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ABSTRACT 

Hilbert Space Applications in Integral Equations 

By 

Misha M. Avetisyan 

The purpose of this paper is to describe some applications of the theory of Hilbert 

spaces to integral equations. The main goal is to illustrate possible applications of 

techniques developed in theory and to include the standard classification of the important 

integral equations (Volterra, Fredholm, Integro-Differential, Singular and Abel’s integral 

equations) and their solvability. The most available methods of the subject are abstract 

and most of them are based on comprehensive theories such as topological methods of 

functional analysis. This paper uses some recent developments in the solution of integral 

equations without using the extensive mathematical theory and leaves out abstract and 

comprehensive methods. The main goal of this paper is to provide both a systematic 

exposition of the basic ideas and results of Hilbert space theory and functional analysis, 

and an introduction to various methods of solution of integral equations. Several 

examples with solutions are introduced in each section.  
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CHAPTER 1 

Historical Introduction 

 We began with a historical survey that the name integral equation [10], [13], [18] 

for any equation in which the unknown function ϕ(𝑥)  is under an integral sign was 

introduced by du Bois-Reymond in 1888. In 1782 Laplace used the integral transform                                                             

                                                     𝑓(𝑥) = � 𝑒−𝑥𝑠ϕ(𝑠)𝑑𝑠                                                     (1.1)
∞

0
 

to solve differential equations. In 1822 Fourier found the formulas                                           

                                                  𝑓(𝑥) = �2
𝜋
� sin 𝑥𝑠 ϕ(𝑠)𝑑𝑠,
∞

0
                                            (1.2) 

                                                                                                                         

                                                 ϕ(𝑠) = �2
𝜋
� sin 𝑥𝑠 𝑓(𝑥)𝑑𝑥
∞

0
                                             (1.3) 

and                                                                                                          

                                                                          

                                                𝑓(𝑥) = �2
𝜋
� cos 𝑥𝑠 ϕ(𝑠)𝑑𝑠
∞

0
                                              (1.4) 

                                                 ϕ(𝑠) = �2
𝜋
� cos 𝑥𝑠 𝑓(𝑥)𝑑𝑥
∞

0
                                             (1.5) 

 

The integral equations (1.2) and (1.4) can be solved in terms of the known 

function 𝑓(𝑥) by (1.3) and (1.5). 

In 1826 Abel solved the integral equation, having the form 
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                                                  𝑓(𝑥) = � (𝑥 − 𝑠)−∝ϕ(𝑠)𝑑𝑠,                                             (1.6)
𝑥

𝑎
 

where  𝑓(𝑥) is a continuous function satisfying 𝑓(𝑎) = 0, and  0 < ∝< 1. 

  An integral equation of the type                                                                   

                                          ϕ(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥 − 𝑠)ϕ(𝑠)𝑑𝑠
𝑥

0
                                      (1.7) 

in which the unknown function ϕ(𝑥) occurs outside and within the integral and the 

variable 𝑥 appears as upper limit of the integral, was obtained by Poisson in 1826 the 

theory of magnetism. He solved it by expanding  ϕ(𝑠) in powers of the parameter 𝜆  

without proving the convergence of this series. In 1837 Liouville proved the convergence 

of such a series.  

 The determination of the function 𝛹 having values over certain boundary surface 

S and satisfying Laplace’s equation ∇2 𝛹 = 0 within the region enclosed by S was shown 

by Neumann in 1870 to be equivalent to the solution of an integral equation. This is 

similar to the procedure used by Poisson and Liouville, and leads to good method of 

successive approximations. 

 In 1896 Volterra gave the first general solution of the class of linear integral 

equations bearing his name with the variable 𝑥 appearing as the upper limit of the 

integral. 

A more general class of linear integral equations having the form                        

                                           ϕ(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑠)ϕ(𝑠)𝑑𝑠                                            (1.8)
𝑏

𝑎
 

which includes Volterra’s class of integral equations as the special case given by 

𝐾(𝑥, 𝑠) = 0 for 𝑠 > 𝑥, was first discussed by Fredholm in 1900. He employed a similar 
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approach to that introduced by Volterra in 1884. In this method the Fredholm equation 

(1.8) is regarded as the limiting form as 𝑛 → ∞ of a set of 𝑛 linear algebraic equations                                                                                      

                     Φ(𝑥𝑟) = 𝑓(𝑥𝑟) + �𝐾(𝑥𝑟 , 𝑥𝑠)ϕ(𝑥𝑠)δ𝑛

𝑛

𝑠=1

    (𝑟 = 1, … … ,𝑛)                     (1.9) 

 where  δ𝑛 = (𝑏 − 𝑎)/𝑛  and   𝑥𝑟  = 𝑎 + 𝑟δ𝑛  . The solution of these equations can be 

obtained and Fredholm verified by direct substitution in the integral equation (1.8) that 

his limiting formula for 𝑛 → ∞ gave the true solution. 

   In the remaining chapters of this paper we shall be giving a discussion of the 

general theory of linear integral equations as developed by Volterra, Fredholm, Hilbert, 

and Schmidt. For this purpose we need to introduce the concept of a Hilbert Space [10], 

[17], [22]. This is a good generalization of ordinary three-dimensional Euclidian space to 

a linear vector space of infinite dimensions which, for the subject of integral equations, is 

chosen to be the complete linear space composed of square integrable functions having a 

distance property defined in terms of an inner product. The whole theory was initiated by 

the work of D. Hilbert (1912) on integral equations. 

 To explain the meanings of these terms we consider Euclidian space first then the 

Hilbert space of sequences and function space.   
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CHAPTER 2 

Hilbert Space 

2.1 Euclidian Space 

In three-dimensional Euclidian space each point is represented by a coordinates 

(𝑥1, 𝑥2, 𝑥3) forming the components of the position vector 𝒙. The vector 𝜆𝒙 has 

coordinates (𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3) and the vector sum 𝒙 + 𝐲 of two vectors 𝒙, 𝐲 has coordinates 

(𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3). These obey the properties of a linear vector space. 

 The scalar product of two vectors 𝒙, 𝐲 is defined as 

                                         (𝒙, 𝐲)  = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3.                                            (2.1.1) 

The vectors are orthogonal, at right angles, if (𝒙,𝐲) = 0. 

     We have 

                                              (𝒙,𝒙)  = 𝑥12 + 𝑥22 + 𝑥32 ≥ 0,   

where (𝒙,𝒙) = 0 if and only if 𝒙 is the zero vector 0 with coordinates (0,0,0). 

The magnitude or norm ‖𝒙‖ of a vector 𝒙 is given by 

                                 ‖𝒙‖ = �(𝒙,𝒙) = �𝑥12 + 𝑥22 + 𝑥32 < ∞.                                     (2.1.2) 

The vector is said to be normalized if ‖𝒙‖ = 1. 

           The distance between two points specified by the vectors 𝒙,𝐲 is given by ‖𝒙 − 𝒚‖. 

Since the length of a side of a triangle is less than, or equal to the sum of the lengths of 

the other two sides, we have the triangle inequality. 

                                                 ‖𝒙 − 𝒚‖ ≤ ‖𝐱‖ + ‖𝒚‖.                                                 (2.1.3) 

Suppose that  𝒙, 𝒚, 𝒛 are linearly independent vectors so that  𝜇 𝒙 +  𝛾 𝒚 +   𝛽𝒛  

is not the zero vector 0 except when  𝜇 =  𝛾 =   𝛽 = 0. We can use them to construct an 
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orthogonal and normalized, i.e. orthonormal set of three vectors  𝒆1, 𝒆2, 𝒆3. This vector is 

normalized, 𝒆𝟏 = 𝒙
‖𝒙‖

   then          

                                                 𝒚𝟏 = 𝒚 − (𝒚,𝒆𝟏)𝒆𝟏   

is orthogonal to 𝒆𝟏 and 𝒆𝟐 = 𝒚𝟏/‖𝒚𝟏‖  is normalized. Further 

𝒛𝟏 = 𝒛 − (𝒛, 𝒆𝟏)𝒆𝟏 − (𝒛, 𝒆𝟐)𝒆𝟐 

is orthogonal to 𝒆𝟏 and 𝒆𝟐 while 𝒆𝟑 = 𝒛𝟏/‖𝒛𝟏‖ is also normalized. 

The three orthogonal unit vectors 𝑒1 𝑒2 𝑒3 are said to form a basis since any 

vector a of the three-dimensional space can be expressed as the linear combination  

𝒂 = (𝒂, 𝒆𝟏)𝒆𝟏 + (𝒂, 𝒆𝟐)𝒆𝟐 + (𝒂,𝒆𝟑)𝒆𝟑. 

The foregoing vector algebra can be extended to an n-dimensional space whose 

points are specified by an ordered set of n complex numbers (𝑥1, 𝑥2, … … , 𝑥𝑛) denoted by 

the vector 𝒙. The inner product of two vectors  𝒙, 𝐲 is now defined as 

                                                (𝒙, 𝐲) = �𝒙𝒓,𝒚𝒓���
𝒏

𝒓=𝟏

= (𝒚,𝐱)�������                                                  (2.1.4) 

 while the norm of the vector  𝒙 is given by              

                                                ‖𝒙‖ = �(𝒙,𝒙) = ��|𝑥𝑟|2
𝑛

𝑟=1

.                                                (2.1.5) 

An orthonormal set of n vectors 𝒆𝟏, 𝒆𝟐, … , 𝒆𝒏 form a basis of the n-dimensional 

space, and an arbitrary vector a in the space can be expressed as the linear combination            

𝒂 = �(𝒂, 𝒆𝒓)𝒆𝒓

𝑛

𝑟=1

 

where the 𝑎𝑟 = (𝒂,𝒆𝒓)(r = 1, … , n) are the components of the vector a with respect to 

the basis vectors. The only vector which is orthogonal to every vector of the basis is the 
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zero vectors 0 and so the orthonormal set 𝒆𝟏, 𝒆𝟐, … , 𝒆𝒏 is said to span the n-dimensional 

space. If we take 𝒆𝟏 = (1,0,0, … ,0), 𝒆𝟐 = (0,1,0, … ,0), … , 𝒆𝒏 = (0,0,0, … ,1) we see that 

a is the vector specified by (𝑎1,𝑎2, … … , 𝑎𝑛), where  𝑎𝑟 = (𝒂, 𝒆𝒓). 

2.2 Hilbert Space of Sequences  

By a natural generalization of a finite dimensional space, we can consider an 

infinite dimensional space [10], [13] and [14] whose points are represented by vectors 𝒙 

having components, or coordinates, given by the infinite sequence of complex numbers 

{𝑥𝑟} = (𝑥1, 𝑥2, … 𝑥𝑟 , …) satisfying  

                                                                  �|𝑥𝑟|2 < ∞.
∞

𝑟=1

                                                         (2.2.1) 

The scalar product or inner product of two vectors 𝒙 and 𝐲 given by                    

                                                 (𝒙,𝐲) = �𝒙𝒓,𝒚𝒓���
∞

𝒓=𝟏

= (𝒚,𝐱)�������.                                                 (2.2.2) 

Then we have   0 ≤ (𝒙,𝐱)  < ∞, where (𝒙,𝐱) = 0 if and only if 𝒙 is the zero vector 0 

whose components all vanish. 

