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PREFACE 

 This thesis documents much of the work that was done when I took an 

independent study course with Dr. Russ Abbott in 2008. Dr. Abbot is a professor of 

computer science at California State University Los Angeles. While traveling via 

airplane, Dr. Abbott discovered an interesting puzzle called “Shirokuro.” He thought that 

it would be interesting to try to solve the puzzle using computational techniques. Dr. 

Abbott later shared his interest with my colleague Alexandre Lomovtsev and me. We 

shared Dr. Abbott’s enthusiasm for the problem and began developing our computational 

Shirokuro puzzle solvers. The three of us met on a weekly basis for several months. 

Much progress was made. However, as with all interesting projects, there is always more 

work to be done. Any readers who are inspired by this thesis to continue my work should 

not hesitate to contact me; this research is ongoing. I am always eager to discuss new 

developments. 

 

Benjamin James Bush 

December 2011 
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ABSTRACT 

SOLVING THE SHIROKURO PUZZLE CONSTRAINT SATISFACTION PROBLEM 

WITH BACKTRACKING: 

A THEORETICAL FOUNDATION 

By 

Benjamin James Bush 

Shirokuro is a Japanese puzzle recently featured in Spirit magazine. It is played on a 

grid of n by n cells, each of which may be empty or contain a black or white disk. The 

goal is to fill every empty cell with a white or black disk so that the following conditions 

are satisfied: (1) No two-by-two region contains four disks of the same color. (2) Each 

pair of like-colored disks is connected via a chain of disks which travels horizontally or 

vertically through disks of the same color as the pair. We describe Shirokuro as a 

constraint satisfaction problem, and then propose a backtracking algorithm which solves 

the puzzle by incrementally building candidate solutions. We propose several relaxed 

constraints which may help to speed up the algorithm and give an overview of some 

advanced backtracking techniques. 
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CHAPTER 1 

Introduction 

Shirokuro, which means “black and white” in Japanese, is an obscure Japanese 

puzzle which was featured in August 2008 edition of Spirit magazine. The gameplay of 

Shirokuro is similar to that of the much more popular Sudoku.  Shirokuro is played on a 

square grid of     cells, each of which may be empty or contain a disk that is either 

black or white in color. The goal of Shirokuro is to fill in every empty cell with a white or 

black disk so that conditions specified in Figure 1 below are satisfied. Cells which 

initially contain a black or white disk are fixed and cannot be modified; however, cells 

that are initially empty must be modified by the player until a solution is found. An 

example Shirokuro puzzle along with its solution is illustrated in Figure 2 on the 

following page. 

Condition Illustration 

No     region of the grid 

contains four disks of the same 

color (e.g. no “clumps” allowed). 

 

Each pair of like-colored disks is 

connected via a chain of disks 

which travels horizontally or 

vertically through disks of the 

same color as the pair. 

        
 

Figure 1: The conditions that must be met to solve a Shirokuro puzzle. 
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Figure 2: An example a Shirokuro puzzle (left) and its solution (right). 

Shirokuro’s more famous cousin, Sudoku, has been formulated as a constraint 

satisfaction problem (CSP) [1]. We do the same for Shirokuro in chapter 2, where we 

define Shirokuro as a CSP. 

While CSPs such as Shirokuro can potentially be solved by brute force 

enumeration, backtracking algorithms are more efficient [2]. A simple backtracking 

algorithm for solving Shirokuro puzzles is given in chapter 3. In chapter 4, we enhance 

the simple backtracking algorithm with several Shirokuro “tricks” which are 

implemented as relaxed constraints. Chapter 5 describes some advanced techniques that 

may further enhance the efficiency of the backtracking algorithm. Finally, we conclude 

with an outline of our planned future work and a summary of what has been 

accomplished so far. 
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CHAPTER 2 

Shirokuro as a Constraint Satisfaction Problem 

Many puzzles, such as 8 Queens, Instant Insanity, and Sudoku can be expressed 

as constraint satisfaction problems (CSPs) [3] [4] [1]. In this section we briefly discuss 

CSPs in general. We then express Shirokuro as a CSP. The regularities and properties 

that are common to all CSPs help us solve Shirokuro puzzles. 

2.1  Constraint Satisfaction Problems 

We loosely follow the definitions and notation given in section 2 of Baccus’ “A 

Uniform View of Backtracking” [5], which the reader is encouraged to reference for a 

more in-depth and general understanding of CSPs. The fundamental elements of a CSP 

are a variable set   and a constraints set  . Each variable     may only be assigned 

values from a set called the domain of  , which we designate    ( ). We use the 

notation     to denote an assignment which assigns the value      ( ) to the 

variable  . 

An assignment set   is defined over a subset of the variable set  . This subset is 

called the scope of  , which we denote       ( ). For example, if an assignment set   is 

defined over      ( )              , then   will be of the form           

           , where each       (  ). An assignment set may also be viewed as a 

function;        ( )  ⋃    ( )       ( )  where  ( )    if the assignment     

is in the assignment set  .  

