G%bg — apai1bs + 2apaqby.
Thus if f factors as in (5.2) and a7 + asy + apz divides boz? + biwz + boyz + byx? +
bsxy + bsy?, then d, = d, = d, = dyyy = d,. = d,. = 0.
Conversely, suppose f factors as in (5.2) and d, = d, = d, = dyy = dy, =
d,. = 0. We first re-write boz? + byzz + bayz + byx?® + byzy + bsy? in the following
three ways:
ayB = (17 + agy + ap2)q. + (dya* + dpywy + duy®)
@3B = (a7 + agy + ap2)q, + (d.y* + dy.yz + d,2%) (5.25)

a3B = (a1 + agy + ap2)qy + (d.2* + dpovz + d,p2%)

61



where

q. = (—aiby + apbr)z + (—asby + agbs)y + agboz

Ge = 1047 + (a1b3 — azby)y + (a1by — agbs)z

¢y = (a2bs — a1bs)x + asbsy + (azbs — agbs)z.
Since d, = d, = d, = dyy = d,, = d,, = 0, equation (5.25) implies that a1z +asy+apz
divides byz? + bixz + boyz + byw? + byxy + bsy?.

We record these results in the following theorem.
Theorem 5.26. Suppose f factors as in (5.2). Then a;x + asy + apz divides byz? +
bixz + boyz + byx® + byxy + bsy? if and only if d, = dy=d, =dyy =dy, = dy, = 0.
The three newly introduced quantities dy,, d,., and d,, will allow us to extend

the 3 x 3 matrix M to a 9 x 3 matrix V such that all the previous theorems that
contain M will continue to hold when M is replaced by V. We now describe how
the matrix M is extended. Recall the matrix Mas given in (5.17). It says that if f
factors as in (5.2), then the entries of M factors as shown in (5.17). For example, row
2 column 1 of M factors into agd2FE when f factors as in (5.2). We note that the d,
as given in (5.18) contains two as and one b as factors in each one of its terms. And
the F as given in (5.18) contains three bs as factors in each one of its terms. So agd*FE
contains five as and five bs as factors in each one of its terms. Looking at (5.14), we
see that mo; the entries of M in row 2 column 2 has five Cs in each one of its terms.
When f factors as in (5.2), the relationship between the Cs and the as and the bs
are as given in (5.16). In (5.16), each one of the Cs contains one a and one b in each
one of its term. Since mog; as in (5.14) contains five C's in each one of its terms, mo;
must contain five a and five bs in each one of its terms. Since mg; = apd2E when f
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factors as in (5.2), the five as and the five bs in my; must match the number of as
and the number of bs in aod?E, and they do because our previous counting indicated
so. Since agd?E came from my; as defined in (5.14), one might speculate whether
apd, E can be written in terms of the Cs as apd, E' can be written terms of the C's as
given by mg; in (5.14). Using a computer algebra system, one can show that aodZyE
cannot be written in terms of the Cs, but ayd,d,,E can.

We now describe how to write agd,d,, E in terms of the Cs. (The process is
also used to show that agdiyE cannot be written in terms of the Cs.) First, we note
that aod,d,, ' contains five as and five bs as factors in each one of its terms. Since
each Cs as given in (5.16) contains one a and one b, our expression for agd,d,, E in
terms of the C's must contain five C's in each one of its terms. Let X, Y, and Z be

indeterminates

f: f(X-T,Yy, Z’Z)
= (CoZ¥ 2 + (CLX ZH) a2 + (CoY ZH)y2* + (Cu X2 Z) 2?2 + (C3 XY Z)wyz
+ (CsY2Z)y?z + (Ce XY )2y + (C XY ?)wy? + (Cs X2 + (CoY?)y?

= [(a0Z)z + (a1 X )z + (azY)y]

X [(002%)2* + (1 X Z)zz + (boY Z)yz + (baX?)2® + (b3 XY )zy + (Y ?)y”] .
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Let

Co=CoZ? C,=01X22 Cy = CyYY 72

Cy= Oy X*Z Cs=CsXYZ Cs = CsY?Z

Cs = CsX?Y Cr = Cr XY? Cs = CsX?

