

APPROVAL PAGE FOR GRADUATE THESIS OR PROJECT

GS-13

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR DEGREE

OF MASTER OF SCIENCE AT CALIFORNIA STATE UNIVERSITY, LOS

ANGELES BY

 Benjamin James Bush

 Candidate

 General Mathematics

 Field of Concentration

TITLE: Solving The Shirokuro Puzzle Constraint Satisfaction Problem With

 Backtracking: A Theoretical Foundation

APPROVED: Russ Abbott

 Faculty Member Signature

 Anthony Shaheen

 Faculty Member Signature

 Gary Brookfield

 Faculty Member Signature

 Grant Fraser

 Department Chairperson Signature

DATE:

SOLVING THE SHIROKURO PUZZLE CONSTRAINT SATISFACTION PROBLEM

WITH BACKTRACKING: A THEORETICAL FOUNDATION

A Thesis

Presented to

the Faculty of the Department of Mathematics

California State University, Los Angeles

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Benjamin James Bush

December 2011

ii

© 2011

Benjamin James Bush

ALL RIGHTS RESERVED

iii

PREFACE

 This thesis documents much of the work that was done when I took an

independent study course with Dr. Russ Abbott in 2008. Dr. Abbot is a professor of

computer science at California State University Los Angeles. While traveling via

airplane, Dr. Abbott discovered an interesting puzzle called “Shirokuro.” He thought that

it would be interesting to try to solve the puzzle using computational techniques. Dr.

Abbott later shared his interest with my colleague Alexandre Lomovtsev and me. We

shared Dr. Abbott’s enthusiasm for the problem and began developing our computational

Shirokuro puzzle solvers. The three of us met on a weekly basis for several months.

Much progress was made. However, as with all interesting projects, there is always more

work to be done. Any readers who are inspired by this thesis to continue my work should

not hesitate to contact me; this research is ongoing. I am always eager to discuss new

developments.

Benjamin James Bush

December 2011

iv

ACKNOWLEDGEMENTS

There are many people who have aided me and supported me over the years. I

would like to thank them, especially those who have guided me during the writing of this

paper. I would like to thank Dr. Russ Abbott for introducing me to Shirokuro puzzles. His

guidance, suggestions, and assistance in completing this work were invaluable.

Additionally, I would like to thank Dr. Gary Brookfield and Dr. Daphne Liu, who helped

me overcome some of the obstacles I encountered while working to understand some of

the more difficult proofs in the literature. They also were instrumental in guiding me

through the logistical aspects of the thesis submission process. I would like to thank

Alexandre Lomovtsev for being my thoughtful colleague. He shared with me the

discovery of the “X” pattern and its implications for solving Shirokuro puzzles (see

section 6). Information on the history of the Shirokuro puzzle came from the staff of

Puzzability. I would like to acknowledge Amy Goldstein and the staff of Puzzability for

sharing the insight illustrated in Figure 7. I extend my greatest appreciation to my

parents, Bruce and Alma Bush. They have provided love and support from the day I was

born up until the completion of this thesis, and beyond. I also thank my wife, Rene Bush,

for giving me the love and support that I needed to persevere until my thesis was

complete.

The funding for this project was provided by the National Science Foundation

under Grant # HRD-0331537 and the CSU Chancellor's Office.

v

ABSTRACT

SOLVING THE SHIROKURO PUZZLE CONSTRAINT SATISFACTION PROBLEM

WITH BACKTRACKING:

A THEORETICAL FOUNDATION

By

Benjamin James Bush

Shirokuro is a Japanese puzzle recently featured in Spirit magazine. It is played on a

grid of n by n cells, each of which may be empty or contain a black or white disk. The

goal is to fill every empty cell with a white or black disk so that the following conditions

are satisfied: (1) No two-by-two region contains four disks of the same color. (2) Each

pair of like-colored disks is connected via a chain of disks which travels horizontally or

vertically through disks of the same color as the pair. We describe Shirokuro as a

constraint satisfaction problem, and then propose a backtracking algorithm which solves

the puzzle by incrementally building candidate solutions. We propose several relaxed

constraints which may help to speed up the algorithm and give an overview of some

advanced backtracking techniques.