Like assignment sets, each constraint     is defined over a subset of the original 

variable set  , which is the scope of the constraint and is denoted      ( ). The purpose 

of a constraint is to place restrictions on what values can be simultaneously assigned to 
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the variables in its scope. Each constraint can thus be thought of as a collection of 

allowable assignment sets, each of which simultaneously assigns a value to each variable 

in the scope of the constraint. Whenever a variable   is a member of      ( ), we may 

declare that the variable is constrained by the constraint  . 

An assignment set   is said to activate the constraint   if   assigns a value to 

every variable constrained by  , i.e. if      ( ) is a subset of      ( ). If   activates   

and there exists an assignment set     such that   is a subset of  , then   is said to 

satisfy constraint  . On the other hand, if   activates   and no such member of   exists, 

then   is said to violate  . Note that if   does not activate  , then it neither satisfies nor 

violates  . 

If an assignment set   satisfies all of the constraints that it activates, then   is said 

to be consistent. If on the other hand   violates one of the constraints that it activates, 

then   is called a no-good. If      ( )    , then   assigns a value to all variables in   

and is known as a complete assignment set. Otherwise, it is known as a partial 

assignment set. A solution to a CSP is an assignment set that is both complete and 

consistent. 

 As an example of a CSP we borrow from Russell and Norvig [6]. Suppose we are 

given the task of coloring the states on the map of Australia red, green and blue in such a 

way that no two neighboring states are of the same color. This corresponds to the graph 

coloring problem with a the graph illustrated in the figure below and color set 

                . It is straightforward to express this as a CSP. For the variable set, we 

have                        . For each variable     we have    ( )  

                . 
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Figure 3: A map of Australia (left), its associated graph coloring problem (middle), and 

solution (right) 

  For each edge (     ) in the graph we have the constraint: 

{  
                                                        
                                                            

} 

This is more concisely expressed as: 

                   |                                     

An assignment set violates the above constraint whenever it assigns the same value to    

and   . 

2.2  The Shirokuro Variable Set 

For Shirokuro, we have the variable set   is defined as follows: 

  {       |               } 

so that the variable      corresponds to the cell that is located in the  th row and  th 

column. The domain of each of these variables is the set       where   indicates a black 

disk and   indicates a white disk. There are times when it is convenient to graphically 
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represent a Shirokuro assignment set. At such times we will display a Shirokuro grid such 

as the one illustrated below: 

 

Figure 4: Graphical representation of an assignment set 

This graphical representation corresponds to the assignment set: 

{                                                   } 

so that the empty cells in the graphical representation correspond to variables outside of 

the scope of the assignment set. We will henceforth use the terms “cell” and “variable” 

interchangeably. 

2.3 The NoClump Family of Constraints 

We can express the condition “no     region of the Shirokuro grid may contain 

four disks of the same color” as a series of constraints. For every element of 

 (   ) |                    we have the following constraint: 

       (   )  {{
                   

                       
}     |   

                        
                          

                     

} 

so that the constraint        (   ) is the set of all assignment sets that do not 

simultaneously assign the same value to all 4 variables of the scope corresponding to the 

    region of cells at position (   ), i.e. there is no “clump” at position (   ). 
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2.4  Connectivity Graphs and the TwoComponents Constraint 

The condition which requires that “each pair of like-colored disks is connected via 

a chain of disks which travels horizontally or vertically through disks of the same color as 

the pair” takes a bit more work to express in the language of CSPs. Suppose we have the 

complete assignment set: 

  {

                               
                               

 
                               

} 

                                         

so that   assigns a value to every variable in   (this corresponds to a grid in which every 

cell contains a disk). We can then then use   to define a graph  ( )  (   ) which 

takes the entire variable set   as its vertex set. The edges of  ( ) are constructed as 

follows: 

   { (         )  |  |   |  |   |               } 

so that two variables are connected by an edge if and only if the cells they correspond to 

are orthogonally adjacent and contain disks of the same color. We call  ( ) the 

connectivity graph for  . The connectivity graph for a complete assignment set for a 3 by 

3 Shirokuro grid is illustrated in Figure 5 below. 

  

Figure 5: A complete assignment set (left) and its associated connectivity graph (right). 
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We can now define the following constraint: 

              {     |

                                          

                          ( )

                            
} 

Thus               consists of all complete assignment sets in which every pair of 

like colored disks are connected by a chain of disks that travels horizontally or vertically 

through a sequence of disks that are of the same color as the pair. 

2.5  The Initial Family of Constraints 

A final set of constraints must be defined to account for the initial conditions of 

the Shirokuro puzzles. Recall that cells which initially contain a black or white disk are 

fixed and cannot be modified by the player. Thus we have subsets      and       

such that for every       we must define the constraint        (  )  {      } and 

for every       we must define the constraint        (  )  {       }. 