Cy = CyY? (5.27)
Qg = Ao a; = au X s = a9Y

bo = by Z* by =0 XZ by =0 YZ

by = b3 XY by = byY? bs = bsY2

We note that the C;, @;, and b; are in F[X,Y,Z]. Let d,, be the same as the definition

for d, in (5.18) but with bars for a; and b;, i.e.,
dy = @3by — Golaby + albs.
Similarly, we define E using the definition in (5.18) but with bars. Let

B = —bybybs + bob? + b2by + B2bs — dbybybs.
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Let’s calculate apd?>E. But first we calculate d? and E.
d, = @3by — Gpligby + GZbs

= alY?hZ? — apZasY boY Z + a3 Z*bsY?

= Y?Z*(a3by — apasby + aZbs)

=Y*Zd,

E = b, XZbyY Zbs XY + by Z*b2 XY ? + 022220, X + b2 X2 Z%bsY?
— 4y Z%b, X*B5Y?

= X?Y2Z%(—bybybs + bobs + b3by + bibs — 4bgbybs)

= X°Y*Z°FE.
Then

aod2E = (ag2)(Y*Z'd2)(X?Y?Z*F)
= apd>E(X?Y*%Z").
We note that this is a polynomial in F[X,Y, Z] and it has total degree 15. We want
to write this in terms of the Cs. Since each C; as in (5.27) has total-degree 3, we
will need five Cs in each one of our terms, and the five C's must have multi-degree
X?Y%Z7. One can use a computer algebra system to look for all possibilities for the
five C's, and one will find that these possibilities are precisely the monomials in the
definition for mg; as in (5.14) but with a bar over each C;. For example,
C1CyC502 = (CLX Z2)(CLY ZH)(Cs XY Z)(CsY2Z)? = C1CyCsCEX2Y S Z7
CoC2C2 = (CoZ*)(C3 XY 2)X(CsY?Z)? = CoC2CEX2Y S 77
(5.28)
C3C,C3 = (CoZ*) (O X Z)(CoY?)? = C2C,C3X*Y 0 77,
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Using a computer algebra system, one can look for linear combination of the mono-
mials without the bars such that the linear combination equals agdE, and it will
show that the only linear combination is the one that is given in the definition of msg;
as in (5.14).

Using similar technique, one can show that aodiyE cannot be written in terms
of the Cs, but the following 18 quantities can be written in terms of the Cs, and
these expressions in the C's are used to defined the entries in the six rows that are

appended to M to form V:
a;dydyy
a;dyd, F
a;dydyy E
a;dyd,. F
a;dyd,, F
a;d,d,. E.

We now extend the 3 x 3 matrix M as defined in (5.12), and call the extended 9 x 3

matrix V: Let

mi1 Miz M1z
Mma1 Mo 1Mag
mg1 Mgz M33
Vi=|ovn v s (5-29)

Us1  Us2  Uss

Vg1 Vg2 Vg3
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where
vy = CLC2C2 — C1C5C5CsCr — CyC4C5CeCly 4 CoCsC2C,
+ 20,C4C5C2 + CoCsCsC2 — 2C,C4CE — C,C2CsC
+ 20,05C5CCs — 2C1,C2CCy — 6C,C5C2Cs 4 C1C2C6Cl
+ 20,0504 CsCy — 4C1C4C5CsCy — 6CC3C2Cy — 20,C5C,C7Cy  (5.30)
— CLC2C4Cy + 9C,C4CsCrCy — 3C5C2C5Cy + 3C,C3C5CsCly
+ 3C5,C4C5CsCy + 9C,CsCsCsCo + 9C,C5C7CsCy + 3C1 C2C2

— 27C,C,CsC2

V42 = —C304C5CGC7 + 0105062507 -+ 202050?
— C,CyC6C2 + CoC2C2 + C5C2C5Cs — CoCsCCrC
+ 205,C5C2Cs — 40, C5C2C5 — ACC3Cy — 20302
+ 2020, CsCly — AC2C5CsCy — 201 C3C2Cy + AC,C4C2C,
(5.31)
—4C,C3Cy — 3C3C5C7Cy + C1C1CeCrCo — C3C5Cy
+ 3C3C,C5CsCy — 6C2,C5CCsCy + 3C1C5CsCsCly