Also we define the norm ‖𝒙‖ of a vector  𝒙 by the formula                                                                                       

                                            ‖𝒙‖ = �(𝒙,𝒙) = ��|𝑥𝑟|2 
∞

𝑟=1

< ∞.                                          (2.2.3) 

 Thus ‖𝒙‖ = 0 if and only if  𝒙 = 0.   

Further we let 𝜆𝒙 be the vector with components {𝜆𝑥𝑟 } so that ‖𝜆𝒙‖ = |𝜆|‖𝒙‖, 

and let the sum 𝒙 + 𝒚 of two vectors 𝒙,𝒚 be the vector having components {𝑥𝑟 + 𝑦𝑟} as 

in the case of a finite dimensional space. 
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Now, by the Cauchy inequality                                                                                       

  

                                   �|𝑥𝑟||𝑦𝑟|
∞

𝑟=1

≤ ���|𝑥𝑟|2
∞

𝑟=1

���|𝑦𝑟|2
∞

𝑟=1

�                                          (2.2.4) 

and the inequality                                                                                                                                      

                                                     ��𝑥𝑟𝑦�𝑟

∞

𝑟=1

� ≤�|𝑥𝑟|
∞

𝑟=1

|𝑦𝑟|,                                                  (2.2.5) 

we obtain Schwarz’s inequality 

                                                   |(𝒙,𝒚)| ≤ ‖𝒙‖‖𝒚‖.                                                     (2.2.6) 

This is the generalization to infinite sequences of the corresponding result in 

three-dimensional Euclidian space which follows from (𝒙,𝒚) = ‖𝒙‖‖𝒚‖ cos𝛼  where 𝛼 

is the angle between the vectors 𝒙 and 𝒚. 

     Hence 

‖𝒙 + 𝒚‖2 = �|𝑥𝑟 + 𝑦𝑟|2
∞

𝑟=1

 

                                                                  = �|𝑥𝑟|2 + �|𝑦𝑟|2 + �(𝑥𝑟�⃐�𝑟 + �̅�𝑟𝑦𝑟)
∞

𝑟=1

∞

𝑟=1

∞

𝑟=1

 

                                ≤ (‖𝒙‖ + ‖𝒚‖)2 < ∞.       

This shows that the sum  𝒙 + 𝒚  satisfies the condition 

                                                             �|𝑥𝑟 + 𝑦𝑟|2 < ∞
∞

𝑟=1

                                                     (2.2.7) 

and also yields the triangle inequality   

                                                      ‖𝒙 + 𝒚‖ ≤ ‖𝒙‖ + ‖𝒚‖                                                      (2.2.8)       
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 which can be rewritten in the form (2.1.3) by reversing the sign of y, as 

                                                     ‖𝒙 − 𝒚‖ ≤ ‖𝒙‖ + ‖𝒚‖. 

The real number  

                                    𝑑(𝒙,𝒚) = ‖𝒙 − 𝒚‖ = ��|𝑥𝑟 − 𝑦𝑟|2
∞

𝑟=1

                                            (2.2.9) 

represents the distance between two points characterized by vectors x and y. Clearly ‖𝒙‖ 

is the distance of the point 𝒙 from the origin given by the zero vector 0. 

A sequence of vectors {𝒙𝑛} converges strongly or “in norm” to a limit vector 𝒙 if, 

given any 𝜀 > 0, there exists 𝑁 such that for 𝑛 > 𝑁 we have ‖𝒙𝑛 − 𝒙‖ < 𝜀. Strong 

convergence is denoted by 𝒙𝑛 → 𝒙.  

If 𝒙𝑛 → 𝒙 we have, using the triangle inequality, 

‖𝒙𝑛 − 𝒙𝑚‖ = ‖𝒙𝑛 − 𝒙 + 𝒙 − 𝒙𝑚‖ 

                                                                   ≤ ‖𝒙𝑛 − 𝒙‖ + ‖𝒙𝑚 − 𝒙‖ < 𝜀   for large 𝑛, 𝑚. 

A sequence {𝒙𝑛} satisfying ‖𝒙𝑛 − 𝒙𝑚‖ < 𝜀 for large 𝑛 and 𝑚 is known as a Cauchy 

sequence. A sequence of points {𝒙𝑛} in a Hilbert space 𝑯 is said to converge weakly to a 

point 𝒙 in 𝑯 if 

(𝒙𝑛,𝒚)  → (𝒙,𝒚) 

for all 𝒚 in 𝑯. Here,  (∙,∙) is understood to be the inner product on the Hilbert space.  

Weak convergence is in contrast to strong convergence or convergence in the 

norm, which is defined by  ‖𝒙𝑛 − 𝒙‖ → 0 where ‖𝒙‖ = �(𝒙,𝒙)  is the norm of 𝒙. The 

notation of weak convergence defines a topology on 𝑯 and this is called the weak 

topology on 𝑯. In other words, the weak topology is the topology generated by the 
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bounded functions on 𝑯. It follows from Schwarz inequality that the weak topology is 

weaker than the norm topology. Therefore convergence in norm implies weak 

convergence while the converse is not true in general. However, if for each 𝒚  

(𝒙𝑛,𝒚)  → (𝒙,𝒚)  and ‖𝒙𝑛‖  → 𝒙, then we have  ‖𝒙𝑛 − 𝒙‖  → 0  as 𝑛 → ∞. 

On the level of operators, a bounded operator 𝑇 is also continuous in the weak topology. 

If 𝒙𝑛  → 𝒙  weakly, then for all 𝒚  

(𝑻𝒙𝑛,𝒚)  = (𝒙𝑛,𝑻∗𝒚)  → (𝒙,𝑻∗𝒚)  = (𝑻𝒙,𝒚). 

Now we consider a sequence 𝑒𝑛 which was constructed to be orthonormal, that is, 

(𝑒𝑛, 𝑒𝑚) = 𝛿𝑚𝑛. 

Where 𝛿𝑚𝑛 equals one if 𝑚 = 𝑛 and zero otherwise. We claim that if the sequence is 

infinite, then it converges weakly to zero. A simple proof is as follows. For 𝑥 ∈ 𝑯, we 

have 

�|(𝑒𝑛,𝑥)|2 ≤ ‖𝑥‖2
𝑛

         (𝐵𝑒𝑠𝑠𝑒𝑙′𝑠 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦), 

where equality holds when {𝑒𝑛} is a Hilbert space basis. Therefore 

|(𝑒𝑛,𝑥)|2  → 0  𝑖. 𝑒. (𝑒𝑛, 𝑥)  → 0. 

Uniform Bounded Theorem (UBT) for Hilbert space: If  {𝑦𝑛}𝑛=1∞  is a sequence of 

vectors in 𝑯, such that the numerical sequence  𝑡𝑛 = (𝑥, 𝑦𝑛)  is bounded for each 𝑥 in 𝑯. 

The sequence {𝑦𝑛}𝑛=1∞  is bounded in norm. 

UBT for Hilbert space: If there are for each 𝑥 in 𝑯 constants 𝑀𝑥 such that 

|(𝑥, 𝑦𝑛)| ≤ 𝑀𝑥  , ∀𝑛 

then there is a single constant 𝐵 such that 

‖𝑦𝑛‖ ≤ 𝐵       𝑎𝑙𝑙 𝑛. 
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Corollary: weakly convergent sequence is bounded. 

If  𝑦𝑛
𝑤
→ 𝑦  then  (𝑥,𝑦𝑛) → (𝑥,𝑦)    ∀𝑥,  this is a number and any convergent sequence of 

numbers is bounded. So, the sequence {(𝑥,𝑦𝑛)} is bounded in 𝑭 for each 𝑥. By UBT the 

sequence {𝑦𝑛} is bounded in norm. 

Now we demonstrate that every Cauchy sequence has a limit vector 𝒙 in the 

space. Suppose that 𝒆𝟏 = (1,0,0, … ), 𝒆𝟐 = (0,1,0, … ), … are vectors in the infinite 

dimensional space. They form a basis which spans the space, and the arbitrary vector 

𝒂 = (𝑎1,𝑎2, … 𝑎𝑟 … )  can be expressed as  

𝒂 = �𝑎𝑟𝒆𝑟

∞

𝑟=1

 

where  𝑎𝑟 = (𝒂, 𝒆𝒓) and 𝒆𝑟 is the 𝑟th unit vector satisfying ‖𝒆𝑟‖ = 1.  

Then we have, using Schwarz’s inequality, 

|(𝒙𝑛, 𝒆𝑟) − (𝒙𝑚, 𝒆𝑟)| = |(𝒙𝑛 − 𝒙𝑚, 𝒆𝑟)| 

                                       ≤ ‖𝒙𝑛 − 𝒙𝑚‖ < 𝜀 

for large 𝑛 and 𝑚. It follows that the sequence of numbers (𝒙𝑛, 𝒆𝑟) = 𝑥𝑟(𝑛) is a Cauchy 

sequence and approaches a limiting value 𝑥𝑟(𝑟 = 1,2, … ) as 𝑛 → ∞. For large 𝑛,𝑚 we 

have 

‖𝒙𝑛 − 𝒙𝑚‖ = ��|𝑥𝑟(𝑛) − 𝑥𝑟(𝑚)|2
∞

𝑟=1

< 𝜀 

and so for every 𝑘 

��|𝑥𝑟(𝑛) − 𝑥𝑟(𝑚)|2
𝑘

𝑟=1

< 𝜀.   
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Hence, in the limit as 𝑚 → ∞ we obtain 

��|𝑥𝑟(𝑛) − 𝑥𝑟|2
𝑘

𝑟=1

< 𝜀 

and since this is true for every 𝑘 we get 

‖𝒙𝑛 − 𝒙‖ = ��|𝑥𝑟(𝑛) − 𝑥𝑟|2
∞

𝑟=1

< 𝜀. 

But 

��|𝑥𝑟|2
∞

𝑟=1

= ‖𝒙‖ = ‖(𝒙 − 𝒙𝒏) + 𝒙𝒏‖ 

      ≤ ‖𝒙 − 𝒙𝒏‖ + ‖𝒙𝒏‖ 

< 𝜀 + ‖𝒙𝒏‖ 

and so we have 

�|𝑥𝑟|2 < ∞
∞

𝑟=1

. 

Thus 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑟 … ) belongs to the space and 𝒙𝒏 → 𝒙 as 𝑛 → ∞. A space 

in which 𝒙𝒏 → 𝒙 when {𝒙𝒏} is a Cauchy sequence is called complete. The space of 

sequences described above is an example of a Hilbert space. 

2.3 Function Space 

We consider the function space [10], [13] composed of all continuous complex 

functions 𝑓(𝑥) of a real variable 𝑥, defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏, which are square 

integrable and thus satisfy the condition 
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                                                    � |𝑓(𝑥)|2𝑑𝑥 < ∞.                                                              (2.3.1)
𝑏

𝑎
 

The inner product of two functions 𝑓(𝑥) and 𝑔(𝑥) given by 

                                                 (𝑓,𝑔) = � 𝑓(𝑥)𝑔(𝑥)������𝑑𝑥,                                                      (2.3.2)
𝑏

𝑎
 

we define the norm of the function 𝑓(𝑥)  as 

                                                           ‖𝑓‖ = �(𝑓,𝑓).                                                              (2.3.3)   

Next we establish the important inequality named after Schwarz.  