2.6  Summary of the Shirokuro CSP Description 

In summary, when we express Shirokuro as a CSP we get the pair (   ) where 

the members of   corresponds to an individual cell and the members of   are constraints 

that restrict the combination of values that can be taken simultaneously by the variables 

in their scopes. Putting together the constraints defined above gives us our completed 

constraint set: 

  {       (   )   |                     }                      

           ( )   |             

where the first term of the constraint set corresponds to the condition that no     area 

of the grid may contain 4 disks of the same color. The second term of the constraint set 

corresponds to the condition that pairs of like colored disks must be connected by a chain 



9 
 

that travels vertically or horizontally through a sequence of disks that are the same color 

as the pair. The third term of the constraint set corresponds to the initial conditions of the 

Shirokuro puzzle. 
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CHAPTER 3 

Ariadne’s Thread and Backtracking Algorithms 

The most straightforward way of solving a constraint satisfaction problem such as 

Shirokuro is to simply enumerate through all complete assignment sets until one is found 

that satisfies all of the constraints. This “brute force” method is computationally 

expensive, since the number of complete assignment sets for an     Shirokuro puzzle 

grows exponentially as   
 
  Fortunately, backtracking algorithms are frequently more 

efficient than brute force [2]. 

3.1  Ariadne’s Thread 

 Backtracking algorithms are frequently introduced within the context of the 

ancient Greek legend of Theseus and the Minotaur. For examples, see [7], [8], [9], [10], 

and [11]. The protagonist of the epic story, depicted in the figure below, is a hero named 

Theseus.  

 Theseus sought to slay the humanoid bovine monstrosity known as the Minotaur. 

The Minotaur’s lair was deep within a complicated labyrinth on the island of Crete. 

Fortunately for Theseus, his love interest Ariadne gave him a ball of thread to help him 

navigate through the maze. By gradually unwinding the thread as he walked, Theseus 

could distinguish areas of the maze which he had already visited from those that were yet 

to be explored. 

Using Ariadne’s thread, Theseus could have proceeded as follows to completely 

explore the maze: 
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Figure 6: Theseus in the Minotaur’s Labyrinth [12] 

STEP 1: Pick any door which you have not walked through before and walk 

through it. Repeat step one until you can’t find any unexplored doors. Then 

proceed to step 2. 

STEP 2: If you find yourself in a room where you have already walked through 

each door, proceed to the room you were in directly before visiting the current 

room for the first time. Continue from step 1. 
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A device which acts as a record of the available and exhausted options, here 

taking the form of Ariadne’s thread, is the essence of the backtracking approach [13]. 

3.2 Backtracking Algorithms 

Backtracking gains an advantage over brute force methods by exploiting a 

property of CSPs known as the domino principle: if an assignment set violates a given 

constraint, then all extensions (i.e. supersets) of that assignment set will also violate the 

constraint [14]. Brute force cannot exploit this property because only complete 

assignment sets are considered. The backtracking approach, on the other hand, iteratively 

grows assignment sets one assignment at a time until a complete solution is found. We 

can organize the set of all possible assignment sets into a tree structure where the n
th

 level 

of the tree contains all of the assignment sets that assign values to the first n variables of a 

CSP’s variable set. This is called the variable assignment tree of a CSP [5]. An example 

of a variable assignment tree is given in Figure 7. We can conceptualize the backtracking 

approach as a partial depth-first search of the variable assignment tree. While depth-first 

search exhaustively visits every node of a graph, backtracking algorithms seek to “prune” 

the variable assignment tree by detecting, as soon as possible, those partial assignment 

 

Figure 7: The variable assignment tree for a CSP with variable set             each 

variable has the domain        . 
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sets that cannot be extended to form a complete solution. Recall that such assignment sets 

are called no-goods. Since all CSPs fulfill the domino principle, we know that whenever 

a partial assignment set is found to violate some constraint, there is no need to inspect 

any extension of the violating assignment set. In terms of the variable assignment tree, 

the subtree rooted at the no-good is not explored, so that the graph traversed by a 

backtracking algorithm is potentially much smaller than the original variable assignment 

tree. This potentially smaller graph traversed by the backtracking algorithm is called the 

backtracking search tree [5]. A flow chart, Figure 8, illustrating a stack based 

backtracking process is illustrated on the following page. 

3.3  Applying Backtracking to the Shirokuro Puzzle CSP 

To solve Shirokuro puzzles with backtracking, we must invent ways to check if a 

given partial assignment set violates the constraints given in Section 2, where we gave a 

representation of the Shirokuro puzzle as a CSP with variable set   and constraint set  . 

Checking an assignment set against each of the constraints in the         family, 

which corresponds to the condition that no     region of the Shirokuro grid may 

contain 4 disks of the same color, is trivial.  

Likewise, checking that an assignment set does not violate any of the         

family of constraints, which correspond to initial conditions, is trivial. These constraints 

are very easy to check because they all have very limited, local scopes. That is, to check 

that an assignment set does not violate a constraint in the         family, we only need 

concern ourselves with the 4 variables in the     region associated with the constraint. 

On the other hand, the scope of the               constraint is global in nature. The 
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difficulties associated with the global nature of the               constraint are the 

topic of the next section. 