+ 60103070809 — 30204070809 + 1SCOCGC7C809

+ 90, C5C2Cy + 4C3C2 — 90104 C5C2 — 27C,C2C2
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iz = C3C2C% — C2C5CsCr — 20,C2CsCy + 20504 C5C2
+ CyC5CsC2 — 205,C4C8 — 203CCx + 2C5C2C;Cx
— 205 C5C2Cs + C3C5Cy — 4Cy,C5C2Cy + 2C1C5C2Cy
— 2020, C7Cy — 202C5C7Cy — C1C3CsCCy + 8CC1CsCrClo (5.32)
+ 20, C4C2Cy — 3C2C5C5Cy + 6C1,C2CxCly + 6Cy,C5CsCsCo
+ 3C5,C5C;CsCy — 6C1C5C-CsCy + 3C5C2C2 — 6C1C4CC2

+ 90, C5C5C2 — 18C,C4CsC2

V51 = 205C4C5C2 — 2CC5C3 — CoC3C4CCy — C1C4C5CsCh
+ CoCsC2C; 4+ CLC2C2 + CyChCsC2 — 2C5,C3C5CsCh
— C1C2C,Cy + C,C2C;Cs + 20, C3C5C+C
— 4C,C1C5CCs + 9C,C5CCrCs — 6CC3C2Cl
(5.33)
+ 3CHC2C2 + 20,C5C1CsCy — 2C5C2C5C,
— 6CoC4C2Cy — C1C2C;Cy — 3C1C2CsCy

+ 30203040809 + 30104050809 + QCOC3C6CSC9

+ 90, CyC7CsCy — 27C,C5C2CY
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Vsz = 205C,C5C2 — 2C1C5C3 — C2C,CsCy — 2C2C5C5Cy
+ CLC5C2C5 + C3C2C2 — 2C2C5CsCs — 2C,C2C6Cs
+ 20,C5C2Cs + C3C:Cy — CoC3CsCrCs + 8C, C5C5CCs
— 40, C5C2Cs + 205,C4C2C + 3C5C2C2
(5.34)
— 60,C5CC2 + 205C2CsCy — 20,C4C2Cy — 2C3CHCy
— 3C2C,C5Cy + 6C2C5Cs5Cy + 30, C5C5CsCl

— 60204060809 + 60104070809 + 9020308209

— 18C,C5C2Cy

Vs = 2C4C2C2 — C3C,C5CsCy — C1C5C2C + CoCyCC
+ CyC2C2 — 3C5C2CsCs + 2C2C5C:Cy — AC,C2CHCl
+ CyC5CC:Cy — 2C5C3C2Cs + AC1C5C2Cs — 4C,C3Cs
+4C3C2 4 2C105C2Cy — AC,C4C2Cy — ACHC3C,
(5.35)
+ C3C2C;Cy — C1C4CeCrCy — C3CsCly + 3C5C4C5CsCly
+ 60,C5CCsCy — 3C1C5CsCsCy — 6C1C5C7CsCo

+ 305,C4C7CsCy + 18C,CsCCsCy — 90, C5C2C Y

— 20302 4+ 9C,C4C5C2 — 27C,C2C2
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V1 = —C1CyC2Cy + 2C,C5C2Cs — C1CyC5C5Cy + C2C,CsCx
+ 2C2C2C; — ACyC1C2Cy — CyCaCisCoCh + CoCaCsC2
— 2C2CE 4 C2C2C5 — 4C,C3Cs + 201, C,C2C,
— CyC3Cy — 2C2C5C,Cy — 3C2C5C5Cy + CLCyC4C5Cl
(5.36)
+ 6CyC5C4C5Cy + 4C1C2CsCy — 6CoCyC5CsCly
— 3C,C1C5CCy — AC2CyCrCy + 3CHCyC5CCly

+ 3CyCy04C7Cy 4+ 9C;CsC7Co — 4C5C5Cl

+ 18C)CyCsCsCy + 4C3C2 — 9C,CLC4C2 — 27CEC5C2

Vg2 = —CyC5CyC5Cy + 20,04 C2C; — C1CyCsCoCr
+ 20,C5C5CsCy + C2CLC2 — 2C0C4C5C2 — CoCyCoC
+ CyC5C2C5 — 2C1C3Cs + C2C5CHCs — 6C,C2CHCx
+ CyC2C,Cy — 2C1C5C4C5Cy + 2C1C5C3C6Co
(5.37)
— 3C,C2CsCy — C2C5CsCy — 4C1CHC4C+Cly
+ 30, C5C4C7Cly + 3CoCLCCCy — 6C2C5CsCly