We have 

                                           � �𝑓(𝑥) −
(𝑓,𝑔)
(𝑔,𝑔)𝑔(𝑥)�

2

𝑑𝑥 ≥ 0
𝑏

𝑎
                                            (2.3.4) 

so that 

(𝑓,𝑓) − 2
|(𝑓,𝑔)|2

(𝑔,𝑔) +
|(𝑓,𝑔)|2

(𝑔,𝑔) ≥ 0 

i.e. 

                                                     (𝑓,𝑓)(𝑔,𝑔) ≥ |(𝑓,𝑔)|2.                                                    (2.3.5) 

Hence 

                                                          ‖𝑓‖‖𝑔‖ ≥ |(𝑓,𝑔)|                                                        (2.3.6) 

this is Schwarz’s inequality for square integrable functions. 

 Also 

(‖𝑓‖ + ‖𝑔‖)2 = ‖𝑓‖2 + ‖𝑔‖2 + 2‖𝑓‖‖𝑔‖ 

                           ≥ (𝑓,𝑓) + (𝑔,𝑔) + 2|(𝑓,𝑔)|  

by Schwarz’s inequality. But 

2|(𝑓,𝑔)| ≥ (𝑓,𝑔) + (𝑓,𝑔)������� 



 

13 
 

and so 

(‖𝑓‖ + ‖𝑔‖)2 ≥ (𝑓,𝑓) + (𝑔,𝑔) + (𝑓,𝑔) + (𝑔,𝑓) 

= (𝑓 + 𝑔, 𝑓 + 𝑔). 

Hence we have 

                                                   ‖𝑓‖ + ‖𝑔‖ ≥ ‖𝑓 + 𝑔‖                                                       (2.3.7) 

which is the triangle inequality for functions, known as Minkowski’s inequality. 

Two functions 𝑓(𝑥) and 𝑔(𝑥) belonging to the function space are said to be 

orthogonal if 

                                            (𝑓,𝑔) = � 𝑓(𝑥)𝑔(𝑥)������
𝑏

𝑎
𝑑𝑥 = 0                                               (2.3.1.1) 

and the function 𝑓(𝑥) normalized if 

                                                              ‖𝑓‖ = 1.                                                                   (2.3.1.2) 

            We consider a set of sectionally continuous complex functions 

𝜙1(𝑥),𝜙2(𝑥), … ,𝜙𝑟(𝑥), ….  satisfying the orthonormality condition 

                                     (𝜙𝑟 ,𝜙𝑠) = � 𝜙𝑟(𝑥)𝜙𝑠(𝑥)��������𝑑𝑥 = 𝛿𝑟𝑠                                           (2.3.1.3)
𝑏

𝑎
 

where  𝛿𝑟𝑠 is the Kronecker delta symbol 

                                                  𝛿𝑟𝑠 = �
1      (𝑟 = 𝑠)

 0       (𝑟 ≠ 𝑠).                                                   (2.3.1.4) 

Such a set of functions is called orthonormal. 

An orthonormal system of functions [6], [13] is said to form a basis or a complete 

system if and only if the sole function which is orthogonal to every number 𝜙𝑟(𝑥) of the 

system is the null function which vanishes throughout the interval 𝑎 ≤ 𝑥 ≤ 𝑏 except at a 



 

14 
 

finite number of points. We note here that a complete system of functions should not be 

confused with a complete space. 
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CHAPTER 3 

  Abstract Hilbert Space  𝐻 

3.1 Properties of Hilbert Space 

 We shall conclude this chapter by abstracting the common axioms that all Hilbert 

spaces must satisfy [6], [10], [13], [14].  

 A Hilbert space 𝑯 is a linear vector space possessing a distance function or metric 

which is given by an inner product and which is complete with sequent to that metric.  

 A linear vector space points or vectors, forming an Abelian group and permitting 

multiplication by the field of complex numbers 𝜆 over 𝑪. 

 An Abelian group has an internal law of composition satisfying the commutative 

law 

                                                            𝑓 + 𝑔 = 𝑔 + 𝑓                                                      (3.1.1) 

and the associative law 

                                              𝑓 + (𝑔 + ℎ) = (𝑓 + 𝑔) + ℎ,                                           (3.1.2) 

having a zero element 0 such that 

                                                     0 + 𝑓 = 𝑓 + 0 = 𝑓,                                                   (3.1.3)  

and an inverse element −𝑓  corresponding to each element  𝑓 of the set such that                                

                                               𝑓 + (−𝑓) = (−𝑓) + 𝑓 = 0.                                            (3.1.4)                                      

The multiplication by the field of complex numbers satisfies 
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                                                            1 ∙ 𝑓 = 𝑓,                                                             (3.1.5) 

                                                            0 ∙ 𝑓 = 0,                                                             (3.1.6) 

                                                          (𝜆𝜇)𝑓 = 𝜆(𝜇𝑓)                                                     (3.1.7) 

and satisfies the distributive law with respect to the elements 𝑓,𝑔 

                                                    𝜆(𝑓 + 𝑔) = 𝜆𝑓 + 𝜆𝑔                                                  (3.1.8) 

and the distributive law with respect to the numbers 𝜆, 𝜇 

                                                   (𝜆 + 𝜇)𝑓 = 𝜆𝑓 + 𝜇𝑓.                                                (3.1.9) 

The inner product of two elements 𝑓,𝑔 is a complex number denoted by (𝑓,𝑔) satisfying 

                                                           (𝑓,𝑔) = (𝑔,𝑓)�������,                                                            (3.1.10) 

                                                  (𝜆𝑓,𝑔) = 𝜆(𝑓,𝑔),                                                    (3.1.11) 

                                       (𝑓1 + 𝑓2,𝑔) = (𝑓1,𝑔) + (𝑓2,𝑔).                                         (3.1.12) 

It follows at once that (𝑓, 𝑓) = (𝑓,𝑓)������� so that (𝑓,𝑓) is a real number. We shall assume 

that  

                                                       (𝑓, 𝑓) ≥ 0                                                          (3.1.13) 

and further that (𝑓,𝑓) = 0 if and only if  𝑓 = 0. 

 Then we have also that 

                            (𝑓, 𝜆𝑔) = (𝜆𝑔,𝑓)��������� = �̅� (𝑔,𝑓)������� = �̅�(𝑓,𝑔)                                       (3.1.14) 
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(𝑓,𝑔1 + 𝑔2) = (𝑔1 + 𝑔2,𝑓)��������������� = (𝑔1,𝑓)��������� + (𝑔2,𝑓)��������� = (𝑓,𝑔1) + (𝑓,𝑔2). 

                                                                                                                                  (3.1.15) 

The norm of the element  𝑓  is denoted as  

                                                           ‖𝑓‖ = �(𝑓, 𝑓) .                                                           (3.1.16) 

The norm ‖𝑓‖ = 0  if and only if 𝑓 = 0  and ‖𝜆𝑓‖ = |𝜆|‖𝑓‖. 

Now  (𝑓 + 𝜆𝑔,𝑓 + 𝜆𝑔) ≥ 0, and so taking  𝜆 = −(𝑓,𝑔)/(𝑔,𝑔) we obtain Schwarz’s 

inequality 

                                              ‖𝑓‖‖𝑔‖ ≥ |(𝑓,𝑔)|                                                      (3.1.17) 

and we have the triangle inequality  

                                            ‖𝑓‖ + ‖𝑔‖ ≥ ‖𝑓 + 𝑔‖.                                                   (3.1.18) 

           We now define a distance function 𝑑(𝑓,𝑔) in terms of the norm according to the 

formula 

                                                   𝑑(𝑓,𝑔) = ‖𝑓 − 𝑔‖.                                                   (3.1.19) 

This satisfies the conditions required of a distance between two points 𝑓 and 𝑔, namely 

(i)      𝑑(𝑓,𝑔) = 𝑑(𝑔,𝑓), 

(𝑖𝑖)     𝑑(𝑓,𝑔) ≥ 0, 

(𝑖𝑖𝑖)     𝑑(𝑓,𝑔) = 0  if and only if  𝑓 = 𝑔, 

(𝑖𝑣)     𝑑(𝑓,𝑔) ≤ 𝑑(𝑓,ℎ) + 𝑑(ℎ,𝑔).                                                                        (3.1.20)                                                 

This last condition follows from the triangle inequality for the norm: 

          ‖𝑓 − 𝑔‖ = ‖(𝑓 − ℎ) + (ℎ − 𝑔)‖ ≤ ‖𝑓 − ℎ‖ + ‖ℎ − 𝑔‖.      

We say that a sequence of elements {𝑓𝑛} converges strongly to a limit element 𝑓 

if, given any 𝜀 > 0, there exists a 𝑁 such that for 𝑛 > 𝑁 we have ‖𝑓𝑛 − 𝑓‖ < 𝜀. Strong 

convergence is denoted by 𝑓𝑛 → 𝑓.  
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If  𝑓𝑛 → 𝑓 we have   ‖𝑓𝑛 − 𝑓𝑚‖ = ‖(𝑓𝑛 − 𝑓) + (𝑓 − 𝑓𝑚)‖  

                               ≤ ‖𝑓𝑛 − 𝑓‖ + ‖𝑓𝑚 − 𝑓‖ < 𝜀 

for sufficiently large 𝑛,𝑚. A sequence {𝑓𝑛} of elements satisfying  ‖𝑓𝑛 − 𝑓𝑚‖ < 𝜀 for 

large 𝑛,𝑚 is known as a Cauchy sequence. 

A Hilbert space is complete, that is every Cauchy sequence converges to a limit 

vector in the space. 

The theory of Hilbert spaces initiated, by David Hilbert (1862-1943), in his 1912 

work on quadratic forms in infinitely many variables which he applied to the theory of 

integral equations. John von Neumann first formulated an axiomatic theory of Hilbert 

spaces and developed the modern theory of operators on Hilbert spaces. Necessary 

condition for a normed space is to be an inner product space. 

A complete inner product space is called a Hilbert space [6], [10], [13]. Since C is 

complete, it is a Hilbert space. 𝑪𝑁  is a Hilbert space. 𝑙2 is a Hilbert space.  

Every inner product space is a normed space and the convergence defined by the norm. 

Definition 3.1.1: (Strong Convergence). A sequence {𝑥𝑛} of vectors in an inner product 

space 𝐸 is called strongly convergent to a vector 𝑥 ∈ 𝐸 if  

                         ‖𝑥𝑛 − 𝑥‖ → 0    as   𝑛 → ∞. 

Definition 3.1.2: (Weak Convergence).  A sequence {𝑥𝑛} of vectors in an inner product 

space 𝐸 is called weakly convergent to a vector 𝑥 ∈ 𝐸  if (𝑥𝑛,𝑦) → (𝑥,𝑦)     as  𝑛 → ∞,  

for every 𝑦 ∈ 𝐸. 

Theorem 3.1.3: A strong convergent sequence is weakly convergent. 