 

Figure 8: A flow chart for a stack based backtracking algorithm. 
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CHAPTER 4 

Improving Performance with Relaxed Constraints 

Shirokuro requires that each pair of like-colored disks be connected via a chain of 

disks which travels horizontally or vertically through disks of the same color as the pair. 

In chapter 2, we defined the               constraint, which consists only of those 

complete assignment sets whose associated connectivity graphs have only two 

components. Unfortunately, the scope of               is the entire variable set  . 

This means that the               constraint is only activated by complete 

assignment sets which assign a value to every variable. Since no partial assignment set 

can violate              , a backtracking algorithm is not able to prune any part of 

the variable assignment tree on the basis of the               constraint. Fortunately, 

we can derive several additional constraints from               that are more local 

in scope and add them to our CSP representation of Shirokuro. 

4.1  Relaxed Constraints 

Our strategy is to invent a constraint   so that whenever a partial assignment set   

violates  , any assignment set that is an extension of   which activates               

also violates              . We also require that any assignment set   which 

satisfies               also satisfies  . Such a constraint is called a relaxation of 

              [15]. Relaxed constraints represent logical consequences of the 

constraints that they relax and hence their use does not change the set of solutions to the 

CSP. However, relaxed constraints can have smaller scopes than the constraints they 

relax. For example, suppose we have the constraint                defined as: 
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                {{
                    

             
} |  ∑  

 

   

   } 

where the scope of the constraint is      (              )                   and 

each    has the domain          . Then one potentially useful relaxation of 

               is the constraint 

            {        |     } 

Any assignment set which violates the             will violate the 

               constraint because the minimum value of the sum ∑   
 
    will be  

6 + 1 + 1 + 1 + 1 = 10. Conversely, any assignment set which satisfies the 

               constraint will also satisfy the             constraint, since the 

maximum value for    would be 9 – 1 – 1 – 1 – 1 = 5. Thus,             is a 

relaxation of               ; indeed like all relaxed constraints, it is a logical 

consequence of the constraint that it relaxes.  

Because relaxed constraints have smaller scopes than the constraints they relax, 

they are easier to activate, and thus allow for the detection of no-goods at shallow depths 

of the variable assignment tree. This helps to prune the variable assignment tree, which 

results in a smaller backtracking search tree. We give several useful relaxations of the 

              constraint in this chapter. 

4.2 The NoX  Family of Constraints 

Consider the partial assignment set represented by the illustration in Figure 9. The 

assignment set is characterized by a     region containing one pair of black disks and 

one pair of white disks. One pair of disks forms a Northwest-Southeast direction, while 

the other forms a Northeast-Southwest direction (left).  
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Figure 9: Assignment sets containing an “X” pattern (left) lead to the isolation of a pair of 

like-colored disks (right). 

This configuration leads to the separation of a pair of disks (right). To see this, 

note that any connection that is made between the two black disks invariably forms a 

loop which completely encapsulates one of the white disks, making any connection 

between the two white disks impossible. Therefore for every element of 

 (   ) |                    we define the following constraint: 

   (   )  {{
                   

                       
}     |   

                         
                      

} 

So that    (   ) contains only those assignment sets that do not contain the problematic 

“X” configuration within the     region located at position (   ). Note that each 

constraint in the     family of constraints is a relaxation of the               

constraint, as desired. 

4.3  The BlackConnected and WhiteConnected Constraint Families 

Before going further, we need to define two additional graphs that can be 

associated with a given assignment set. Given an assignment set  , we generate a graph 

  ( )  (   ) which takes the following vertex and edge set. The edges of   ( ) are 

constructed as follows: 

           |  (   )     
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   { (         )   |  |   |  |   |   } 

so that two variables are connected by an edge if and only if the cells they correspond to 

are orthogonally adjacent and do not contain white disks (i.e. they contain black disks or 

are empty). We call   ( ) the black connectivity graph for  . 

  

Figure 10: An incomplete assignment set (left) and its associated black connectivity 

graph (right). Compare with Figure 5, page 7. 

Note that in Figure 10 above,   ( ) has two connected components. Since each 

component contains at least one black disk, there is at least one pair of black disks that 

cannot be connected to each other. Ergo, if the complete assignment set  ̅ extends  , then 

 ̅ will not satisfy the TwoComponents constraint, since the connectivity graph  ( ̅) has 

at least 3 connected components. In general, any assignment set   is a no-good whenever 

there is a pair of black disks which is not found within the same connected component of 

the black connectivity graph   ( ). We can define a similar graph, the white connectivity 

graph   ( ), for which similar results are found. We define the following two 

constraints for every subset    of    as follows: 

              (  )   {    |

                                           
                                       

            ( )                     
} 
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              (  )   {    |

                                           
                                      

            ( )                     
} 

Note that since these constraints are defined for every subset of  , we can use them to 

identify no-goods at any level of the backtracking search tree. 