+ 90102050809 + 90003050809 + 90002070809

+302C,C2 — 27C,C1CsC2
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Vg3 = CoC3C2C5 — 20,C3Cs — CoC2C5Cy + 2C1C3C2C,

V71 =

— 20, C2CsCy + C2C5C2 — 20,CLC5C2 + 20, C5C5C2
— 20, CoC3 + CyC3Cy — 2C1C2C5Cy — CoC5C,C5Cl
+20,C4C2Cy — 4C2C5CsCly + 8C1CyC5C5Cl

(5.38)
+ 30, C5C5CsCy — 3CoC2C5Cly + 2C2C4C+Cly
— 202C5C7Cy — 6CoC4C5C1Cly + 6CCyCeC-Cly

+ 6C,CLC2Cy + 3C2C5C2 — 60, CoCyC2

+ 90, C5C4C2 — 18C,C1CsC2

—C1CHC2Cs + CoCECs + C2C5C4Cs + C2C5C2
— 4CyC3C4C2 — CoCyCsCsCly + 2C,C1C2C
+ 20, C2C5Cy — 20,CoC2C5 — 203C,Cr — 202C,C5Cx
+ 8C,CoCyCsCy + 2C,C2CsCy — 6C2C5CsCy
(5.39)
— 20,C1CyC2 + 3CEC5C2 + 2C2CHC5Cy
— 3C,C1C2Cy — 2C1C2C,Cy + 3C,CyC3CyCly

— 203050y + 6C,C1C405Cy — 6C,C,C,CsCly

+ 9C2C;3C5Cy + 6CoC2CCy — 18C2C,CCl
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Ury = —C1CyC3C5C5 + CoC2C5Cs + C2C2Cs — CLCLCLC5Cy
+ 2000304 C5C + 20,C2CC — 20,CoC5C6Cx
— 4CyCC5CCr — CoCrCyC2 + 3CECC2 + C2C5C5Cs
+ C105C2Cy — 6C,C3C2Cy — 203C1Cy + 9C,CoCsCrCs
(5.40)
+ 20,05 C5C4Cy — 3CoC2C,Cy — C2C,C5Cly
— 2012020609 + 30001030609 + 30001040709

— 60,03C5Cy + 9C,CoC305Cy + 9C,C, CsCsCl

— 27C3C,C5Cy

Vrs = C1CC2C5 — 204C5C2C5 — C1CyC5C5C + 2C0C2C5Cy
— C2C,C5C + 4C,CoC2C5 + CoCaCsCsCl + 201 C2C2
— 30, CoC3C2 — 4C,CLC5C2 + 4C2C3 + C2C2C5
— 4C,C3Cs — CoCECy + 2C2C5C1Cy + C2C3C5Cy
(5.41)
— C1C5C1C5Cy — 6CC3C4C5Cy — AC1C2C6Ch
+ 60002030609 + 30001050609 + 30001030709

— 30, C5CyC7Cy — 9C2C5C5Cy — AC3CxCy

+ 180, CoC5CsCly — 2C3C2 + 9C,CLC4C2 — 27C2CxC2

72



vs1 = —C1CoC3C4Ce + 202C2C5 + C2C4C5Cs — 4CoC2C5C
+ CyCyC5C2 — 20203 — CLCLC2C + 2C,C5C2C,
— CoC1C1CsCy + 2C1CHC2Cs — CoC3Cs — 3C2C5C4Cs
— 202C;3C5Cs + C1CoC4C5Cs + 6CoC3C4C5Cl
(5.42)
— 40, C2C5Cx + 3C,CoCsCsCs + 3CoC1C5CsCs
+ 4C2C5ChCy — 6C,ChC5CCs — 3CoCyCyChC

+ 9C2CsCHCs + 4C3C2 — 9C,CLC5C2 + C2C2Cy

— 4Gy C3Cy — 4C3CCy + 18C,CLC1CsCy — 27C2C2C

Vs = —CL02C,C + 205,CC2C + C2CHC2 — 204,CoC4C2
+ 2C,C3C4C2 — 2C,CLC3 + CyC5C2C, — 2C5,C3Cy
— 2C,C2CCy + C1O3Cy — 205020, Cs — CLC3C4C5C
+ 205020505 — 3C,C2CCs — 202C,CCs
(5.43)
+ 20205 CCs — 6CoCyC5CsCs + 6C,CoC2Ck
— ACP 0400 + 80, CoCyCrC + 3CoC3C4CrCs

