Enrollment Modeling with Machine Learning Algorithms

Su Seon Yang & Sunny Moon

Institutional Effectiveness California State University, Los Angeles

Student Enrollment at Cal State Los Angeles

Pro	ediction
	FTF
New	Transfers
	PB
	Graduate
Returning	UG
	PB
	Graduate
	UG
Transitory	РВ
	Graduate
	UG
Continuing	РВ
	Graduate

2) New Student Model

1) Continuing Student Model

1) Continuing Student Enrollment Predictive Model

1-1. Design of Continuing Student Enrollment Modeling

Fall semester	Spring semester	Fall semester
Demographic info Gender Race/Ethnicity Residence Age First Generation		Retention Status 1 - Retained, 0 - Not Retained
Academic info Full-time/Part-Time Matriculation Enrollment Type Current GPA Cumulative GPA Total Cumulative Units College	 College Change Department Change Plan Change Enrollment Status 	
Financial info ————	Apply for Graduation	→ →

1-2. Steps of Continuing Student Enrollment Modeling

- Data used: Fall 2017 students (28,253) and their Spring 2018 information
- Dependent variable: Retention status (1: Yes, 0: No) at Fall 2018
- Data preprocessing:
 - Dummy variable creation for categorical variables
 - Missing data imputation using MICE 41 Matriculation info are replaced
 - ► Feature scaling using Min-Max Scalar
 - Oversampling using SMOTE (1: 65.8% / 0: 34.2%)
- Feature (Independent Variable) Selection
 - Univariate selection
 - Recursive feature elimination
 - Boruta
 - In-built feature importance (using Tree-based)
- Predictive Model Development
 - Logistic Regression
 - XGBoost
 - Random Forest
 - Neural Network
- Model Evaluation: Receiver Operating Characteristic (ROC) Curve

1-3. Feature (Independent Variable) Selection

1. Univariate selection 2. RFE 3. Boruta 4. In-built feature selection Variable Score APPLY GRADUATION YES 5558,937264 (1, 'APPLY GRADUATION YES'), (1, 'AGE'), ENR SP NOT-ENROLLED 2751.930063 (1, 'CUM GPA'), (1, 'APPLY GRADUATION YES'), 0.30 ENR TYPE New transfer 571.435326 (1, 'CUR GPA'), (1, 'CUM GPA'), FTPT PART-TIME 316.071119 (1, 'ENR SP NOT-ENROLLED'), (1, 'CUR GPA'), ENR TYPE First-time freshman 226.951868 (1, 'ENR TYPE Continuing UG'), (1, 'C PELL'), ENR TYPE Continuing UG 138.038118 (1, 'ENR TYPE New transfer'), 'DEPT CHANGE NO CHANGE'), 0.25 ENR TYPE New GRAD 111.795063 (1, 'ENR_TYPE_Returning UG'), (1, 'ENR SP NOT-ENROLLED'), TOT CUMULATIVE 111.436214 (1, 'ENR TYPE Transitory UG'), (1, 'ENR TYPE Continuing UG'), (1, 'ENR TYPE First-time freshman'), C PELL 102.566199 (1, 'TOT CUMULATIVE'), 56.696445 (2, 'ENR_TYPE_First-time freshman'),(1, 'ENR_TYPE_New GRAD'), RACE ETH WHITE 44.406907 (3, 'ENR TYPE New GRAD'), ENR TYPE Transitory UG (1, 'ENR TYPE New transfer'), 0.20 30.244531 (4, 'ENR TYPE Returning GRAD'), AGE (1, 'FTPT PART-TIME'), 23.383476 (5, 'MAJ CHANGE NO CHANGE'), COLL ED (1, 'MAJ CHANGE NO CHANGE'), RACE ETH HISP 19.403433 (6, 'COLL CHANGE NO CHANGE'), (1, 'MATRIC'), (7, 'ENR TYPE Continuing PB'), FIRST GEN Unknown (1, 'TOT CUMULATIVE'), 17.647793 0.15 COLL ET 16.093830 (8, 'RACE ETH PACIF'), 15.327322 (9, 'COLL_ED'), CUR GPA MAJ CHANGE NO CHANGE 11.456142 (10, 'C PELL'), FIRST GEN Parent Graduated College (11, 'DEPT_CHANGE_NO CHANGE'), 10.389122 0.10 DEPT CHANGE NO CHANGE 9.070429 (12, 'COLL_UN'), ENR TYPE Continuing PB 8.672398 (13, 'COLL BE'), (14, 'ENR TYPE New PB'), COLL HHS 8.172547 RACE ETH BLACK 8.051507 (15, 'AGE'), 0.05 COLL UN 7.880994 (16, 'FTPT PART-TIME'), COLL BE 6.584027 (17, 'ENR_TYPE_Returning PB'), CUM GPA (18, 'RACE ETH ASIAN'), 5.748966 (19, 'RACE ETH TWO RACES'), RACE ETH UNK 4.307901 ENR TYPE Returning PB (20, 'RACE ETH HISP'), 3.456677 0.00 CUMULATIVE -CUR_GPA QUM_GPA C_PELL PPLY_GRADUATION_YES MATRIC RACE ETH INTERNATIONAL (21, 'RACE ETH UNK'), NOT-ENROLLED AGE 2.716553 COLL CHANGE NO CHANGE (22, 'RACE ETH BLACK'), 2.436400 1.522056 (23, 'RACE ETH INTERNATIONAL'), RACE ETH PACIF (24, 'COLL HHS'), COLL NSS 0.860046 (25, 'MATRIC'), ENR TYPE Returning UG 0.821817 ENR TY (26, 'COLL_ET'), 0.787612 ENR TYPE New PB 0.460874 (27, 'SEX M'), **RESIDENCE** Resident

1-4. Model Evaluation for Fall 2018 Prediction

W/ Standardization, Feature selection by Boruta (*k* = 15)

1-5. Fall 2019 Prediction Result

- Note that Matriculation plays an important role in this prediction model.
- Out of 27,685 Fall 2018 FTF, 62 students have missing Matriculation. Thus, they are excluded in this prediction.