Proof.  Suppose the sequence  ‖𝑥𝑛 − 𝑥‖ → 0    as  𝑛 → ∞.  By Schwarz’s inequality  

|(𝑥𝑛 − 𝑥,𝑦)| ≤ ‖𝑥𝑛 − 𝑥‖‖𝑦‖ → 0       as  𝑛 → ∞,  and 
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(𝑥𝑛 − 𝑥,𝑦) → 0    as    𝑛 → ∞,  for every 𝑦 ∈ 𝐸.                                                   

3.2 Properties of Orthonormal Systems 

Using the principle of mathematical induction, we can generalize the Pythagorean 

formula [6] as follows:  

Theorem 3.2.1: (Pythagorean Formula). If  𝑥1, … , 𝑥𝑛 are orthogonal vectors in an inner 

product space, then                                                                                                                   

                                                       ��𝑥𝑘

𝑛

𝑘=1

�
2

= �‖𝑥𝑘‖2.                                                  (3.2.1)
𝑛

𝑘=1

 

Proof.   If 𝑥1 ⊥ 𝑥2, then ‖𝑥1 + 𝑥2‖2 = ‖𝑥1‖2 + ‖𝑥2‖2. Thus the theorem is true for  

𝑛 = 2. Assume now that the (3.2.1) holds for 𝑛 − 1, that is 

 ��𝑥𝑘

𝑛−1

𝑘=1

�

2

=  �‖𝑥𝑘‖2
𝑛−1

𝑘=1

. 

 

Set  𝑥 = ∑ 𝑥𝑘𝑛−1
𝑘=1  and 𝑦 = 𝑥𝑛. Clearly 𝑥⊥ 𝑦. Thus 

   ��𝑥𝑘

𝑛

𝑘=1

�
2

=  ‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + ‖𝑦‖2 = �‖𝑥𝑘‖2 + ‖𝑥𝑛‖2
𝑛−1

𝑘=1

= �‖𝑥𝑘‖2.
𝑛

𝑘=1

 

This proves the theorem. 

Theorem 3.2.2:  (Bessel’s Equality and Inequality). Let 𝑥1, … , 𝑥𝑛 be an orthonormal 

set of vectors in an inner product space 𝐸. Then, for every 𝑥 ∈ 𝐸, we have 

                                            �𝑥 −�(𝑥, 𝑥𝑘)𝑥𝑘

𝑛

𝑘=1

�
2

= ‖𝑥‖2 −�|(𝑥, 𝑥𝑘)|2
𝑛

𝑘=1

                     (3.2.2) 

and 
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                                                        �|(𝑥, 𝑥𝑘)|2
𝑛

𝑘=1

≤ ‖𝑥‖2.                                                     (3.2.3) 

Proof.  In view of the Pythagorean formula (3.2.1), we have 

��𝛼𝑘𝑥𝑘

𝑛

𝑘=1

�
2

= �‖𝛼𝑘𝑥𝑘‖2 = �|𝛼𝑘|2
𝑛

𝑘=1

𝑛

𝑘=1

 

for arbitrary complex numbers 𝛼1, … ,𝛼𝑛. Hence 

�𝑥 −�𝛼𝑘𝑥𝑘

𝑛

𝑘=1

�
2

= (𝑥 −�𝛼𝑘𝑥𝑘, 𝑥
𝑛

𝑘=1

−�𝛼𝑘𝑥𝑘

𝑛

𝑘=1

) 

 

                                          = ‖𝑥‖2 − �𝑥,�𝛼𝑘𝑥𝑘

𝑛

𝑘=1

� − (�𝛼𝑘𝑥𝑘 , 𝑥
𝑛

𝑘=1

) + �|𝛼𝑘|2‖𝑥𝑘‖2
𝑛

𝑘=1

 

 

                           = ‖𝑥‖2 −�𝛼𝑘���(𝑥, 𝑥𝑘)
𝑛

𝑘=1

−�𝛼𝑘(𝑥, 𝑥𝑘)���������
𝑛

𝑘=1

+ �𝛼𝑘𝛼𝑘���
𝑛

𝑘=1

 

 

                                              = ‖𝑥‖2 −�|(𝑥, 𝑥𝑘)|2 + �|(𝑥, 𝑥𝑘) − 𝛼𝑘|2.
𝑛

𝑘=1

𝑛

𝑘=1

                   (3.2.4) 

In particular, if 𝛼𝑘 = (𝑥, 𝑥𝑘), this results yields (3.2.2). From (3.2.2) it follows that 

0 ≤ ‖𝑥‖2 −�|(𝑥, 𝑥𝑘)|2
𝑛

𝑘=1

, 

which gives (3.2.3). The proof is complete. 

Remarks.  1. Note that expression (3.2.4) is minimized by taking 𝛼𝑘 = (𝑥, 𝑥𝑘). This 

choice of 𝛼𝑘 minimizes ‖𝑥 − ∑ 𝛼𝑘𝑥𝑘𝑛
𝑘=1 ‖ and thus it provides the best approximation of 

𝑥 by a linear combination of vectors {𝑥1, … , 𝑥𝑛}. 
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           2. If {𝑥𝑛} is an infinite orthonormal sequence of vectors in an inner product space 

𝐸, then from (3.2.3), by letting 𝑛 → ∞, we obtain 

                                                �|(𝑥, 𝑥𝑘)|2
∞

𝑘=1

≤ ‖𝑥‖2.                                                             (3.2.5) 

This shows that the series ∑ |(𝑥, 𝑥𝑘)|2∞
𝑘=1  converges for every 𝑥 ∈ 𝐸. In other words, the 

sequence {(𝑥, 𝑥𝑛)} is an element of 𝑙2. We can say that an orthonormal sequence in 𝐸 

induces a mapping from 𝐸 into 𝑙2. The expansion 

                                                                  𝑥~�(𝑥, 𝑥𝑛)
∞

𝑛=1

𝑥𝑛                                                    (3.2.6) 

is called a generalized Fourier series of 𝑥 with respect to the orthonormal sequence {𝑥𝑛}. 

This set of coefficients gives the best approximation. In general we do not know whether 

the series in (3.2.6) is convergent. The next theorem shows, the completeness of 𝐸 

ensures the convergence. 

Theorem 3.2.3: Let {𝑥𝑛}  be an orthonormal sequence in a Hilbert space 𝑯 and let {𝛼𝑛}  

be a sequence of complex numbers. Then the series ∑ 𝛼𝑛𝑥𝑛∞
𝑛=1  converges if and only if 

∑ |𝛼𝑛|2 < ∞,∞
𝑛=1  and in that case 

                                                    ��𝛼𝑛𝑥𝑛

∞

𝑛=1

� = ��|𝛼𝑛|2.
∞

𝑛=1

                                                (3.2.7) 

Proof.  For every 𝑚 > 𝑘 > 0,  we have                                                                       

                                                     ��𝛼𝑛𝑥𝑛

𝑚

𝑛=𝑘

� = ��|𝛼𝑛|2,
𝑚

𝑛=𝑘

                                              (3.2.8) 
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If  ∑ |𝛼𝑛|2 < ∞,∞
𝑛=1  then, by (3.2.8) the sequence  𝑠𝑚 = ∑ 𝛼𝑛𝑥𝑛𝑚

𝑛=1   is a Cauchy 

sequence. This implies convergence of the series ∑ 𝛼𝑛𝑥𝑛∞
𝑛=1 , because of the 

completeness of 𝑯. 

Conversely, if the series ∑ 𝛼𝑛𝑥𝑛∞
𝑛=1   converges, then the same formula (3.2.8) 

implies the convergence of ∑ |𝛼𝑛|2∞
𝑛=1 , because the sequence of numbers  

𝜎𝑚 = ∑ |𝛼𝑛|2𝑚
𝑛=1  is a Cauchy sequence in 𝑹. 

To obtain (3.2.7) it is enough to take 𝑘 = 1 and let 𝑚 → ∞ in (3.2.8). 

Definition 3.2.1: (Complete Sequence). An orthonormal sequence {𝑥𝑛} in a Hilbert 

space 𝑯 is said to be complete if for every 𝑥 ∈ 𝑯 we have                                                                        

                                                        𝑥 = �(𝑥, 𝑥𝑛)𝑥𝑛.
∞

𝑛=1

                                                           (3.2.9) 

Since the right side of (3.2.8) is a series, the equality means 

lim
𝑛→∞

�𝑥 −�(𝑥, 𝑥𝑘)𝑥𝑘

𝑛

𝑘=1

� = 0, 

where ‖∙‖ is the norm in 𝑯. For example, if 𝑯 = 𝑳𝟐([−𝜋,𝜋]) and {𝑓𝑛} is an orthonormal 

sequence in 𝑯, then by 

𝑓 = �(𝑓, 𝑓𝑛)𝑓𝑛 ,
∞

𝑛=1

 

we mean 

lim
𝑛→∞

� �𝑓(𝑡) −�𝛼𝑘𝑓𝑘(𝑡)
𝑛

𝑘=1

�
2

𝑑𝑡 = 0
𝜋

−𝜋
,            𝛼𝑘 = � 𝑓(𝑡)𝑓𝑘(𝑡)�������𝑑𝑡

𝜋

−𝜋
. 

This, in general, does not imply the pointwise convergence: 𝑓(𝑥) = ∑ (𝑓,𝑓𝑛)𝑓𝑛(𝑥).∞
𝑛=1  
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The following theorem gives important characterization of complete orthonormal 

sequences [6], [10], [17]. 

Theorem 3.2.4:  An orthonormal sequence {𝑥𝑛} in a Hilbert space 𝑯 is complete if and 

only if the condition (𝑥, 𝑥𝑛) = 0 for all 𝑛 ∈ 𝑁 implies 𝑥 = 0. 

Proof.  Suppose {𝑥𝑛} is complete in 𝑯. Then every 𝑥 ∈ 𝑯 has the representation 

𝑥 = �(𝑥, 𝑥𝑛)𝑥𝑛.
∞

𝑛=1

 

Thus, if (𝑥, 𝑥𝑛) = 0 for every 𝑛 ∈ 𝑁, then 𝑥 = 0.  

Conversely, suppose the condition (𝑥, 𝑥𝑛) = 0 for all 𝑛 implies 𝑥 = 0. Let 𝑥 be 

an element of 𝑯. Define 

𝑦 = �(𝑥, 𝑥𝑛)
∞

𝑛=1

𝑥𝑛. 

The sum 𝑦 exists in 𝑯 by (3.2.5) and Theorem 3.2.3. Since, for every  ∈ 𝑁 , 

(𝑥 − 𝑦, 𝑥𝑛) = (𝑥, 𝑥𝑛) − ��(𝑥,
∞

𝑘=1

𝑥𝑘)𝑥𝑘, 𝑥𝑛� 

                      = (𝑥, 𝑥𝑛) −�(𝑥, 𝑥𝑘)(𝑥𝑘,𝑥𝑛)
∞

𝑘=1

= (𝑥, 𝑥𝑛) − (𝑥, 𝑥𝑛) = 0, 

we have 𝑥 − 𝑦 = 0, and hence 

𝑥 = �(𝑥, 𝑥𝑛)
∞

𝑛=1

𝑥𝑛. 
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CHAPTER 4 

  Linear Operators in Hilbert Spaces 

In an integral equation the unknown function occurs under an integral sign and 

thus, if the functions involved belong to a Hilbert space, it is clear that we have to deal 

with integral operators acting on a Hilbert space of functions. 