4.4  The BlackEdgeConnected Family of Constraints 

Our final set of constraints is obtained by exploiting an interesting property of the 

boundary of the Shirokuro grid. Consider the partial assignment set illustrated in Figure 

11 (left), in which 4 disks of alternating colors (●,○,●,○) are found along the edge of the 

grid. Note that any connection that is drawn between the two black disks would 

necessarily bisect the Shirokuro grid, thereby isolating the pair of white discs from one 

another, as in Figure 11 (right). Thus, if two black disks lie along the boundary of the 

grid, then they must be connected by a chain of black disks and/or empty cells, all of 

which also lie along the boundary. 

 

Figure 11: Assignment sets containing 4 disks of alternating colors along edge of the grid 

(left) lead to the isolation of a pair of like-colored of disks (right). 

To write this in the language of CSPs requires that we define yet another 

connectivity graph. For any assignment set   let the black edge connectivity graph 

 ●
 ( )  (   ) have the following vertex and edge sets: 
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  {        |                 (      )   } 

   { (         )   |  |   |  |   |   } 

Note that the black edge connectivity graph  ●
 ( ) is a vertex-induced subgraph of the 

previously defined black connectivity graph   ( ), with the vertices restricted to those 

corresponding to cells that lie on the edge of the Shirokuro grid.  

If    {        |           }, then for every subset        we define the following 

constraint: 

                  (   )   {    |
                                            

 ●
 ( )              

} 

After some thought, it should become clear that it is not necessary to define a similar 

family of constraints based on white disks; this constraint would be redundant in this 

case. 
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CHAPTER 5 

Further Improvements 

The preceding text gives a basic theoretical foundation to those who wish to 

represent the Shirokuro puzzle as a CSP and to solve the CSP using rudimentary 

backtracking techniques. In this chapter, we discuss several avenues of improvement 

which may enhance the performance of the Shirokuro backtracking algorithm. 

5.1  Thrashing 

While the backtracking approach is often times more efficient than simple brute 

force methods, backtracking is vulnerable to a pathological phenomenon known as 

thrashing [2]. Freuder and  Mackworth define thrashing as “the repeated exploration of 

failing subtrees of the backtracking search tree that are essentially identical–differing 

only in assignments to variables irrelevant to the failure of the subtree [16].” Consider the 

assignment set depicted in the following figure: 

 
Figure 12: An assignment set which cannot be extended to a valid solution 

It is easy for human eyes to see that any attempt to extend this partial assignment 

set to form a valid solution will end in failure: the two empty cells in the upper right 

corner of the grid have become isolated from the black disks in the lower right corner. 

Therefore none of these empty cells may be assigned a black disk. However, assigning a 
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white disk to both of those cells results in an assignment set which violates a member of 

the NoClump family of constraints. 

Despite the simplicity of this argument, the simple backtracking algorithm could 

visit 70 or more extensions of this assignment sets before finally marking it as a no-good. 

An example of one of these large backtracking search trees, rooted at the above 

assignment set, is illustrated in Figure 13, below. This is an example of thrashing; 

exploring various extensions which assign values to the two leftmost columns of cells 

does nothing to address the ultimate cause of the failures which eventually occur. 

Thrashing is serious business: The amount of thrashing that takes place is often 

the greatest factor affecting the runtime of a backtracking algorithm [16]. In section 5.2 

and 5.3 we briefly discuss some of the approaches that can be used to reduce thrashing 

behavior. 

5.2 Variable Ordering 

In  Figure 8, we gave the flow chart for a simple stack based backtracking 

algorithm. The reader should note that the algorithm does not specify the order in which 

variables should be added to the scope of the assignment set that is being constructed. We 

have extracted the relevant portion of the flow chart below for the reader’s reference. 
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Figure 13: An example of thrashing in the simple backtracking algorithm 
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Figure 14: The portion of the backtracking flow chart which shows that the order of 

variables is not specified in simple backtracking algorithms. See Figure 8, page 13. 

Although simple backtracking makes variable assignments in arbitrary order, 

trashing behavior can sometimes be dramatically reduced by using a more careful 

variable ordering [17]. The backtracking search tree illustrated below is rooted at the 

same assignment set as the large thrashing example in Figure 13. However, while the 

backtracking search tree in Figure 13 contains 71 partial assignment sets, the 

backtracking search tree illustrated below contains only 5 partial assignment sets. This 

reduction in size of the backtracking search tree is a direct result of the careful variable 

ordering used in the construction of the smaller tree; as a result of this ordering, none of 

the variables corresponding to the two left-most columns of cells, which are irrelevant to 

the ultimate cause of the subtree’s failure, are ever assigned any values. 