vi

TABLE OF CONTENTS

Preface ... iii

Acknowledgments ... iv

Abstract ... v

List of Figures ... viii

Chapter

1 Introduction ... 1

2 Shirokuro as a Constraint Satisfaction Problem .. 3

2.1 Constraint Satisfaction Problems .. 3

2.2 The Shirokuro Variable Set ... 5

2.3 The NoClump Family of Constraints .. 6

2.4 Connectivity Graphs and the TwoComponents Constraint 7

2.5 The Initial Family of Constraints... 8

2.6 Summary of the Shirokuro CSP Description .. 8

3 Ariadne’s Thread and Backtracking Algorithms .. 10

3.1 Ariadne’s Thread ... 10

3.2 Backtracking Algorithms .. 12

3.3 Applying Backtracking to the Shirokuro Puzzle CSP 13

4 Improving Performance with Relaxed Constraints ... 15

4.1 Relaxed Constraints ... 15

4.2 The NoX Family of Constraints .. 16

4.3 The BlackConnected and WhiteConnected Constraint Families 17

4.4 The BlackEdgeConnected Family of Constraints ... 19

vii

5 Further Improvements ... 21

5.1 Thrashing ... 21

5.2 Variable Ordering .. 22

5.3 Forward Checking ... 26

6 Future Work .. 27

6.1 Spanning Tree Maintenance .. 29

6.2 Solving The Shirokuro CSP with Evolutionary Algorithms 30

6.3 The Computational Complexity of Shirokuro ... 31

7 Conclusion ... 33

References.. 32

Appendix: Internet Resources ... 36

viii

 LIST OF FIGURES

Figure

1 The conditions that must be met to solve a Shirokuro puzzle 1

2 Figure 2: An example a Shirokuro puzzle and its solution 2

3 A map of Australia, its associated graph coloring problem, and solution 5

4 Graphical representation of an assignment set ... 6

5 A complete assignment set and its associated connectivity graph 7

6 Theseus in the Minotaur’s Labyrinth ... 11

7 The variable assignment tree for a CSP ... 12

8 A flow chart for a stack based backtracking algorithm 14

9 Assignment sets containing an “X” pattern leads to the isolation of a pair of

like-colored disks ...

17

10 An incomplete assignment set and its associated back connectivity graph 18

11 Assignment sets containing 4 disks of alternating colors along the edge of

the grid lead to the isolation of a pair of like-colored disks

19

12 An assignment set which cannot be extended to a valid solution 21

13 An example of thrashing in the simple backtracking algorithm 23

14 The portion of the backtracking flow chart which shows that the order of

variables is not specified in simple backtracking algorithms

24

15 Carefully ordering variable assignments can dramatically reduce thrashing .. 25

16 Articulation points in dynamic variable ordering .. 26

17 The effects of forward checking on the basis of various constraint families ... 28

18 Flow chart for a typical evolutionary algorithm .. 31

1

CHAPTER 1

Introduction

Shirokuro, which means “black and white” in Japanese, is an obscure Japanese

puzzle which was featured in August 2008 edition of Spirit magazine. The gameplay of

Shirokuro is similar to that of the much more popular Sudoku. Shirokuro is played on a

square grid of cells, each of which may be empty or contain a disk that is either

black or white in color. The goal of Shirokuro is to fill in every empty cell with a white or

black disk so that conditions specified in Figure 1 below are satisfied. Cells which

initially contain a black or white disk are fixed and cannot be modified; however, cells

that are initially empty must be modified by the player until a solution is found. An

example Shirokuro puzzle along with its solution is illustrated in Figure 2 on the

following page.

Condition Illustration

No region of the grid

contains four disks of the same

color (e.g. no “clumps” allowed).

Each pair of like-colored disks is

connected via a chain of disks

which travels horizontally or

vertically through disks of the

same color as the pair.

Figure 1: The conditions that must be met to solve a Shirokuro puzzle.

2

Figure 2: An example a Shirokuro puzzle (left) and its solution (right).

Shirokuro’s more famous cousin, Sudoku, has been formulated as a constraint

satisfaction problem (CSP) [1]. We do the same for Shirokuro in chapter 2, where we

define Shirokuro as a CSP.

While CSPs such as Shirokuro can potentially be solved by brute force

enumeration, backtracking algorithms are more efficient [2]. A simple backtracking

algorithm for solving Shirokuro puzzles is given in chapter 3. In chapter 4, we enhance

the simple backtracking algorithm with several Shirokuro “tricks” which are

implemented as relaxed constraints. Chapter 5 describes some advanced techniques that

may further enhance the efficiency of the backtracking algorithm. Finally, we conclude

with an outline of our planned future work and a summary of what has been

accomplished so far.

3

CHAPTER 2

Shirokuro as a Constraint Satisfaction Problem

Many puzzles, such as 8 Queens, Instant Insanity, and Sudoku can be expressed

as constraint satisfaction problems (CSPs) [3] [4] [1]. In this section we briefly discuss

CSPs in general. We then express Shirokuro as a CSP. The regularities and properties

that are common to all CSPs help us solve Shirokuro puzzles.

2.1 Constraint Satisfaction Problems

We loosely follow the definitions and notation given in section 2 of Baccus’ “A

Uniform View of Backtracking” [5], which the reader is encouraged to reference for a

more in-depth and general understanding of CSPs. The fundamental elements of a CSP

are a variable set and a constraints set . Each variable may only be assigned

values from a set called the domain of , which we designate (). We use the

notation to denote an assignment which assigns the value () to the

variable .

An assignment set is defined over a subset of the variable set . This subset is

called the scope of , which we denote (). For example, if an assignment set is

defined over () , then will be of the form

 , where each (). An assignment set may also be viewed as a

function; () ⋃ () () where () if the assignment

is in the assignment set .

Like assignment sets, each constraint is defined over a subset of the original

variable set , which is the scope of the constraint and is denoted (). The purpose

of a constraint is to place restrictions on what values can be simultaneously assigned to

4

the variables in its scope. Each constraint can thus be thought of as a collection of

allowable assignment sets, each of which simultaneously assigns a value to each variable

in the scope of the constraint. Whenever a variable is a member of (), we may

declare that the variable is constrained by the constraint .

An assignment set is said to activate the constraint if assigns a value to

every variable constrained by , i.e. if () is a subset of (). If activates

and there exists an assignment set such that is a subset of , then is said to

satisfy constraint . On the other hand, if activates and no such member of exists,

then is said to violate . Note that if does not activate , then it neither satisfies nor

violates .