Linear operators (or transformations) [6], [10], [17] on a normed vector space are 

widely used to represent physical quantities. The most important operators include 

differential, integral, and matrix operators. The major objective of this chapter is to 

introduce linear operators in Hilbert spaces with some attention to different kinds of 

operators and their basic properties. Although linear mappings may be from a vector 

space 𝐸1 into a vector space 𝐸2, we are interested mostly in the case when 𝐸1 = 𝐸2 = 𝐸, 

where 𝐸 is a Hilbert space or a subspace of a Hilbert space. However, in order to avoid 

unduly difficult concepts, we shall suppose that our functions and kernels are square 

integrable without usually specifying the sense in which the integrals are to be performed.  

It is useful to place linear integral operators in a more general context, so this 

chapter will conclude with an introduction to the theory of linear operators in an abstract 

Hilbert space. 

4.1 Linear Integral Operators 

We consider the linear integral operator 𝑲 given by 

                                                        𝑲 = � 𝐾(𝑥, 𝑠)𝑑𝑠
𝑏

𝑎
                                                          (4.1.1) 

where 𝐾(𝑥, 𝑠) is a square integrable kernel. This is abbreviation for  

                                           (𝑲ϕ)(𝑥) = � 𝐾(𝑥, 𝑠)ϕ(𝑠)𝑑𝑠,                                                 (4.1.2)
𝑏

𝑎
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where ϕ(𝑠) is a square integrable function, in the symbolic form   

                                                          𝛹 = 𝑲ϕ.                                                           (4.1.3) 

 The operator 𝑲 is linear since    

                                    𝑲(𝜆1ϕ1 + 𝜆2ϕ2) = 𝜆1𝑲ϕ1 + 𝜆2𝑲ϕ2                                        (4.1.4) 

where  𝜆1, 𝜆2 are constants and ϕ1,ϕ2 are square integrable functions. 

If 

                                                              𝑳 = � 𝐿(𝑥, 𝑠)𝑑𝑠                                                        (4.1.5)
𝑏

𝑎
 

is a second integral operator we have 

                                                            χ= 𝑳𝛹 = 𝑳(𝑲ϕ)                                            (4.1.6)  

where   

𝜒(𝑥) = � 𝐿(𝑥, 𝑡)𝑑𝑡� 𝐾(𝑡, 𝑠)
𝑏

𝑎

𝑏

𝑎
 ϕ(s)𝑑𝑠    

                                                    = � 𝑃(𝑥, 𝑠)ϕ(s)𝑑𝑠                                                           (4.1.7)
𝑏

𝑎
 

and 

                                              𝑃(𝑥, 𝑠) = � 𝐿(𝑥, 𝑡)𝐾(𝑡, 𝑠)𝑑𝑡,                                               (4.1.8)
𝑏

𝑎
 

that is 

                                                                 𝜒 = 𝑷ϕ                                                      (4.1.9)             

 where  𝑷 = 𝑳𝑲 is the integral operator with kernel 𝑃(𝑥, 𝑠). 

Integral operators satisfy the associative law   

                                                       𝑴(𝑳𝑲) = (𝑴𝑳)𝑲                                                    (4.1.10) 

 and the distributive laws 

                                              𝑴(𝑳 + 𝑲) = 𝑴𝑳 + 𝑴𝑲                                                  (4.1.11)      
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                                         (𝑳 + 𝑲)𝑴 = 𝑳𝑴 + 𝑲𝑴                                                    (4.1.12) 

but, in general, linear operators and integral operators in particular, do not satisfy the 

commutative law. 

Using the associative law we see that 

                         𝑲𝑚𝑲𝑛 = 𝑲𝑚+𝑛,  (𝑲𝑚)𝑛 = 𝑲𝑚𝑛       (𝑚,𝑛 ≥ 1)                            (4.1.13) 

where 

                                                  𝑲𝑛 = � 𝐾𝑛(𝑥, 𝑠)𝑑𝑠
𝑏

𝑎
                                                           (4.1.14) 

and  𝐾𝑛(𝑥, 𝑠) is the iterated kernel. 

4.1.1 Norm of an Integral Operator 

If  𝐾(𝑥, 𝑠) is a square integrable kernel its norm is defined by 

                                      ‖𝑲‖2 = [� � |𝐾(𝑥, 𝑠)|2𝑑𝑥𝑑𝑠
𝑏

𝑎

𝑏

𝑎
]1/2.                                          (4.1.1.1) 

Then if ϕ(s) is a square integrable function and 𝛹(𝑥) is given by (4.1.2), using 

Schwarz’s inequality, we have 

|𝛹(𝑥)|2 ≤ � |𝐾(𝑥, 𝑠)|2𝑑𝑠� |ϕ(s)|2
𝑏

𝑎

𝑏

𝑎
𝑑𝑠 

which yields 

� |𝛹(𝑥)|2𝑑𝑥 ≤ � � |𝐾(𝑥, 𝑠)|2
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
𝑑𝑥𝑑𝑠� |ϕ(s)|2

𝑏

𝑎
𝑑𝑠 

so that 

                                           ‖(𝐾ϕ)‖ =  ‖𝛹‖ ≤ ‖𝑲‖2‖ϕ‖ < ∞,                                      (4.1.1.2) 

and thus 𝛹(𝑥) is square integrable. So that ‖𝑲‖ ≤ ‖𝑲‖2 where ‖𝑲‖ is operator norm 

and ‖𝑲‖2 is Hilbert-Schmidt norm in 𝑳2of the operator 𝑲.  
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When ‖𝑲‖2 = 0  then  ‖𝛹‖ = 0 so ‖(𝐾ϕ)‖ = 0 for all 𝜑 so that 𝑲ϕ vanishes 

‘almost everywhere’, for all square integrable functions ϕ, and 𝑲 is called a null operator.  

Also, if 𝐿(𝑥, 𝑡) and 𝐾(𝑡, 𝑠) are square integrable kernels, then 𝑃(𝑥, 𝑠) given by 

(4.1.8) is square integrable since, by Schwarz’s inequality,  

|𝑃(𝑥, 𝑠)|2 ≤ � |𝐿(𝑥, 𝑡)|2𝑑𝑡� |𝐾(𝑡, 𝑠)|2
𝑏

𝑎

𝑏

𝑎
𝑑𝑡 

so that 

� � |𝑃(𝑥, 𝑠)|2
𝑏

𝑎

𝑏

𝑎
𝑑𝑥𝑑𝑠 ≤ � � |𝐿(𝑥, 𝑡)|2𝑑𝑥𝑑𝑡 � � |𝐾(𝑡, 𝑠)|2

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
𝑑𝑡𝑑𝑠. 

For left hand side we have 

� � |𝑃(𝑥, 𝑠)|2
𝑏

𝑥=𝑎

𝑏

𝑠=𝑎
𝑑𝑥𝑑𝑠 = � (� |𝑃(𝑥, 𝑠)|2

𝑏

𝑎

𝑏

𝑎
𝑑𝑥)𝑑𝑠 

    ≤ � (� (� |𝐿(𝑥, 𝑡)|2𝑑𝑡
𝑏

𝑡=𝑎
)(� |𝐾(𝑡, 𝑥)|2

𝑏

𝑡=𝑎
𝑑𝑡)𝑑𝑥

𝑏

𝑥=𝑎
)𝑑𝑠

𝑏

𝑠=𝑎
 

    = � �(� |𝐾(𝑡, 𝑠)|2𝑑𝑡
𝑏

𝑡=𝑎
)� (� |𝐿(𝑥, 𝑡)|2𝑑𝑡

𝑏

𝑡=𝑎
)𝑑𝑥

𝑏

𝑥=𝑎
� 𝑑𝑠

𝑏

𝑠=𝑎
 

                              = �� � |𝐿(𝑥, 𝑡)|2
𝑏

𝑡=𝑎
𝑑𝑡𝑑𝑥

𝑏

𝑥=𝑎
� �� � |𝐾(𝑡, 𝑠)|2

𝑏

𝑡=𝑎
𝑑𝑡𝑑𝑠

𝑏

𝑠=𝑎
�       

= �� � |𝐿(𝑥, 𝑡)|2𝑑𝑡𝑑𝑥
𝑏

𝑎

𝑏

𝑎
� �� � |𝐾(𝑡, 𝑠)|2

𝑏

𝑎
𝑑𝑡𝑑𝑠

𝑏

𝑎
�, 

giving 

                                             ‖𝑳𝑲‖2 ≤ ‖𝑳‖2‖𝑲‖2 < ∞.                                                    (4.1.1.3) 

Putting 𝑳 = 𝑲 we see that ‖𝑲2‖2 ≤ ‖𝑲‖22  and in general 

                                     ‖𝑲𝑛‖2 ≤ ‖𝑲‖2        
𝑛 (𝑛 = 1,2,3, … )                                       (4.1.1.4) 
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4.1.2 Hermitian Adjoint 

The Hermitian adjoint of a kernel 𝐾(𝑥, 𝑠) which is defined to be the kernel 

                                                          𝐾∗(𝑥, 𝑠) = 𝐾(𝑠, 𝑥)���������.                                                    (4.1.2.1) 

We see that 

                                                     (𝜆𝑲)∗ = �̅�𝑲∗,             𝑲∗∗ = 𝑲.                                     (4.1.2.2)       

Also    

(𝐿𝐾)∗(𝑥, 𝑠) = 𝐿𝐾(𝑠, 𝑥)����������� 

                                           = � 𝐿(𝑠, 𝑡)�������� 𝐾(𝑡, 𝑥)���������𝑑𝑡
𝑏

𝑎
 

                                             = � 𝐾∗(𝑥, 𝑡)𝐿∗(𝑡, 𝑠)𝑑𝑡
𝑏

𝑎
 

                         = 𝐾∗𝐿∗(𝑥, 𝑠) 

and so 

                                                              (𝑳𝑲)∗ = 𝑲∗𝑳∗.                                                        (4.1.2.3)   

Further, using the definition of the inner product, we have 

(𝑲ϕ,𝛹) = � (𝑲ϕ)(𝑥)
𝑏

𝑎
𝛹(𝑥)�������𝑑𝑥 

                                   = � (� 𝐾(𝑥, 𝑡)
𝑏

𝑎
ϕ(t)dt)

𝑏

𝑎
𝛹(𝑥)�������𝑑𝑥 

                                    = � � 𝐾(𝑥, 𝑡)
𝑏

𝑡=𝑎

𝑏

𝑥=𝑎
ϕ(t)𝛹(𝑥)�������𝑑𝑡𝑑𝑥 

                                   = � � 𝐾(𝑥, 𝑡)ϕ(t)𝛹(𝑥)�������𝑑𝑥𝑑𝑡
𝑏

𝑥=𝑎

𝑏

𝑡=𝑎
 

                                    = � � 𝐾(𝑥, 𝑡)��������� ϕ(t)������𝛹(𝑥)𝑑𝑥
𝑏

𝑎

�����������������������������
 𝑑𝑡

𝑏

𝑡=𝑎
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                                        = � ϕ(t)������ �� 𝐾(𝑥, 𝑡)���������
𝑏

𝑎
𝛹(𝑥)𝑑𝑥�

���������������������������
𝑑𝑡

𝑏

𝑡=𝑎
 

                                     = � ϕ(t)
𝑏

𝑡=𝑎
(� 𝐾∗(𝑡, 𝑥)𝛹(𝑥)𝑑𝑥

𝑏

𝑎
)

��������������������������
𝑑𝑡 

                                                                   = (ϕ,𝑲∗𝛹),                                                        (4.1.2.4) 

where 

(𝐾∗𝛹)(𝑡) = � 𝑘∗(𝑡, 𝑥)𝛹(𝑥)𝑑𝑥,       𝑘∗(𝑡, 𝑥) = 𝑘(𝑥, 𝑡)���������
𝑏

𝑎
, 

(𝐾∗𝛹)(𝑥) = � 𝑘∗(𝑥, 𝑡)𝛹(𝑡)𝑑𝑡,       𝑘∗(𝑥, 𝑡) = 𝑘(𝑡, 𝑥).���������
𝑏

𝑎
 

If  𝑲∗ = 𝑲, then the kernel is called Hermitian or self adjoint. 