Advanced backtracking algorithms make use of a powerful technique called 

dynamic variable ordering (DVO). In DVO, the order in which variable assignments are  

Y 

does  

STACK.TOP 

have any extensions 

that are NOT marked  

“no-good”? 

push one 

of them  

onto STACK 
N 

mark STACK.TOP 

as “no-good” 

and pop it 

off of STACK 
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Figure 15: Carefully ordering variable assignments can dramatically reduce 

thrashing. Compare to Figure 13, page 23. 

made is calculated during the search itself, so that each branch of the backtracking search 

tree can potentially have a different variable ordering. The general strategy is to assign 

values to variables that are likely to result in failure as soon as possible in order to 

maximize pruning of the variable assignment tree. The details of how this strategy can be 

implemented are beyond the scope of this thesis. However, because several of the 

Shirokuro constraints are defined in terms of graph connectivity, we believe that 

identifying the articulation points (nodes of a connected graph that disconnect the graph 

when they are removed) of a graph will play a crucial role in the formulation of effective 

DVO approaches to Shirokuro. In Figure 16, we provide an example in which the 

variable associated with the articulation point of the black connectivity graph (marked 

with a red star) is the first to undergo assignment. Note that this results in the immediate 

discovery of a no-good, as desired. Articulation points can be discovered via a clever 

linear time algorithm based on spanning trees and depth first search. See [18] for a 

thorough treatment of the subject. See also [19] and [20] for a more accessible  

file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Tar72
file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Thu92
file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Wei97
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Figure 16: Articulation points in dynamic variable ordering  

explanation. Information on separation pairs, which may also be relevant, can be found in 

[21]. 

5.3 Forward Checking 

Forward checking (FC) is a simple constraint propagation [22] technique which can 

further reduce thrashing behavior. The idea behind FC is simple to explain. Suppose 

ouour backtracking algorithm is about to extend the assignment set  . Before doing so, 

we make a list of all the unassigned variables, i.e. the set of variables that are not in the 

scope of    i.e. the compliment of      ( ), which we denote      ( ). Now, for each 

variable        ( ), we examine the set    ( ) and temporarily remove from it all 

file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Kam05
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values that would result in a constraint violation if used to extend the assignment set   

(these domain values are restored if and when the backtracking algorithm discovers that 

  is a no-good). Of course, each of variables in the Shirokuro CSP has the domain      , 

so that removing a value from the domain of a Shirokuro variable is equivalent to 

assigning a value to that variable. Therefore Shirokuro FC causes several assignments to 

be made in rapid succession: the first assignment in each group of assignments is 

exploratory; this first assignment is then followed by a series of supplementary 

assignments that are “forced” into existence by the first assignment. 

The figure below contains a few examples of how forward checking would work 

in a Shirokuro backtracking algorithm. For clarity, in each example we evaluate forward 

checking on the basis of only one family of constraints. 
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constraint family basis 

for FC 
assignment set before FC assignment set after FC 

        

  

    

  

                   

  

               

  

Figure 17: The effects of forward checking on the basis of various constraint families  
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CHAPTER 6 

Future Work 

In the following sections we present several lines of inquiry which were 

superficially explored but not conclusively investigated. We document these explorations 

here so that they may serve as the basis for further investigations, both by the author and 

by the readers of this thesis. 

6.1  Spanning Tree Maintenance 

Verifying the constraints within the                and                

families require that graphs be constructed so that their connected components can be 

counted. Moreover, the Dynamic Variable Ordering approach we discussed above 

requires that articulation points be identified at every step of the backtracking process. 

These tasks rely on using depth first search to construct spanning trees which span the 

black and white connectivity graphs. Although Tarjan has shown that the building of 

spanning trees and the identification of articulation points can be achieved in linear time 

[18], reconstructing these spanning trees from scratch at every step of backtracking 

process might include many redundant steps. It would be more desirable to use dynamic 

algorithms which maintain, rather than rebuild, their data structures, so that a small 

change in graph structure would correspond to a small “updating” computation. Dynamic 

algorithms which allow for vertex and edge insertions are described in [23]. However, we 

require an algorithm which allows for vertex and edge deletions as well. A large number 

of references to dynamic graph algorithms can be found in [21]. An appropriate dynamic 

algorithm for Shirokuro may well lie among them. 
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6.2  Solving The Shirokuro CSP With Evolutionary Algorithms 

One approach to solving Constraint Satisfaction Problems is to recast the CSP as 

an optimization problem that can be solved through the use of biologically inspired 

evolutionary algorithms (EAs). A brief description of a typical EA is given here. A more 

extensive explanation of EAs is given [24]. 

The classical optimization methods typically taught in graduate level courses on 

mathematical optimization are relatively efficient at solving “linear, quadratic, strongly 

convex, unimodal, and separable” problems [25]. EAs, on the other hand, were developed 

with robustness (broad applicability) in mind. They are often used to optimize functions 

that are “discontinuous, nondifferentiable, multimodal, noisy, and otherwise 

unconventional” [25]. 