Metric (Y=1)	Logistic Regression	XG Boost	Random Forest	Neural Network
Precision	0.85	0.86	0.85	0.85
Recall	0.96	0.78	0.92	0.97
F1	0.90	0.82	0.88	0.90
FP rate	0.30	0.23	0.30	0.31

Student Level	Fall 19 Census Data	Logistic Regression	XG Boost	Random Forest	Neural Network
UG	16,069	17,839	15,284	17,204	17,895
PB	458	596	288	552	649
Graduate	1,858	1,571	583	1,495	1,642
Total	18,385	20,006 (108.8%)	16,155 (87.9%)	19,251 (104.7%)	20,186 (109.8%)

1-6. Limitations

Student groups in continuing-type enrollment model are too broad.

- It is very hard to determine independent variables, which play an important role over all student groups.
- Next Step
 - Separate student groups into sub-groups: FTF, Transfer, PB and Graduate
 - Add independent variables for each sub-group (ex. FTF)
 - Pre-College: SAT, High School GPA
 - ▶ Academic: Unit-load (per 1year), GPA trend, etc.

What if we focus on FTF in Continuing Student Enrollment Model?

Fall 19 Prediction Result (FTF focus)

SAT score plays an important role in this prediction model.

Out of 3,862 Fall 2018 FTF, 6 students have missing SAT score. Thus, they are excluded in this prediction.

.....

Retention Status	XG Boost	Random Forest	Actual Data
1 (Yes)	2,834	3,040 (98.6%)	3,084
0 (No)	1,022	816	772

2) New Student Enrollment Predictive Model

2-1. Design of New Student Enrollment Modeling

Demographic info Gender Race/Ethnicity Local/Non-local Age First Generation			Enrollment Status 1 - Enrolled, 0 - Not Enrolled	
Commuting Distance to Campus				
Academic info				
student Type				
Jepartment				
ituay of Field				
Aumission Decision	ECD			
		Orientation		
Financial info				
Pell Eligibility				
				/

2-2. Steps of New Student Enrollment Modeling

- Data used: Fall 2018 Application data (n = 67,256)
- Dependent variable: Enrollment status (1: Yes, 0: No) at Fall 2018
- Goal is to predict as many enrolled students as possible (high sensitivity) while to reduce falsepositive rate.
- Data preprocessing:
 - > Dummy variable creation for categorical variables
 - Missing data imputation using MICE
 - Feature scaling using Min-Max Scalar
 - Oversampling using SMOTE (1: 13% / 0: 87%)
- Feature (Independent Variable) Selection
 - Univariate selection
 - Boruta
 - In-built feature importance (using Tree-based)
- Predictive Model Development
 - Logistic Regression
 - XGBoost
 - Random Forest
 - Neural Network
- Model Evaluation
 - Receiver Operating Characteristic (ROC) Curve
 - Confusion Matrix

2-3. Feature (Independent Variable) Selection

2-4. Model Evaluation for Fall 2018 Prediction

Metric (Y=1)	Logistic Regression	XG Boost	Random Forest	Neural Network
Precision	0.79	0.81	0.82	0.81
Recall	0.96	0.96	0.93	0.95
F1	0.86	0.88	0.87	0.88
FP rate	0.04	0.03	0.03	0.03

2-5. Fall 2019 Prediction Result

Metric (Y=1)		Logistic Regression		XG Boost		Random Fores	t Neu	Neural Network	
Pre	ecision		0.86	0.	.86	0.	.87	0	.86
Re	call		0.87	0.	.88	0.	.87	0	.88
F1			0.87	0.	.87	0.	.87	0	.87
FP	rate		0.02	0.	.02	0.	.02	0	.02
	Enrollment Status	Student Level	Fall 19) Census Data		XG Boost	Neural	Network	
		FTF		2,480		2,794		2,762	
	Now	Transfer		1,734		1,948		1,969	
	New	PB		197		116		106	
		Graduate	4			111		89	
		UG		157		172		171	
	Returning	РВ		10		17		11	
		Graduate		58		20		16	
		UG		10		19		22	
	Transitory	PB		2		2		2	/
		Graduate		0		0		0	
	Total			5,061		5,199 (102.7%)		5,148 (101.7%)	

Comparison and Future Steps

Enrollment Model using Machine Learning Algorithm

- Separate student groups into sub-groups: FTF, Transfer, PB and Graduate
- Add independent variables for each sub-group (ex. FTF)
 - Pre-College: SAT, High School GPA
 - Academic: Unit-load (per 1year), GPA trend, etc.

Traditional Model #1

- Aggregate Model
 - Based on trend of previous year
 - Matriculation Type
 - Currently used

Traditional Model #2

- Aggregate Model: Matriculation Decay
 - Based on trend of previous year
 - Matriculation Type
 - ► Matriculation Term