If an assignment set satisfies all of the constraints that it activates, then is said

to be consistent. If on the other hand violates one of the constraints that it activates,

then is called a no-good. If () , then assigns a value to all variables in

and is known as a complete assignment set. Otherwise, it is known as a partial

assignment set. A solution to a CSP is an assignment set that is both complete and

consistent.

 As an example of a CSP we borrow from Russell and Norvig [6]. Suppose we are

given the task of coloring the states on the map of Australia red, green and blue in such a

way that no two neighboring states are of the same color. This corresponds to the graph

coloring problem with a the graph illustrated in the figure below and color set

 . It is straightforward to express this as a CSP. For the variable set, we

have . For each variable we have ()

 .

5

Figure 3: A map of Australia (left), its associated graph coloring problem (middle), and

solution (right)

 For each edge () in the graph we have the constraint:

{

}

This is more concisely expressed as:

 |

An assignment set violates the above constraint whenever it assigns the same value to

and .

2.2 The Shirokuro Variable Set

For Shirokuro, we have the variable set is defined as follows:

 { | }

so that the variable corresponds to the cell that is located in the th row and th

column. The domain of each of these variables is the set where indicates a black

disk and indicates a white disk. There are times when it is convenient to graphically

6

represent a Shirokuro assignment set. At such times we will display a Shirokuro grid such

as the one illustrated below:

Figure 4: Graphical representation of an assignment set

This graphical representation corresponds to the assignment set:

{ }

so that the empty cells in the graphical representation correspond to variables outside of

the scope of the assignment set. We will henceforth use the terms “cell” and “variable”

interchangeably.

2.3 The NoClump Family of Constraints

We can express the condition “no region of the Shirokuro grid may contain

four disks of the same color” as a series of constraints. For every element of

 () | we have the following constraint:

 () {{

} |

}

so that the constraint () is the set of all assignment sets that do not

simultaneously assign the same value to all 4 variables of the scope corresponding to the

 region of cells at position (), i.e. there is no “clump” at position ().

7

2.4 Connectivity Graphs and the TwoComponents Constraint

The condition which requires that “each pair of like-colored disks is connected via

a chain of disks which travels horizontally or vertically through disks of the same color as

the pair” takes a bit more work to express in the language of CSPs. Suppose we have the

complete assignment set:

 {

}

so that assigns a value to every variable in (this corresponds to a grid in which every

cell contains a disk). We can then then use to define a graph () () which

takes the entire variable set as its vertex set. The edges of () are constructed as

follows:

 { () | | | | | }

so that two variables are connected by an edge if and only if the cells they correspond to

are orthogonally adjacent and contain disks of the same color. We call () the

connectivity graph for . The connectivity graph for a complete assignment set for a 3 by

3 Shirokuro grid is illustrated in Figure 5 below.

Figure 5: A complete assignment set (left) and its associated connectivity graph (right).

8

We can now define the following constraint:

 { |

 ()

}

Thus consists of all complete assignment sets in which every pair of

like colored disks are connected by a chain of disks that travels horizontally or vertically

through a sequence of disks that are of the same color as the pair.

2.5 The Initial Family of Constraints

A final set of constraints must be defined to account for the initial conditions of

the Shirokuro puzzles. Recall that cells which initially contain a black or white disk are

fixed and cannot be modified by the player. Thus we have subsets and

such that for every we must define the constraint () { } and

for every we must define the constraint () { }.

2.6 Summary of the Shirokuro CSP Description

In summary, when we express Shirokuro as a CSP we get the pair () where

the members of corresponds to an individual cell and the members of are constraints

that restrict the combination of values that can be taken simultaneously by the variables

in their scopes. Putting together the constraints defined above gives us our completed

constraint set:

 { () | }

 () |

where the first term of the constraint set corresponds to the condition that no area

of the grid may contain 4 disks of the same color. The second term of the constraint set

corresponds to the condition that pairs of like colored disks must be connected by a chain

9

that travels vertically or horizontally through a sequence of disks that are the same color

as the pair. The third term of the constraint set corresponds to the initial conditions of the

Shirokuro puzzle.

10

CHAPTER 3

Ariadne’s Thread and Backtracking Algorithms

The most straightforward way of solving a constraint satisfaction problem such as

Shirokuro is to simply enumerate through all complete assignment sets until one is found

that satisfies all of the constraints. This “brute force” method is computationally

expensive, since the number of complete assignment sets for an Shirokuro puzzle

grows exponentially as

 Fortunately, backtracking algorithms are frequently more

efficient than brute force [2].

3.1 Ariadne’s Thread

 Backtracking algorithms are frequently introduced within the context of the

ancient Greek legend of Theseus and the Minotaur. For examples, see [7], [8], [9], [10],

and [11]. The protagonist of the epic story, depicted in the figure below, is a hero named

Theseus.

 Theseus sought to slay the humanoid bovine monstrosity known as the Minotaur.

The Minotaur’s lair was deep within a complicated labyrinth on the island of Crete.

Fortunately for Theseus, his love interest Ariadne gave him a ball of thread to help him

navigate through the maze. By gradually unwinding the thread as he walked, Theseus

could distinguish areas of the maze which he had already visited from those that were yet

to be explored.

Using Ariadne’s thread, Theseus could have proceeded as follows to completely

explore the maze:

11

Figure 6: Theseus in the Minotaur’s Labyrinth [12]

STEP 1: Pick any door which you have not walked through before and walk

through it. Repeat step one until you can’t find any unexplored doors. Then

proceed to step 2.