EAs were inspired by the process of Darwinian natural selection observed in the 

biological world. According to Darwinism, populations of organisms adapt to the 

environment through the mechanisms of selection, mutation, sexual recombination and 

sexual reproduction. In EAs, a simulation of this process is set up so that a population of 

candidate solutions (also called “individuals”) adapt to a virtual environment in which 

natural selection is replaced by an artificial selection operator. The latter makes use of 

fitness data to probabilistically eliminate the worst individuals. New individuals are then 

generated from the surviving individuals by means of the mutation operators and/or 

recombination operators. An example flow chart for a simple evolutionary algorithm is 

illustrated below: 

For the purpose of Shirokuro, the fitness function might reflect, for example, the 

number of constraints that are violated by any given individual, so that individuals which 
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Figure 18: Flow chart for a typical evolutionary algorithm. 

violate fewer constraints are given a reproductive advantage. The problem with this 

approach is that much information is lost when all of the information regarding constraint 

violations is aggregated into a single number. Another problem is that the traditional 

mutation and recombination operators found in most EA operators are “blind” to 

constraints, meaning that there is no guarantee that the offspring will satisfy the same 

constraints as its parents. Techniques for dealing with these issues are given in [26]. 

6.3  The Computational Complexity of Shirokuro 

Understanding the complexity of the computational problem one is attempting to 

solve is important because such an understanding allows one to form reasonable goals 

and expectations regarding the efficiency of any algorithm designed to solve the problem 

[27]. While the basic concepts of computational complexity theory are beyond the scope 

of this thesis, an accessible introduction to the topic is provided in [28]. A more 

comprehensive treatment can be found in [27]. 
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To express Shirokuro as a decision problem, we can ask the question “does a 

given instance of Shirokuro have a solution?” It is relatively trivial to show that the 

Shirokuro decision problem lies in NP (Non-deterministic Polynomial time). All that is 

needed is a polynomial time algorithm that can verify a given candidate solution. Since 

depth first search runs in linear time, this is a simple task indeed. 

Other than the fact that Shirokuro is a member of NP, we know nothing of the 

computational complexity of Shirokuro. While proofs exist that related puzzles, such as 

Sudoku, are NPC (NP-Complete) [29], such a proof that Shirokuro is NPC has eluded us. 

Assuming that P (Polynomial time) is not equal to NP, the possibility exists that 

Shirokuro exists neither in P nor in NPC, but instead lies in NPI (NP-Intermediate, see 

[30]). NPI is a sad place for a decision problem to find itself; proving that a problem lies 

in NPI would indirectly prove that P is not equal to NP. Thus proving that Shirokuro lies 

in NPI is at least as hard as proving that that P is not equal to NP, which is seen by many 

as the most important problem in computer science; indeed we may never know for sure. 

Thus if Shirokuro lies in NPI then its complexity might remain unknown forever. 

Nevertheless, it is the opinion of the author that the complexity of Shirokuro is worth 

researching. However, we must warn against working on this particular problem under 

any kind of deadline; if Shirokuro is in NPI, then even a lifetime may not provide enough 

time. 
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CHAPTER 7 

Conclusion 

In this thesis we provided a theoretical foundation for solving Shirokuro puzzles 

using backtracking techniques. This included a description of Shirokuro as a constraint 

satisfaction problem (CSP), a description of backtracking algorithms, and an overview of 

several performance enhancing techniques, such as relaxed constraints, variable ordering 

and forward checking. Finally we outline several potential avenues of future research, 

some of which could lead to more efficient Shirokuro backtracking algorithms, and some 

of which are unrelated to the backtracking approach. 

  



34 
 

References 

[1] Helmut Simonis, "Sudoku as a constraint problem," in CP Workshop on Modeling 

and Reformulating, Sitges (Barcelona), Spain, 2005, pp. 13-27. 

[2] Vipin Kumar, "Algorithms for Constraint-Satisfaction Problems: A Survey," AI 

Magazine, vol. 13, no. 1, pp. 32-44, 1992. 

[3] Edward Tsang, "A Glimpse of Constraint Satisfaction," Artificial Intelligence 

Review, vol. 13, no. 3, pp. 215-227, June 1999. 

[4] Donald E Knuth, "Estimating the Efficiency of Backtrack Programs," Mathematics 

of Computation, vol. 29, no. 129, pp. 121-136, January 1975. 

[5] Fahiem Bacchus. A Uniform View of Backtracking. [Online]. 

http://www.cs.toronto.edu/~fbacchus/Papers/uniform-backtracking.pdf 

[6] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach.: 

Prentice Hall, 2010. 

[7] Djordje M Kadijevic, "Backtracking in Basic: How to Escape from the Labyinth," 

Teaching Mathematics and its Applications, vol. 10, no. 2, pp. 64-73, 1991. 

[8] Loren P Meissner and Elliott Irving Organick, Fortran 77: Featuring Structured 

Programming, 3rd ed.: Addison-Wesley, 1980. 

[9] Eric S Roberts, Programming Abstractions in C: A Second Course in Computer 

Science.: Addison Wesley, 1997. 



35 
 

[10] Philip Nicholas Johnson-Laird, The Computer and the Mind: An Introduction to 

Cognitive Science.: Harvard University Press, 1989. 