+ 6C,C1CCCs + 3C2C5C2 — 6C1CyCxC2

+ 90, C5C5C2 — 18C, CoCrC2
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V3 = —C1C3C4C5C5 + 2C5,C2C5Cs + C2C5C2 — 2C,CyC5C2
— 010504 CeCr + 204 C3C4CeCr — CoCyC2CH + CLC2C5Cl
— 205,050 C5Cs — 4C1CyC5CeCs + 3CoC3C5CoCs
+ 201050305 Cs — 3CC2CHCly — C2C,C+Chy
(5.44)
+ 30, CoCsCCs + 3C2C5C2 + C103C2Cy — 20,C3C,
+ C2C,CsCy — 6CoC2C5Cy — 6C2C5CsCly

+ 90102040809 + 90003040809 + 90001060809

— 27CyCoCECy

Vo1 — —010203304 + 000304 + 0220304% + 012030405
— 40y CC2C5 + 2020, Cy — 20, ChC2Cy
— 204,C2C,Cy — 203C5C + 8Co 01 C4C5Cl
— 2C,C1CHC2 + 3C2C5C2 — CyC1C3CyCs
(5.45)
+ 200 CoC2C + 20, C2CCy — 6020, CoCy
+ 20,C204C5 — 3C,CHC2C5 — 203C,Cy — 2020, C5C

+ 30001030508 + 60002040508 + 6000220608

— 18C2C5CsC5 — 6C,C1CoC7Cs + 9C2C3CCy
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Vs = —C1CyC3C4Cg + 2C0C2C,Cs — C2C,C5C + 4C,C2C5Cy
+ 2020502 — 3C,C1C5C2 — 4C,CHCHC2 + AC2CH
+ CLCy,C2C; — 204 C5C2C + CoChCiCsCr — CoClCs
+ C2C5C4Cs + 202C5C5Cs — C1CyC4C5Cl
(5.46)
— 6CyC3C4C5Cs + 3CoCyC3CsCs — 3CoC1C5CoCs
— 4012020708 + 60001030708 + 30002040708

— 9C2CsC7Cs — 203C2 + 9C,CLC5C2 + C2C3C,

— 4Gy C3Cy — 4C3CsCy + 18C,C1C1CsCy — 2TC2C2C

Vg3 = —ChCoCyC5Cs + 20, C5CCsCs — CoCyCsC2 — CLCoCyCyCy
+ CyC20,Cy + C2C2C5 + 2020, CsCy — 20001 CCsCy
— 4CyCoCyCsCy + 3C2C2C5 + 20, CoC5C5Cs
— 3C,C2C5Cs — C2C,C5Cs + 3CoCyC5CsC
(5.47)
— 20,C2C;Cs + 3CyCoCsCrCs + C2C5C,Cy + C1C5,C2Cy
— 60, CC2Cy — 203C5Cy + 90,01 C4CsCl

— 60%0,05Cy + 9C,C,C305Cy + 9C,CoC4C5Cl

— 27C2C4CsC.
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V' is a multiple of (ag, a1, as):

v = aodiE
Vg = aodiE
V3] = CL()dZE
vy = aod.d, . E
vs1 = aopd,dy B
ve1 = aodydy
V71 = Aodydyy B

Vg1 = &QdydyzE

Ugg = aldiE
Ugg = aldiE
Uy = aldzE
vy = ard.d, . E
Vs = a1d,dy. B
Vo2 = 1dydy
Vg = Q1dydyy B

Vgoy = GldydyzE

Vg3 = agdiE
U3 = agdiE
U3 = agdzE
Vg3 = apd.d, . E
Us3 = aod.dy. B
Vg3 = Qodydy. F
vrg = Qodydy B

Vg3 = agdydyzE

With these definitions for the entries of V, if f factors as in (5.2), then each row of

(5.48)

Vg1 — agdydxyE Vg2 — CleydxyE Vg3 — azdydxyE.