STEP 2: If you find yourself in a room where you have already walked through

each door, proceed to the room you were in directly before visiting the current

room for the first time. Continue from step 1.

12

A device which acts as a record of the available and exhausted options, here

taking the form of Ariadne’s thread, is the essence of the backtracking approach [13].

3.2 Backtracking Algorithms

Backtracking gains an advantage over brute force methods by exploiting a

property of CSPs known as the domino principle: if an assignment set violates a given

constraint, then all extensions (i.e. supersets) of that assignment set will also violate the

constraint [14]. Brute force cannot exploit this property because only complete

assignment sets are considered. The backtracking approach, on the other hand, iteratively

grows assignment sets one assignment at a time until a complete solution is found. We

can organize the set of all possible assignment sets into a tree structure where the n
th

 level

of the tree contains all of the assignment sets that assign values to the first n variables of a

CSP’s variable set. This is called the variable assignment tree of a CSP [5]. An example

of a variable assignment tree is given in Figure 7. We can conceptualize the backtracking

approach as a partial depth-first search of the variable assignment tree. While depth-first

search exhaustively visits every node of a graph, backtracking algorithms seek to “prune”

the variable assignment tree by detecting, as soon as possible, those partial assignment

Figure 7: The variable assignment tree for a CSP with variable set each

variable has the domain .

13

sets that cannot be extended to form a complete solution. Recall that such assignment sets

are called no-goods. Since all CSPs fulfill the domino principle, we know that whenever

a partial assignment set is found to violate some constraint, there is no need to inspect

any extension of the violating assignment set. In terms of the variable assignment tree,

the subtree rooted at the no-good is not explored, so that the graph traversed by a

backtracking algorithm is potentially much smaller than the original variable assignment

tree. This potentially smaller graph traversed by the backtracking algorithm is called the

backtracking search tree [5]. A flow chart, Figure 8, illustrating a stack based

backtracking process is illustrated on the following page.

3.3 Applying Backtracking to the Shirokuro Puzzle CSP

To solve Shirokuro puzzles with backtracking, we must invent ways to check if a

given partial assignment set violates the constraints given in Section 2, where we gave a

representation of the Shirokuro puzzle as a CSP with variable set and constraint set .

Checking an assignment set against each of the constraints in the family,

which corresponds to the condition that no region of the Shirokuro grid may

contain 4 disks of the same color, is trivial.

Likewise, checking that an assignment set does not violate any of the

family of constraints, which correspond to initial conditions, is trivial. These constraints

are very easy to check because they all have very limited, local scopes. That is, to check

that an assignment set does not violate a constraint in the family, we only need

concern ourselves with the 4 variables in the region associated with the constraint.

On the other hand, the scope of the constraint is global in nature. The

14

difficulties associated with the global nature of the constraint are the

topic of the next section.

Figure 8: A flow chart for a stack based backtracking algorithm.

BEGIN

Push the empty

assignment set

onto STACK

Y

SUCCESS! return

STACK.TOP

and exit

“No Solution”

EXIT

does

STACK.TOP

have any extensions

that are NOT marked

“no-good”?

push one

of them

onto STACK

is STACK.TOP

a complete

assignment set?

does STACK.TOP

violate any

constraints?

N

N

Y

N

N

Y

is STACK

empty?

mark STACK.TOP

as “no-good”

and pop it

off of STACK

Y

15

CHAPTER 4

Improving Performance with Relaxed Constraints

Shirokuro requires that each pair of like-colored disks be connected via a chain of

disks which travels horizontally or vertically through disks of the same color as the pair.

In chapter 2, we defined the constraint, which consists only of those

complete assignment sets whose associated connectivity graphs have only two

components. Unfortunately, the scope of is the entire variable set .

This means that the constraint is only activated by complete

assignment sets which assign a value to every variable. Since no partial assignment set

can violate , a backtracking algorithm is not able to prune any part of

the variable assignment tree on the basis of the constraint. Fortunately,

we can derive several additional constraints from that are more local

in scope and add them to our CSP representation of Shirokuro.

4.1 Relaxed Constraints

Our strategy is to invent a constraint so that whenever a partial assignment set

violates , any assignment set that is an extension of which activates

also violates . We also require that any assignment set which

satisfies also satisfies . Such a constraint is called a relaxation of

 [15]. Relaxed constraints represent logical consequences of the

constraints that they relax and hence their use does not change the set of solutions to the

CSP. However, relaxed constraints can have smaller scopes than the constraints they

relax. For example, suppose we have the constraint defined as:

16

 {{

} | ∑

 }

where the scope of the constraint is () and

each has the domain . Then one potentially useful relaxation of

 is the constraint

 { | }

Any assignment set which violates the will violate the

 constraint because the minimum value of the sum ∑

 will be

6 + 1 + 1 + 1 + 1 = 10. Conversely, any assignment set which satisfies the

 constraint will also satisfy the constraint, since the

maximum value for would be 9 – 1 – 1 – 1 – 1 = 5. Thus, is a

relaxation of ; indeed like all relaxed constraints, it is a logical

consequence of the constraint that it relaxes.

Because relaxed constraints have smaller scopes than the constraints they relax,

they are easier to activate, and thus allow for the detection of no-goods at shallow depths

of the variable assignment tree. This helps to prune the variable assignment tree, which

results in a smaller backtracking search tree. We give several useful relaxations of the

 constraint in this chapter.