[11] Micheal Mepham. (2005) Sudoku.org.uk. [Online]. 

http://www.sudoku.org.uk/PDF/solving_sudoku.pdf 

[12] Sir Edward Burne-Jones. Pre-Raphaelite Online Resource. [Online]. 

http://www.preraphaelites.org/the-collection/1927p594/tile-design-theseus-and-the-

minotaur-in-the-labyrinth/ 

[13] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online]. 

http://en.wikipedia.org/wiki/Ariadne's_thread_(logic) 

[14] Gabriel Valiente, Algorithms on Trees and Graphs. New York: Springer, 2002. 

[15] Willem-Jan van Hoeve and Irit Katriel, "Global Constraints," in Handbook of 

Constraint Programming, Francesca Rossi, Peter van Beek, and Toby Walsh, Eds. 

New York: Elsevier, 2006, pp. 169-208. 

[16] Eugene C Freuder and Alan K Mackworth, "Constraint Satisfaction: An Emerging 

Paradigm," in Handbook of Constraint Programming, Francesca Rossi, Peter van 

Beek, and Toby Walsh, Eds.: Elsevier, 2006, ch. 2, pp. 13-23. 

[17] Fahiem Bacchus and Paul van Run, "Dynamic Variable Ordering in CSPs," in 

Principles and Practice of Constraints Programming (CP-95), Cassis, France, 1995, 

pp. 258-275. 



36 
 

[18] Robert Endre Tarjan, "Depth-First Search and Linear Graph Algorithms," SIAM 

Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972. 

[19] Krishnaiyan Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms.: 

John Wiley and Sons, 1992. 

[20] Mark Allen Weiss, Data Structures and Algorithm Analysis in C.: Addison-Wesley, 

1997. 

[21] F Kammer and H Taubig, "Connectivity," in Network Analysis: Methodological 

Foundations, Ulrik Brandes and Thomas Erlebach, Eds.: Springer, 2005, ch. 7, pp. 

143-177. 

[22] Christian Bessiere, "Constraint Propagation," in Handbook of Constraint 

Programming, Francesca Rossi, Peter van Beek, and Toby Walsh, Eds., 2006, ch. 3, 

pp. 29-84. 

[23] Jeffery Westbrook and Robert E Tarjan, "Maintaining Bridge-Connected and 

Biconnected Components On-Line," Algorithmica, vol. 7, pp. 433-464, 1992. 

[24] David B Fogel, Evolutionary computation: toward a new philosophy of machine 

intelligence.: John Wiley and Sons, 2006. 

[25] Hans-Paul Schwefel, "Anvantages (and disadvantages) of evolutionary computation 

over other approaches," in Evolutionary Computation: Basic algorithms and 

operators, David B Fogel, Thomas Bäck, and Zbigniew Michalewicz, Eds. New 



37 
 

York: Taylor and Francis Group, LLC, 2000, ch. 3, pp. 20-22. 

[26] A E Eiben, "Evolutionary Algorithms and Constraint Satisfaction: Definitions, 

Survey, Methodology and Research Directions," in Theoretical Aspects of 

Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers, Eds.: 

Springer, 2001, pp. 13-30. 

[27] Michael R Garey and David S Johnson, Computers and Intractability: A Guide to 

the Theory of NP-Completeness.: W. H. Freeman and Company, 1979. 

[28] Michael Sipser, Introduction to the Theory of Computation.: Thomson Course 

Technology, 2006. 

[29] G Kendall, A Parkes, and K Spoerer, "A Survey of NP-Complete Puzzles," ICGA 

Journal, vol. 31, no. 1, pp. 13-34, 2008. 

[30] Richard E Ladner, "On the Structure of Polynomial Time Reducibility," Journal of 

the ACM, vol. 22, no. 1, January 1976. 

[31] Ian P Gent, Karen E Petrie, and Jean-François Puget, "Symmetry in Constraint 

Programming," in Handbook of Constraint Programming, Francesca Rossi, Peter 

van Beek, and Toby Walsh, Eds. New York: Elsevier, 2006, pp. 329-376. 

 

 

  



38 
 

APPENDIX: 

Internet Resources 

A worksheet from Spirit Magazine containing 4 easy Shirokuro puzzles: 

http://cs.calstatela.edu/wiki/images/4/46/ShirokuroSpirit.pdf 

A poster on Shirokuro by Benjamin James Bush: 

http://cs.calstatela.edu/wiki/images/d/de/Shirokuro.pdf 

A poster on Shirokuro by Alexandre Lomovtsev: 

http://cs.calstatela.edu/wiki/images/c/ce/Shirokuro_Solver.pdf 

Shirokuro Solver Project page by Alexandre Lomovtsev: 

http://cs.calstatela.edu/wiki/index.php/Courses/CS_491ab/Winter_2009/ 

Alexandre_Lomovtsev 

A Python package for constraint satisfaction: 

http://labix.org/python-constraint 

A Python package for networks and graphs: 

http://networkx.lanl.gov/ 

A Python package for evolutionary algorithms: 

http://pyevolve.sourceforge.net/ 

Josh Buhler’s Shirokuro Puzzle App for Windows Phone 7: 

http://fogodev.com/post/3184856247/shirokuro-is-live 