(We did not define the v’s this way, because if f does not factor, then the v’s may
not factor this way.) So if f factors, then V has the form in (5.48) which has rank 1
or 0. We record this in the following theorem.

Theorem 5.49. If f as in (5.1) factors, then V as defined in (5.29) has rank 1 or 0.

Example 5.50. Recall Example 5.22 where f = 2%y + zy? + 222 + vz + 22? + y2?
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does not factor and M has rank 1. For this polynomial, we have

2 2 2
2 2 2
2 2 2
2 2 —4
V=12 —4 2
2 2 —4
4 2 2
2 4 2
-4 2 2.

The rank of V' is greater than 1. By Theorem 5.49, f does not factor. This shows
that V has an advantage over M in telling when f is irreducible.

By Theorem 4.53, we have that byz? + bixz + bayz + by + bszy + bsy? as in
(5.2) is reducible if and only if £ as given in (5.18) is zero. Since each entry of V' in
(5.48) contains F as a factor, if f factors completely, then V' = 0. We record this in
the following theorem.
Theorem 5.51. If f as given in (5.1) factors completely, then V as given in (5.29)
s the zero matriz.

If f is reducible and V' # 0, then f factors over the coefficient field. We state
this in the following theorem.
Theorem 5.52. Let f be as given in (5.1). If f = (apz + a1 + asy)(boz* + biwz +
bayz + byx? + byzy + bsy?®) and V # 0, where V is as given in (5.29), then a;,b; € F
foralli,j.

This result comes from the same proof as that of Theorem 5.23, but with M

replaced by V' and m;; replaced by v;;.
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Suppose we do not know whether f is reducible. And suppose that the rank
of Vis 1 (where V is as defined in (5.29)). Then there is a test for the reducibility
of f, and we describe it here. Since V has rank 1, V' has a nonzero row that is a
multiple of (ag, a1, as), and we can use this row or a constant multiple of it as ag, ay,
and ay since the factorization is only unique up to a constant multiple. If ay # 0,
then (5.8) implies that if R, = 0, then f factors. To check if R, as given in (5.9) is
zero, we calculate its four coefficients K3, K2, K2, and K3 as given in (5.5) and
see if they are all zero. If these four K's are zero, then f factors. Similarly, if a; or as
is nonzero, then we calculate R, or R, as given in (5.9), which in turn, leads to the
calculation of their corresponding four Ks as defined in (5.5), and if they are zero,
then f factors.

We give an example of this test for the reducibility of f when f has rank 1:
Example 5.53. Let f = 22 —32%y+32y? —° + 222 — 6xyz + 5y’ 2 — w22 — Tyz2 + 323
Matching coefficients with (5.1) and calculating V' using a computer algebra system,

we find

108 72 36
192 128 64
4332 2888 —1444
144 96 —48
V=1-360 -240 120
192 128 64
~192 128 64
~2280 —1520 760
| 912 608 304

Every row in this matrix is a multiple of (3,2,—1). So V has rank 1 and we can

choose ayp = 3, a; = 2, and ay = —1 as a candidate for the factorization in (5.2). To
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check if f really have a linear factor with these coefficients, we pick a nonzero value
among the three coefficients. Suppose we pick as. Then (5.8) tells us that if R, = 0,
then a3 f = (apz + a17 + a2y)Q, where R, and @, are given in (5.9). The coefficients
of R,, as given in (5.9), are K3, K2, K2y, and K3 which are defined in (5.5).
Using a computer algebra system, we find that these four Ks are zero. So R, = 0

and

ayf = (a0z + a1z + azy)Q,
=3z +2r —y)(—2* +xy — y* + 2 + 2yz — 7).

Since we have chosen a, = —1, we have

f=0B2+2r—y)(2* — 2y +y* — 2z —2yz + 7).

If f is reducible and V' = 0, does this imply that f is completely reducible?
We give a counterexample for this.
Counterexample 5.54. Let f = z(zy + 2z?). We note that f is not completely
reducible. Matching coefficients with (5.1) and (5.2), we find ap = 1, a; = ay = 0,
bp = b3 = 1, and by = by = by = b5 = 0. Plugging these into (5.18), we find
d, = d, = d, = 0. Since each entry of V in (5.48) contains either d,, d,, or d, as a

factor, we have V = 0.
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