4.2 The NoX Family of Constraints

Consider the partial assignment set represented by the illustration in Figure 9. The

assignment set is characterized by a region containing one pair of black disks and

one pair of white disks. One pair of disks forms a Northwest-Southeast direction, while

the other forms a Northeast-Southwest direction (left).

17

Figure 9: Assignment sets containing an “X” pattern (left) lead to the isolation of a pair of

like-colored disks (right).

This configuration leads to the separation of a pair of disks (right). To see this,

note that any connection that is made between the two black disks invariably forms a

loop which completely encapsulates one of the white disks, making any connection

between the two white disks impossible. Therefore for every element of

 () | we define the following constraint:

 () {{

} |

}

So that () contains only those assignment sets that do not contain the problematic

“X” configuration within the region located at position (). Note that each

constraint in the family of constraints is a relaxation of the

constraint, as desired.

4.3 The BlackConnected and WhiteConnected Constraint Families

Before going further, we need to define two additional graphs that can be

associated with a given assignment set. Given an assignment set , we generate a graph

 () () which takes the following vertex and edge set. The edges of () are

constructed as follows:

 | ()

18

 { () | | | | | }

so that two variables are connected by an edge if and only if the cells they correspond to

are orthogonally adjacent and do not contain white disks (i.e. they contain black disks or

are empty). We call () the black connectivity graph for .

Figure 10: An incomplete assignment set (left) and its associated black connectivity

graph (right). Compare with Figure 5, page 7.

Note that in Figure 10 above, () has two connected components. Since each

component contains at least one black disk, there is at least one pair of black disks that

cannot be connected to each other. Ergo, if the complete assignment set ̅ extends , then

 ̅ will not satisfy the TwoComponents constraint, since the connectivity graph (̅) has

at least 3 connected components. In general, any assignment set is a no-good whenever

there is a pair of black disks which is not found within the same connected component of

the black connectivity graph (). We can define a similar graph, the white connectivity

graph (), for which similar results are found. We define the following two

constraints for every subset of as follows:

 () { |

 ()
}

19

 () { |

 ()
}

Note that since these constraints are defined for every subset of , we can use them to

identify no-goods at any level of the backtracking search tree.

4.4 The BlackEdgeConnected Family of Constraints

Our final set of constraints is obtained by exploiting an interesting property of the

boundary of the Shirokuro grid. Consider the partial assignment set illustrated in Figure

11 (left), in which 4 disks of alternating colors (●,○,●,○) are found along the edge of the

grid. Note that any connection that is drawn between the two black disks would

necessarily bisect the Shirokuro grid, thereby isolating the pair of white discs from one

another, as in Figure 11 (right). Thus, if two black disks lie along the boundary of the

grid, then they must be connected by a chain of black disks and/or empty cells, all of

which also lie along the boundary.

Figure 11: Assignment sets containing 4 disks of alternating colors along edge of the grid

(left) lead to the isolation of a pair of like-colored of disks (right).

To write this in the language of CSPs requires that we define yet another

connectivity graph. For any assignment set let the black edge connectivity graph

 ●
 () () have the following vertex and edge sets:

20

 { | () }

 { () | | | | | }

Note that the black edge connectivity graph ●
 () is a vertex-induced subgraph of the

previously defined black connectivity graph (), with the vertices restricted to those

corresponding to cells that lie on the edge of the Shirokuro grid.

If { | }, then for every subset we define the following

constraint:

 () { |

 ●
 ()

}

After some thought, it should become clear that it is not necessary to define a similar

family of constraints based on white disks; this constraint would be redundant in this

case.

21

CHAPTER 5

Further Improvements

The preceding text gives a basic theoretical foundation to those who wish to

represent the Shirokuro puzzle as a CSP and to solve the CSP using rudimentary

backtracking techniques. In this chapter, we discuss several avenues of improvement

which may enhance the performance of the Shirokuro backtracking algorithm.

5.1 Thrashing

While the backtracking approach is often times more efficient than simple brute

force methods, backtracking is vulnerable to a pathological phenomenon known as

thrashing [2]. Freuder and Mackworth define thrashing as “the repeated exploration of

failing subtrees of the backtracking search tree that are essentially identical–differing

only in assignments to variables irrelevant to the failure of the subtree [16].” Consider the

assignment set depicted in the following figure:

Figure 12: An assignment set which cannot be extended to a valid solution

It is easy for human eyes to see that any attempt to extend this partial assignment

set to form a valid solution will end in failure: the two empty cells in the upper right

corner of the grid have become isolated from the black disks in the lower right corner.

Therefore none of these empty cells may be assigned a black disk. However, assigning a

22

white disk to both of those cells results in an assignment set which violates a member of

the NoClump family of constraints.

Despite the simplicity of this argument, the simple backtracking algorithm could

visit 70 or more extensions of this assignment sets before finally marking it as a no-good.

An example of one of these large backtracking search trees, rooted at the above

assignment set, is illustrated in Figure 13, below. This is an example of thrashing;

exploring various extensions which assign values to the two leftmost columns of cells

does nothing to address the ultimate cause of the failures which eventually occur.

Thrashing is serious business: The amount of thrashing that takes place is often

the greatest factor affecting the runtime of a backtracking algorithm [16]. In section 5.2

and 5.3 we briefly discuss some of the approaches that can be used to reduce thrashing

behavior.