4.2 Bounded Linear Operators 

So far we have been concerned with linear integral operators acting on a space of 

square integrable functions which, if chosen to be all the functions which are square 

integrable in the Lebesgue sense, would form a Hilbert space of function 𝑳𝟐.  

We shall now turn our attention to the case of an abstract Hilbert space, acted on 

by bounded linear operators.  

Consider a non-empty subset 𝐷 of an abstract Hilbert space 𝑯 such that if 

𝑓,𝑔 ∈ 𝐷 then 𝜆𝑓 + 𝜇𝑔 ∈ 𝐷 where 𝜆, 𝜇 are arbitrary complex numbers, then 𝐷 is called a 

linear manifold. We note that a linear manifold must contain the zero elements since 

𝑓 + (−1)𝑓 = 0. 

Suppose that corresponding to any element 𝑓 ∈ 𝐷 we assign an element 𝑲𝑓 ∈ 𝑯,  

then 𝑲 maps 𝐷 onto ∆ and is called a linear operator with domain 𝐷 and let 

∆=range(𝐾)      {𝐾𝑓: 𝑓 ∈ 𝐷}. 
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If                

                                             𝑲(𝜆𝑓 + 𝜇𝑔) = 𝜆𝑲𝑓 + 𝜇𝑲𝑔                                                     (4.2.1) 

for 𝑓,𝑔 ∈ 𝐷 and numbers 𝜆 and 𝜇, then ∆ is also a linear manifold and 𝑲 is a linear 

operator for domain 𝐷 and range ∆. 

A linear operator 𝑲 having the Hilbert space 𝑯 as domain is bounded if there 

exists a constant 𝐶 ≥ 0 such that  ‖𝑲𝑓‖ ≤ 𝐶‖𝑓‖  for all 𝑓 ∈ 𝐻.  

The norm ‖𝑲‖ of the bounded linear operator 𝑲 is defined as the smallest 

possible value of 𝐶. Thus ‖𝑲‖ is the least upper bound or supremum of ‖𝑲𝑓‖/‖𝑓‖, that 

is 

                                                       ‖𝑲‖ =
𝑠𝑢𝑝
𝑓 ∈ 𝐻

‖𝑲𝑓‖
‖𝑓‖

                                                        (4.2.2) 

and so 

                                                        ‖𝑲𝑓‖ ≤ ‖𝑲‖‖𝑓‖.                                                            (4.2.3) 

This is a generalization of the inequality (4.1.1.2) for the linear integral operator (4.1.1) 

with square integrable kernel. Clearly (4.1.1) is a bounded linear operator and that 

‖𝐾‖ ≤ ‖𝐾‖2. 

The linear operator 𝑲 has an adjoint operator 𝑲∗ defined so that 

                                                        (𝑲𝑓,𝑔) = (𝑓,𝑲∗𝑔)                                                         (4.2.4) 

for all 𝑓,𝑔 ∈ 𝑯. If  𝑲∗ = 𝑲 the operator is self adjoint or Hermitian. 

Now by Schwarz’s inequality and (4.2.3), we have 

                                    |(𝑲𝑓,𝑔)| ≤ ‖𝑲𝑓‖‖𝑔‖ ≤ ‖𝑲‖‖𝑓‖‖𝑔‖.                                          (4.2.5) 

And also we have 

                                               |(𝑓,𝑲∗𝑔)| ≤ ‖𝑲∗‖‖𝑓‖‖𝑔‖.                                                    (4.2.6) 

We can write  
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‖𝑲∗𝑓‖2 = (𝑲∗𝑓,𝑲∗𝑓) 

             = (𝑲𝑲∗𝑓,𝑓) 

                ≤ ‖𝑲𝑲∗𝑓‖‖𝑓‖ 

                    ≤ ‖𝑲‖‖𝑲∗𝑓‖‖𝑓‖ 

Dividing on ‖𝑲∗𝑓‖ both sides of this inequality we get 

‖𝑲∗𝑓‖ ≤ ‖𝑲‖‖𝑓‖. 

This shows that  

‖𝑲∗‖ ≤ ‖𝑲‖. 

Now we use 𝑲∗∗ = 𝑲 to get 

‖𝑲‖ = ‖(𝑲∗)∗‖ ≤ ‖𝑲∗‖. 

We have inequality in both directions, so  

                                                             ‖𝑲∗‖ = ‖𝑲‖                                                                (4.2.7) 

and 𝑲∗ is also a bounded linear operator.  

Any bounded operator  𝑲 is continuous linear operator which transforms a 

strongly convergent sequence {𝑓𝑛} into a strongly convergent sequence {𝑲𝑓𝑛}.  We have 

‖𝑲𝑓𝑛 − 𝑲𝑓‖ = ‖𝑲(𝑓𝑛 − 𝑓)‖ ≤ ‖𝑲‖‖𝑓𝑛 − 𝑓‖ 

so that if 𝑓𝑛 → 𝑓 as 𝑛 → ∞ then  

‖𝑲𝑓𝑛 − 𝑲𝑓‖ → 0, 

that is 𝑲𝑓𝑛 is strongly convergent to 𝑲𝑓.  

Actually every continuous linear operator 𝑲 with domain 𝑯 is bounded. For 

otherwise there would exist a sequence {𝑓𝑛} such that ‖𝑲𝑓𝑛‖ ≥ 𝑛‖𝑓𝑛‖ so ‖𝑲𝑔𝑛‖ ≥ 1, 

but 𝑔𝑛 = 𝑓𝑛/𝑛‖𝑓𝑛‖ → 0 as 𝑛 → ∞, which is contrary to the hypothesis that 𝑲 is 

continuous.  
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We see that the linear integral operator (4.1.1), with a square integrable kernel, is 

continuous.  

If 𝑲 and 𝑳 are two bounded linear operators which map 𝑯 onto itself, then the 

product operator 𝑳𝑲 corresponds to 

(𝑳𝑲)𝑓 = 𝑳(𝑲𝑓). 

Then 

‖𝑳𝑲𝑓‖ ≤ ‖𝑳‖‖𝑲𝑓‖ ≤ ‖𝑳‖‖𝑲‖‖𝑓‖ 

so that 

                                                       ‖𝑳𝑲‖ ≤ ‖𝑳‖‖𝑲‖                                                              (4.2.8) 

and therefore 𝑳𝑲 is a bounded operator. 

Also 

(𝑳𝑲𝑓,𝑔) = (𝑲𝑓,𝑳∗𝑔) 

                   = (𝑓,𝑲∗𝑳∗𝑔) 

and hence 

                                                            (𝑳𝑲)∗ = 𝑲∗𝑳∗.                                                             (4.2.9) 

Lastly it is interesting to observe that the norms of bounded linear operators 𝑲 

and 𝑳 satisfy the triangle inequality. For, using the triangle inequality for the elements of 

Hilbert space, we have  

‖𝑲𝑓 + 𝑳𝑓‖ ≤ ‖𝑲𝑓‖ + ‖𝑳𝑓‖ 

                            ≤ (‖𝑲‖ + ‖𝑳‖)‖𝑓‖ 

so that 

                                                        ‖𝑲 + 𝑳‖ ≤ ‖𝑲‖ + ‖𝑳‖.                                               (4.2.10) 
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           Suppose that ϕ1,ϕ2, … ,ϕ𝑟 , … is a complete orthonormal system or basis in 𝑯. 

Then the matrix with elements 

                                                 

                                                    𝑘𝑟𝑠 = (𝑲ϕ𝑟,ϕ𝑠)                                                              (4.2.1.1)  

is called the kernel matrix of the bounded operator 𝑲. 

Introducing the generalized Fourier coefficients  

                                            𝑥𝑟 = (𝑓,ϕ𝑟),        𝑦𝑠 = (𝑔,ϕ𝑠)                                             (4.2.1.2)   

where 𝑓,𝑔 ∈ 𝑯, we have 

                                           𝑓 = �𝑥𝑟ϕ𝑟 ,            𝑔 = �𝑦𝑠ϕ𝑠

∞

𝑠=1

∞

𝑟=1

                                     (4.2.1.3) 

and 

𝑲𝑓 = �𝑥𝑟𝑲ϕ𝑟 = ��𝑥𝑟𝑘𝑟𝑠ϕ𝑠

∞

𝑠=1

∞

𝑟=1

∞

𝑟=1

 

So that (𝑲𝑓,𝑔) has the bilinear form 

                                                  (𝑲𝑓,𝑔) = ��𝑥𝑟𝑘𝑟𝑠𝑦𝑠� .                                            (4.2.1.4)
∞

𝑠=1

∞

𝑟=1

 

Since 𝑲 is bounded it follows that 

                                                  |(𝑲𝑓,𝑔)| ≤ ‖𝑲‖‖𝑓‖‖𝑔‖                                           (4.2.1.5) 

                                 = ‖𝑲‖���|𝑥𝑟|2
∞

𝑟=1

� ��|𝑦𝑠|2
∞

𝑠=1

� . 

Hence 
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                             ���𝑥𝑟𝑘𝑟𝑠𝑦𝑠�
∞

𝑠=1

∞

𝑟=1

� ≤ ‖𝑲‖���|𝑥𝑟|2
∞

𝑟=1

���|𝑦𝑠|2
∞

𝑠=1

�                           (4.2.1.6) 

and thus the bilinear form (4.2.1.4) is also bounded. 

4.3 Completely Continuous Operators 

If a sequence is strongly convergent it is also weakly convergent. For, by 

Schwarz’s inequality, we have 

|(𝑓𝑛 − 𝑓,𝑔)| ≤ ‖𝑓𝑛 − 𝑓‖‖𝑔‖ 

and thus if  ‖𝑓𝑛 − 𝑓‖ → 0 as 𝑛 → ∞  then (𝑓𝑛,𝑔) → (𝑓,𝑔) as  𝑛 → ∞. However , the 

converse need not be true. Thus we may have 𝑓𝑛
𝑤
→𝑓 but 𝑓𝑛 ↛ 𝑓 as 𝑛 → ∞. 