5.2 Variable Ordering

In Figure 8, we gave the flow chart for a simple stack based backtracking

algorithm. The reader should note that the algorithm does not specify the order in which

variables should be added to the scope of the assignment set that is being constructed. We

have extracted the relevant portion of the flow chart below for the reader’s reference.

23

Figure 13: An example of thrashing in the simple backtracking algorithm

24

Figure 14: The portion of the backtracking flow chart which shows that the order of

variables is not specified in simple backtracking algorithms. See Figure 8, page 13.

Although simple backtracking makes variable assignments in arbitrary order,

trashing behavior can sometimes be dramatically reduced by using a more careful

variable ordering [17]. The backtracking search tree illustrated below is rooted at the

same assignment set as the large thrashing example in Figure 13. However, while the

backtracking search tree in Figure 13 contains 71 partial assignment sets, the

backtracking search tree illustrated below contains only 5 partial assignment sets. This

reduction in size of the backtracking search tree is a direct result of the careful variable

ordering used in the construction of the smaller tree; as a result of this ordering, none of

the variables corresponding to the two left-most columns of cells, which are irrelevant to

the ultimate cause of the subtree’s failure, are ever assigned any values.

Advanced backtracking algorithms make use of a powerful technique called

dynamic variable ordering (DVO). In DVO, the order in which variable assignments are

Y

does

STACK.TOP

have any extensions

that are NOT marked

“no-good”?

push one

of them

onto STACK
N

mark STACK.TOP

as “no-good”

and pop it

off of STACK

25

Figure 15: Carefully ordering variable assignments can dramatically reduce

thrashing. Compare to Figure 13, page 23.

made is calculated during the search itself, so that each branch of the backtracking search

tree can potentially have a different variable ordering. The general strategy is to assign

values to variables that are likely to result in failure as soon as possible in order to

maximize pruning of the variable assignment tree. The details of how this strategy can be

implemented are beyond the scope of this thesis. However, because several of the

Shirokuro constraints are defined in terms of graph connectivity, we believe that

identifying the articulation points (nodes of a connected graph that disconnect the graph

when they are removed) of a graph will play a crucial role in the formulation of effective

DVO approaches to Shirokuro. In Figure 16, we provide an example in which the

variable associated with the articulation point of the black connectivity graph (marked

with a red star) is the first to undergo assignment. Note that this results in the immediate

discovery of a no-good, as desired. Articulation points can be discovered via a clever

linear time algorithm based on spanning trees and depth first search. See [18] for a

thorough treatment of the subject. See also [19] and [20] for a more accessible

file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Tar72
file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Thu92
file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Wei97

26

Figure 16: Articulation points in dynamic variable ordering

explanation. Information on separation pairs, which may also be relevant, can be found in

[21].

5.3 Forward Checking

Forward checking (FC) is a simple constraint propagation [22] technique which can

further reduce thrashing behavior. The idea behind FC is simple to explain. Suppose

ouour backtracking algorithm is about to extend the assignment set . Before doing so,

we make a list of all the unassigned variables, i.e. the set of variables that are not in the

scope of i.e. the compliment of (), which we denote (). Now, for each

variable (), we examine the set () and temporarily remove from it all

file:///C:/Users/Bruce/Downloads/KE_reviewed_12-4_Benjamin%20Bush%20electronic%20thesis%20dec%204%202011.docx%23Kam05

27

values that would result in a constraint violation if used to extend the assignment set

(these domain values are restored if and when the backtracking algorithm discovers that

 is a no-good). Of course, each of variables in the Shirokuro CSP has the domain ,

so that removing a value from the domain of a Shirokuro variable is equivalent to

assigning a value to that variable. Therefore Shirokuro FC causes several assignments to

be made in rapid succession: the first assignment in each group of assignments is

exploratory; this first assignment is then followed by a series of supplementary

assignments that are “forced” into existence by the first assignment.

The figure below contains a few examples of how forward checking would work

in a Shirokuro backtracking algorithm. For clarity, in each example we evaluate forward

checking on the basis of only one family of constraints.

28

constraint family basis

for FC
assignment set before FC assignment set after FC

Figure 17: The effects of forward checking on the basis of various constraint families

29

CHAPTER 6

Future Work

In the following sections we present several lines of inquiry which were

superficially explored but not conclusively investigated. We document these explorations

here so that they may serve as the basis for further investigations, both by the author and

by the readers of this thesis.

6.1 Spanning Tree Maintenance

Verifying the constraints within the and

families require that graphs be constructed so that their connected components can be

counted. Moreover, the Dynamic Variable Ordering approach we discussed above

requires that articulation points be identified at every step of the backtracking process.

These tasks rely on using depth first search to construct spanning trees which span the

black and white connectivity graphs. Although Tarjan has shown that the building of

spanning trees and the identification of articulation points can be achieved in linear time

[18], reconstructing these spanning trees from scratch at every step of backtracking

process might include many redundant steps. It would be more desirable to use dynamic

algorithms which maintain, rather than rebuild, their data structures, so that a small

change in graph structure would correspond to a small “updating” computation. Dynamic

algorithms which allow for vertex and edge insertions are described in [23]. However, we

require an algorithm which allows for vertex and edge deletions as well. A large number

of references to dynamic graph algorithms can be found in [21]. An appropriate dynamic

algorithm for Shirokuro may well lie among them.

30

6.2 Solving The Shirokuro CSP With Evolutionary Algorithms

One approach to solving Constraint Satisfaction Problems is to recast the CSP as

an optimization problem that can be solved through the use of biologically inspired

evolutionary algorithms (EAs). A brief description of a typical EA is given here. A more

extensive explanation of EAs is given [24].

The classical optimization methods typically taught in graduate level courses on

mathematical optimization are relatively efficient at solving “linear, quadratic, strongly

convex, unimodal, and separable” problems [25]. EAs, on the other hand, were developed

with robustness (broad applicability) in mind. They are often used to optimize functions

that are “discontinuous, nondifferentiable, multimodal, noisy, and otherwise

unconventional” [25].

EAs were inspired by the process of Darwinian natural selection observed in the

biological world. According to Darwinism, populations of organisms adapt to the

environment through the mechanisms of selection, mutation, sexual recombination and

sexual reproduction. In EAs, a simulation of this process is set up so that a population of

candidate solutions (also called “individuals”) adapt to a virtual environment in which

natural selection is replaced by an artificial selection operator. The latter makes use of

fitness data to probabilistically eliminate the worst individuals. New individuals are then

generated from the surviving individuals by means of the mutation operators and/or

recombination operators. An example flow chart for a simple evolutionary algorithm is

illustrated below:

For the purpose of Shirokuro, the fitness function might reflect, for example, the

number of constraints that are violated by any given individual, so that individuals which

31

Figure 18: Flow chart for a typical evolutionary algorithm.

violate fewer constraints are given a reproductive advantage. The problem with this

approach is that much information is lost when all of the information regarding constraint

violations is aggregated into a single number. Another problem is that the traditional

mutation and recombination operators found in most EA operators are “blind” to

constraints, meaning that there is no guarantee that the offspring will satisfy the same

constraints as its parents. Techniques for dealing with these issues are given in [26].

6.3 The Computational Complexity of Shirokuro

Understanding the complexity of the computational problem one is attempting to

solve is important because such an understanding allows one to form reasonable goals

and expectations regarding the efficiency of any algorithm designed to solve the problem

[27]. While the basic concepts of computational complexity theory are beyond the scope

of this thesis, an accessible introduction to the topic is provided in [28]. A more

comprehensive treatment can be found in [27].

32

To express Shirokuro as a decision problem, we can ask the question “does a

given instance of Shirokuro have a solution?” It is relatively trivial to show that the

Shirokuro decision problem lies in NP (Non-deterministic Polynomial time). All that is

needed is a polynomial time algorithm that can verify a given candidate solution. Since

depth first search runs in linear time, this is a simple task indeed.

Other than the fact that Shirokuro is a member of NP, we know nothing of the

computational complexity of Shirokuro. While proofs exist that related puzzles, such as

Sudoku, are NPC (NP-Complete) [29], such a proof that Shirokuro is NPC has eluded us.

Assuming that P (Polynomial time) is not equal to NP, the possibility exists that

Shirokuro exists neither in P nor in NPC, but instead lies in NPI (NP-Intermediate, see

[30]). NPI is a sad place for a decision problem to find itself; proving that a problem lies

in NPI would indirectly prove that P is not equal to NP. Thus proving that Shirokuro lies

in NPI is at least as hard as proving that that P is not equal to NP, which is seen by many

as the most important problem in computer science; indeed we may never know for sure.

Thus if Shirokuro lies in NPI then its complexity might remain unknown forever.

Nevertheless, it is the opinion of the author that the complexity of Shirokuro is worth

researching. However, we must warn against working on this particular problem under

any kind of deadline; if Shirokuro is in NPI, then even a lifetime may not provide enough

time.

33

CHAPTER 7

Conclusion

In this thesis we provided a theoretical foundation for solving Shirokuro puzzles

using backtracking techniques. This included a description of Shirokuro as a constraint

satisfaction problem (CSP), a description of backtracking algorithms, and an overview of

several performance enhancing techniques, such as relaxed constraints, variable ordering

and forward checking. Finally we outline several potential avenues of future research,

some of which could lead to more efficient Shirokuro backtracking algorithms, and some

of which are unrelated to the backtracking approach.

34

References

[1] Helmut Simonis, "Sudoku as a constraint problem," in CP Workshop on Modeling

and Reformulating, Sitges (Barcelona), Spain, 2005, pp. 13-27.

[2] Vipin Kumar, "Algorithms for Constraint-Satisfaction Problems: A Survey," AI

Magazine, vol. 13, no. 1, pp. 32-44, 1992.

[3] Edward Tsang, "A Glimpse of Constraint Satisfaction," Artificial Intelligence

Review, vol. 13, no. 3, pp. 215-227, June 1999.

[4] Donald E Knuth, "Estimating the Efficiency of Backtrack Programs," Mathematics

of Computation, vol. 29, no. 129, pp. 121-136, January 1975.

[5] Fahiem Bacchus. A Uniform View of Backtracking. [Online].

http://www.cs.toronto.edu/~fbacchus/Papers/uniform-backtracking.pdf

[6] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach.:

Prentice Hall, 2010.

[7] Djordje M Kadijevic, "Backtracking in Basic: How to Escape from the Labyinth,"

Teaching Mathematics and its Applications, vol. 10, no. 2, pp. 64-73, 1991.