Let us suppose that  𝑲 is a bounded linear operator in 𝑯. Then 

|(𝑲𝑓𝑛 − 𝑲𝑓,𝑔)| ≤ ‖𝑲(𝑓𝑛 − 𝑓)‖‖𝑔‖ 

                                ≤ ‖𝑲‖‖𝑓𝑛 − 𝑓‖‖𝑔‖. 

But  

‖𝑲𝑓𝑛 − 𝑲𝑓‖ = ‖𝑲(𝑓𝑛 − 𝑓)‖ 

                          ≤ ‖𝑲‖‖𝑓𝑛 − 𝑓‖. 

So,   𝑓𝑛
‖∙‖
�� 𝑓   𝑲𝑓𝑛

‖∙‖
�� 𝑲𝑓 (strongly) 

and so if  𝑓𝑛 → 𝑓 as 𝑛 → ∞ then  𝑲𝑓𝑛
‖∙‖
�� 𝑲𝑓, that is 𝑲𝑓𝑛 is strongly convergent to 𝑲𝑓. 

So K is bounded operator then ‖𝑓𝑛 − 𝑓‖ → 0  ‖𝑲𝑓𝑛 − 𝑲𝑓‖ → 0, i.e. operator K is 

continuous. Then K completely continuous in 𝑓𝑛
𝑤
→ 𝑓  ‖𝑲𝑓𝑛 − 𝑲𝑓‖ → 0 as 𝑛 → ∞.  

Then 𝑲 is called a completely continuous (or compact) linear operator in 𝑯. 

Every completely continuous operator is bounded. A completely continuous 

operator is a continuous operator and this means that it is bounded. 
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If the kernel matrix (𝑘𝑟𝑠) of a bounded linear operator 𝑲 satisfies 

                                                         ��|𝑘𝑟𝑠|2 < ∞                                                          (4.3.1)
∞

𝑠=1

∞

𝑟=1

 

then 𝑲 is completely continuous. For we have, using (4.2.1.4), that 

                                     (𝑲(𝑓𝑛 − 𝑓),ϕ𝑠) = ��𝑥𝑟
(𝑛) − 𝑥𝑟�𝑘𝑟𝑠                                          (4.3.2)

∞

𝑟=1

 

Where  𝑥𝑟
(𝑛) and  𝑥𝑟 are the Fourier coefficients of 𝑓𝑛 and 𝑓 respectively. This gives 

          ‖𝑲(𝑓𝑛 − 𝑓)‖2 ≤�|(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2 + � �|𝑘𝑟𝑠|2‖𝑓𝑛 − 𝑓‖2             (4.3.3)
∞

𝑟=1

∞

𝑠=𝑚+1

𝑚

𝑠=1

 

using Cauchy’s inequality. 

As indicated above that weakly convergent sequences are bounded. This we can 

proof  in following way. 

Since {ϕ𝑠} is a complete orthonormal system, gives 

‖𝑲(𝑓𝑛 − 𝑓)‖2 = �|(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2
∞

𝑠=1

= �(���𝑥𝑟
(𝑛) − 𝑥𝑟�𝑘𝑟𝑠

∞

𝑟=1

�
2

)
∞

𝑠=1

 

≤�����𝑥𝑟
(𝑛) − 𝑥𝑟�

2
∞

𝑟=1

� ��|𝑘𝑟𝑠|2
∞

𝑟=1

��
∞

𝑠=1

       𝑏𝑦 𝐶𝑎𝑢𝑐ℎ𝑦 − 𝑆𝑐ℎ𝑤𝑎𝑟𝑧   

= �(‖𝑓𝑛 − 𝑓‖2�|𝑘𝑟𝑠|2
∞

𝑟=1

)
∞

𝑠=1

= ‖𝑓𝑛 − 𝑓‖2(��|𝑘𝑟𝑠|2
∞

𝑟=1

∞

𝑠=1

) 

Taking square roots, gives 

‖𝑲(𝑓𝑛 − 𝑓)‖ ≤ ���|𝑘𝑟𝑠|2
𝑟𝑠

�
1/2

‖𝑓𝑛 − 𝑓‖. 

This shows that 𝑲 is bounded and hence continuous and that the operator norm satisfies 
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‖𝑲‖𝑜𝑝 ≤ ���|𝑘𝑟𝑠|2
𝑟𝑠

�

1
2

. 

 Now we also know that 𝐾∗ exists and is continuous. So here we have split sum of 

unspecified 𝑚. 

 Now suppose  𝑓𝑛
𝑤
→ 𝑓 and let 𝜀 > 0 as in (4.3.3) split the sum into two parts  

‖𝑲𝑓𝑛 − 𝑲𝑓‖2 = �|(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2 + � |(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2
∞

𝑠=𝑚+1

𝑚

𝑠=1

 

≤�|(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2
𝑚

𝑠=1

+ ‖𝑓𝑛 − 𝑓‖2 � (�|𝑘𝑟𝑠|2
∞

𝑟=1

)
∞

𝑠=𝑚+1

 

 Now we will see how to select the  𝑚.  

Recall my observation earlier that “ weakly convergent sequences are bounded” with that  

there is a finite 𝐵 with  ‖𝑓𝑛 − 𝑓‖2 < 𝐵 for all 𝑛. Since ∑ (∑ |𝑘𝑟𝑠|2∞
𝑟=1

∞
𝑠=1 ) converges to a 

finite sum, we can select 𝑚 large enough so that  

� (�|𝑘𝑟𝑠|2
∞

𝑟=1

∞

𝑠=𝑚+1

) <
𝜀

2𝐵
 

(the “tail” of a convergent infinite series is small). 

Now we have 

‖𝑲𝑓𝑛 − 𝑲𝑓‖2 ≤�|(𝑲(𝑓𝑛 − 𝑓),ϕ𝑠)|2
𝑚

𝑠=1

+
𝜀

2𝐵
𝐵 

                    = ���(𝑓𝑛 − 𝑓),𝑲∗ϕ𝑠��
2

𝑚

𝑠=1

+
𝜀
2

. 

Now we use the weak convergence 𝑚 times. 

 For each 𝑠 = 1,2,3, … there is a 𝑁𝑠 such that 
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𝑛 ≥ 𝑁𝑠|(𝑓𝑛 − 𝑓,𝑲∗ϕ𝑠)| < �
𝜀

2𝑚
. 

If 𝑛 ≥ max�𝑁𝑠1 ,𝑁𝑠2 , …𝑁𝑠𝑚�, then 

‖𝑲𝑓𝑛 − 𝑲𝑓‖2 ≤�
𝜀

2𝑚

𝑚

𝑠=1

+
𝜀
2

=
𝜀

2𝑚
𝑚 +

𝜀
2

= 𝜀. 

This can be done for each 𝜀 > 0, so ‖𝑲𝑓𝑛 − 𝑲𝑓‖ → 0 as required. 

 This show that 𝑓𝑛
𝑤
→ 𝑓  𝑲𝑓𝑛

‖∙‖
�� 𝑲𝑓.  That is,  𝑲 is completely continuous as 

claimed. 

Any finite dimensional linear operator is completely continuous since for this case 

the double sum on the left-hand side of (4.3.1) contains a finite number of terms only. 

As an example of a completely continuous operator we consider the integral 

operator 𝑲 over the space of square integrable functions [6], [10], [17] given by 

                              𝑔(𝑥) = � 𝑲(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠,
𝑏

𝑎
            (𝑎 ≤ 𝑥 ≤ 𝑏),                              (4.3.1.1) 

where the kernel is square integrable and satisfies  

                  � |𝑲(𝑥, 𝑠)|2
𝑏

𝑎
𝑑𝑠 < ∞            (𝑎 ≤ 𝑥 ≤ 𝑏), 

                                                    � |𝑲(𝑥, 𝑠)|2
𝑏

𝑎
𝑑𝑥 < ∞            (𝑎 ≤ 𝑠 ≤ 𝑏),                  (4.3.1.2) 

� � |𝑲(𝑥, 𝑠)|2𝑑𝑥
𝑏

𝑎
𝑑𝑠 < ∞.

𝑏

𝑎
 

By Schwarz’s inequality we have 

|𝑔(𝑥)|2 ≤ � |𝑲(𝑥, 𝑠)|2𝑑𝑠� |𝑓(𝑠)|2𝑑𝑠
𝑏

𝑎

𝑏

𝑎
 

and so  
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� |𝑔(𝑥)|2
𝑏

𝑎
𝑑𝑥 ≤ � � |𝑲(𝑥, 𝑠)|2

𝑏

𝑎

𝑏

𝑎
𝑑𝑠𝑑𝑥 � |𝑓(𝑠)|2

𝑏

𝑎
𝑑𝑠, 

that is 

                                  ‖𝑔‖2 ≤ � � |𝑲(𝑥, 𝑠)|2𝑑𝑠𝑑𝑥‖𝑓‖2
𝑏

𝑎

𝑏

𝑎
.                                            (4.3.1.3) 

Hence 

                                   ‖𝑲‖ ≤ �� � |𝑲(𝑥, 𝑠)|2𝑑𝑠𝑑𝑥
𝑏

𝑎

𝑏

𝑎
= ‖𝑲‖2                                     (4.3.1.4) 

since the norm of 𝑲 is the least upper bound of ‖𝑔‖/‖𝑓‖. 

Now consider any complete orthonormal system ϕ1(𝑥),ϕ2(𝑥), … ,ϕ𝑟(𝑥), … in the 

Hilbert space of 𝐿2 functions defined over 𝑎 ≤ 𝑥 ≤ 𝑏. We let 

                               𝑘𝑟𝑠 = � � ϕ𝑠(𝑥)��������
𝑏

𝑎

𝑏

𝑎
𝑲(𝑥, 𝑡)ϕ𝑟(𝑡)𝑑𝑥𝑑𝑡,                                            (4.3.1.5) 

                                     𝑥𝑟 = � 𝑓(𝑡)ϕ𝑟(𝑡)�������𝑑𝑡                                                                      (4.3.1.6)
𝑏

𝑎
 

and 

                                                   𝑦𝑠 = � 𝑔(𝑥)
𝑏

𝑎
ϕ𝑠(𝑥)��������𝑑𝑥.                                                    (4.3.1.7) 

Then 

                                     𝑦𝑠 = � � 𝑲(𝑥, 𝑡)𝑓(𝑡)ϕ𝑠(𝑥)��������
𝑏

𝑎

𝑏

𝑎
𝑑𝑥𝑑𝑡.                                           (4.3.1.8) 

But 

                                     � 𝑲(𝑥, 𝑡)ϕ𝑠(𝑥)��������𝑑𝑥 = �𝑘𝑟𝑠

∞

𝑟=1

𝑏

𝑎
ϕ𝑟(𝑡)�������                                           (4.3.1.9) 

and 
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                                                      𝑓(𝑡) = �𝑥𝑟ϕ𝑟(𝑡)
∞

𝑟=1

                                                     (4.3.1.10) 

for almost all values of 𝑡, that is except for a set of values of 𝑡 of Lebesgue measure zero, 

and hence 

                                                             𝑦𝑠 = �𝑥𝑟𝑘𝑟𝑠.                                                       (4.3.1.11)
∞

𝑟=1

 

Also 

                                      � �� 𝑲(𝑥, 𝑡)ϕ𝑠(𝑥)��������𝑑𝑥
𝑏

𝑎
�
2

𝑑𝑡 = �|𝑘𝑟𝑠|2                               (4.3.1.12)
∞

𝑟=1

𝑏

𝑎
 

and, using Parseval’s formula, 

                        � |𝑲(𝑥, 𝑡)|2
𝑏

𝑎
𝑑𝑥 = ��� 𝑲(𝑥, 𝑡)ϕ𝑠(𝑥)��������𝑑𝑥

𝑏

𝑎
�
2

.                                   (4.3.1.13)
∞

𝑠=1

 

Consequently 

                                     � � |𝑲(𝑥, 𝑡)|2
𝑏

𝑎

𝑏

𝑎
𝑑𝑥𝑑𝑡 = ��|𝑘𝑟𝑠|2                                    (4.3.1.14)

∞

𝑠=1

∞

𝑟=1

 

and so the matrix representation of the integral operator 𝑲 with square integrable kernel 

satisfies the condition (4.3.1) which ensures that 𝑲 is completely continuous. 
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CHAPTER 5 

Linear Integral Equations  

5.1 Classification of Linear Integral Equations 

Integral equations arise naturally in physics, chemistry, biology and engineering 

applications modeled by initial value problems for a finite interval [a, b]. More details 

about the sources and origins of integral equations can be found in [8] and [11].  