[8] Loren P Meissner and Elliott Irving Organick, Fortran 77: Featuring Structured

Programming, 3rd ed.: Addison-Wesley, 1980.

[9] Eric S Roberts, Programming Abstractions in C: A Second Course in Computer

Science.: Addison Wesley, 1997.

35

[10] Philip Nicholas Johnson-Laird, The Computer and the Mind: An Introduction to

Cognitive Science.: Harvard University Press, 1989.

[11] Micheal Mepham. (2005) Sudoku.org.uk. [Online].

http://www.sudoku.org.uk/PDF/solving_sudoku.pdf

[12] Sir Edward Burne-Jones. Pre-Raphaelite Online Resource. [Online].

http://www.preraphaelites.org/the-collection/1927p594/tile-design-theseus-and-the-

minotaur-in-the-labyrinth/

[13] Wikipedia contributors. Wikipedia, The Free Encyclopedia. [Online].

http://en.wikipedia.org/wiki/Ariadne's_thread_(logic)

[14] Gabriel Valiente, Algorithms on Trees and Graphs. New York: Springer, 2002.

[15] Willem-Jan van Hoeve and Irit Katriel, "Global Constraints," in Handbook of

Constraint Programming, Francesca Rossi, Peter van Beek, and Toby Walsh, Eds.

New York: Elsevier, 2006, pp. 169-208.

[16] Eugene C Freuder and Alan K Mackworth, "Constraint Satisfaction: An Emerging

Paradigm," in Handbook of Constraint Programming, Francesca Rossi, Peter van

Beek, and Toby Walsh, Eds.: Elsevier, 2006, ch. 2, pp. 13-23.

[17] Fahiem Bacchus and Paul van Run, "Dynamic Variable Ordering in CSPs," in

Principles and Practice of Constraints Programming (CP-95), Cassis, France, 1995,

pp. 258-275.

36

[18] Robert Endre Tarjan, "Depth-First Search and Linear Graph Algorithms," SIAM

Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972.

[19] Krishnaiyan Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms.:

John Wiley and Sons, 1992.

[20] Mark Allen Weiss, Data Structures and Algorithm Analysis in C.: Addison-Wesley,

1997.

[21] F Kammer and H Taubig, "Connectivity," in Network Analysis: Methodological

Foundations, Ulrik Brandes and Thomas Erlebach, Eds.: Springer, 2005, ch. 7, pp.

143-177.

[22] Christian Bessiere, "Constraint Propagation," in Handbook of Constraint

Programming, Francesca Rossi, Peter van Beek, and Toby Walsh, Eds., 2006, ch. 3,

pp. 29-84.

[23] Jeffery Westbrook and Robert E Tarjan, "Maintaining Bridge-Connected and

Biconnected Components On-Line," Algorithmica, vol. 7, pp. 433-464, 1992.

[24] David B Fogel, Evolutionary computation: toward a new philosophy of machine

intelligence.: John Wiley and Sons, 2006.

[25] Hans-Paul Schwefel, "Anvantages (and disadvantages) of evolutionary computation

over other approaches," in Evolutionary Computation: Basic algorithms and

operators, David B Fogel, Thomas Bäck, and Zbigniew Michalewicz, Eds. New

37

York: Taylor and Francis Group, LLC, 2000, ch. 3, pp. 20-22.

[26] A E Eiben, "Evolutionary Algorithms and Constraint Satisfaction: Definitions,

Survey, Methodology and Research Directions," in Theoretical Aspects of

Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers, Eds.:

Springer, 2001, pp. 13-30.

[27] Michael R Garey and David S Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness.: W. H. Freeman and Company, 1979.

[28] Michael Sipser, Introduction to the Theory of Computation.: Thomson Course

Technology, 2006.

[29] G Kendall, A Parkes, and K Spoerer, "A Survey of NP-Complete Puzzles," ICGA

Journal, vol. 31, no. 1, pp. 13-34, 2008.

[30] Richard E Ladner, "On the Structure of Polynomial Time Reducibility," Journal of

the ACM, vol. 22, no. 1, January 1976.

[31] Ian P Gent, Karen E Petrie, and Jean-François Puget, "Symmetry in Constraint

Programming," in Handbook of Constraint Programming, Francesca Rossi, Peter

van Beek, and Toby Walsh, Eds. New York: Elsevier, 2006, pp. 329-376.

38

APPENDIX:

Internet Resources

A worksheet from Spirit Magazine containing 4 easy Shirokuro puzzles:

http://cs.calstatela.edu/wiki/images/4/46/ShirokuroSpirit.pdf

A poster on Shirokuro by Benjamin James Bush:

http://cs.calstatela.edu/wiki/images/d/de/Shirokuro.pdf

A poster on Shirokuro by Alexandre Lomovtsev:

http://cs.calstatela.edu/wiki/images/c/ce/Shirokuro_Solver.pdf

Shirokuro Solver Project page by Alexandre Lomovtsev:

http://cs.calstatela.edu/wiki/index.php/Courses/CS_491ab/Winter_2009/

Alexandre_Lomovtsev

A Python package for constraint satisfaction:

http://labix.org/python-constraint

A Python package for networks and graphs:

http://networkx.lanl.gov/

A Python package for evolutionary algorithms:

http://pyevolve.sourceforge.net/

Josh Buhler’s Shirokuro Puzzle App for Windows Phone 7:

http://fogodev.com/post/3184856247/shirokuro-is-live