The most frequently used linear integral equations fall under two main classes namely 

Fredholm and Volterra integral equations and two related types of integral equations. In 

particular, the four types are given by:   

1.  Fredholm integral equations  

2.  Volterra integral equations  

3.  Integro-Differential equations 

4.  Singular integral equations. 

5.1.1 Fredholm Linear Integral Equations 

The standard form of Fredholm linear integral equations are given by the form  

                      𝜙(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑏

𝑎
𝑢(𝑡)𝑑𝑡,      (𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏),              (5.1.1.1) 

where the kernel of the integral equation 𝐾(𝑥, 𝑡) and the function 𝑓(𝑥) are given in 

advance, and 𝜆 is a parameter. The equation (5.1.1.1) is called linear because the 

unknown function 𝑢(𝑥) under the integral sign occurs linearly, i.e. the power of 𝑢(𝑥) is 

one.  

The value of 𝜙(𝑥) will give the following kinds of Fredholm linear integral 

equations: 

     1. When 𝜙(𝑥) = 0, equation (5.1.1.1) becomes 
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                                          𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑏

𝑎
𝑢(𝑡)𝑑𝑡 = 0,                                             (5.1.1.2) 

and is called Fredholm integral equation of the first kind. 

     2. When 𝜙(𝑥) = 1, equation (5.1.1.1) becomes 

                                          𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑏

𝑎
𝑢(𝑡)𝑑𝑡,                                      (5.1.1.3) 

and is called Fredholm integral equation of the second kind. 

5.1.2 Volterra Linear Integral Equations 

The standard form of Volterra linear integral equations, where the limits of 

integration are functions of  𝑥 rather than constants are of the form 

                                    𝜙(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)𝑑𝑡.                                  (5.1.2.1) 

As in Fredholm equations, Volterra integral equations fall under two kinds  

1. When 𝜙(𝑥) = 0, equation (5.1.2.1) becomes 

                                           𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)𝑑𝑡 = 0,                                           (5.1.2.2) 

and is called Volterra integral equation of the first kind. 

2. When 𝜙(𝑥) = 1, equation (5.1.2.1) becomes 

                                          𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)
𝑥

𝑎
𝑢(𝑡)𝑑𝑡,                                      (5.1.2.3) 

and is called Volterra integral equation of the second kind. 

For both cases in 5.1.1 and 5.1.2 (# 2) the formulas are ok if  𝜙(𝑥) ≠ 0 since we 

can just modify the kernel and the integral equation with modified kernel given by 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆�
𝑘(𝑥, 𝑡)
𝜙(𝑥)

𝑏

𝑎
𝑢(𝑡)𝑑𝑡. 
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Two other types of integral equation, related to the two main classes Fredholm 

and Volterra integral equations arise in many science and engineering applications. 

5.1.3 Integro-Differential Equations 

           Several phenomena in physics and biology [11] and [19] give rise to this type of 

integro-differential equations. In integro-differential equations, the unknown function 

u(x) occurs in one side as an ordinary derivative, and appears on the other side under the 

integral sign. The following are examples of integro-differential equations: 

             𝑢′′(𝑥) = −𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
,      𝑢(0) = 0,     𝑢′(0) = 1,               (5.1.3.1) 

                                   𝑢′(𝑥) = 2 −
1
4
𝑥 + � 𝑥𝑡𝑢(𝑡)𝑑𝑡,𝑢(0) = 1.                              (5.1.3.2)   

1

0
 

Equation (5.1.3.1) is called Volterra integro-differential equation related to 

Volterra integral equations, or Volterra integro-differential equations. Equation (5.1.3.2) 

is called integro-differential equation related to Fredholm integral equations, or simply 

Fredholm integro-differential equation. 

5.1.4 Singular Integral Equations 

The integral equation of the first kind or the integral equation second kind is 

called singular if the lower limit, the upper limit or both limits of integration are infinite. 

Examples are: 

                                   𝑢(𝑥) = 3𝑥 + 7� sin(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡,
∞

0
                                   (5.1.4.1) 

                                  𝑢(𝑥) = 𝑥 −
1
4
� cos(𝑥 + 𝑡) 𝑢(𝑡)𝑑𝑡,
0

−∞
                                      (5.1.4.2) 
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                                    𝑢(𝑥) = 5 + 2𝑥2 +
1
4
� (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡.                                   (5.1.4.3)
∞

−∞
 

Examples of second kind singular integral equations are given by 

                                                          𝑥2 = �
1

√𝑥 − 𝑡

𝑥

0
𝑢(𝑡)𝑑𝑡,                                           (5.1.4.4)  

                              𝑥 = �
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,        0 < 𝛼 < 1,                                        (5.1.4.5)

𝑥

0
 

where the singular behavior has resulted from the kernel 𝐾(𝑥, 𝑡) becoming infinite as 

𝑡 → 𝑥.  

5.2 Solution of an Integral Equation 

A solution of an integral equation or an integro-differential equation on the 

interval of integration is a function 𝑢(𝑥) which satisfies the given equation. In other 

words, if the given solution is substituted in the right-hand side of the equation, the 

output of this direct substitution must yield the left-hand side, i.e. we should verify that 

the given function satisfies the integral equation under discussion. Consider the following 

example. 

Example 1:  Show that 𝑢(𝑥) = 𝑒𝑥 is a solution of the Volterra integral equation 

𝑢(𝑥) = 1 + � 𝑢(𝑡)𝑑𝑡.
𝑥

0
 

Substituting 𝑢(𝑥) = 𝑒𝑥in the right hand side yields 

        𝑅𝐻𝑆 = 1 + � 𝑒𝑡𝑑𝑡,
𝑥

0
 

= 𝑒𝑥 

     = 𝑢(𝑥), 

    = LHS. 
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5.3 Converting Volterra Equation to Ordinary Differential Equation 

Now we will present the technique that converts Volterra integral equations of the 

second kind to equivalent differential equations. This can be achieved by applying the 

useful Leibnitz Rule for differentiating an integral. We have  

   
𝑑
𝑑𝑥

� 𝐺(𝑥, 𝑡)𝑑𝑡 = 𝐺�𝑥,𝛽(𝑥)�
𝑑𝛽
𝑑𝑥

− 𝐺�𝑥,𝛼(𝑥)�
𝑑𝛼
𝑑𝑥

+ �
𝜕𝐺
𝜕𝑥

𝑑𝑡,                 (5.3.1)
𝛽(𝑥)

𝛼(𝑥)

𝛽(𝑥)

𝛼(𝑥)
 

which works provided 𝐺(𝑥, 𝑡) and 𝜕𝐺
𝜕𝑥

 are continuous functions in the domain D in the 𝑥𝑡 

– plane that contains the rectangular region R, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡0 ≤ 𝑡 ≤ 𝑡1, and  𝛼(𝑥) and  

𝛽(𝑥)  are functions having continuous derivatives for 𝑎 < 𝑥 < 𝑏. We note that Leibnitz 

rule is usually presented in most calculus books, and our goal here will be on using the 

rule rather than its theoretical proof. 

Here is an example. 

Example 1. Find the initial value problem equivalent to the integral equation 

𝑢(𝑥) = 𝑥4 + 𝑥2 + 2� (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡.                        
𝑥

0
 

Differentiating both sides and using Leibnitz rule yield 

⎩
⎪
⎨

⎪
⎧            𝑢′(𝑥) = 4𝑥3 + 2𝑥 + 4� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,

𝑥

0

 𝑢′′(𝑥) = 12𝑥2 + 2 + 4� 𝑢(𝑡)𝑑𝑡,
𝑥

0
𝑢′′′(𝑥) = 24𝑥 + 4𝑢(𝑥).

 

                                                      𝑢′′′(𝑥) − 4𝑢(𝑥) = 24𝑥                            

The initial condition we get by substituting 𝑥 = 0 in both sides of the integral equations, 

we find 𝑢(0) = 𝑢′(0) = 0, and  𝑢′′(0) = 2, so the initial value problem of third order is 

𝑢′′′(𝑥) − 4𝑢(𝑥) = 24𝑥, 𝑢(0) = 𝑢′(0) = 0,         𝑢′′(0) = 2.               
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5.4 Converting Initial Value Problem to Volterra Equation. 

In this section, we will show the method that converts an initial value problem to 

an equivalent Volterra integral equation. Before outlining the method needed, we wish to 

recall the transformation formula 

� � � …
𝑥2

0

𝑥1

0

𝑥

0
� 𝑓(𝑥𝑛)𝑑𝑥𝑛 …𝑑𝑥1
𝑥𝑛−1

0
=

1
(𝑛 − 1)!

� (𝑥 − 𝑡)𝑛−1𝑓(𝑡)𝑑𝑡,                   (5.4.1)
𝑥

0
 

that converts any multiple integral to a single integral. The formulas 

                                   � � 𝑓(𝑡)𝑑𝑡𝑑𝑡
𝑥

0
= � (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡,                                             (5.4.2)

𝑥

0

𝑥

0
 

                             � � � 𝑓(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0
=

1
2!
� (𝑥 − 𝑡)2𝑓(𝑡)𝑑𝑡                                  (5.4.3)
𝑥

0

𝑥

0

𝑥

0
 

are two special cases of the formula given above, and used formulas that will transform 

double and triple integrals respectively to a single integral for each.  Here we prove the 

formula (5.4.2) that converts double integral to a single integral. 

We take right-hand side of (5.4.2) as  

                                                   𝐼(𝑥) = � (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
                                                 (5.4.4) 

            = 𝑥� 𝑓(𝑡)𝑑𝑡 − � 𝑡𝑓(𝑡)𝑑𝑡
𝑥

0

𝑥

0
 

Differentiating both sides of (5.4.4) and using Leibnitz rule we obtain 

𝐼′(𝑥) =
𝑑𝐼
𝑑𝑥

= � 𝑓(𝑡)𝑑𝑡 + 𝑥𝑓(𝑥) − 𝑥𝑓(𝑥)
𝑥

0
 

                                                          𝐼′(𝑥) = � 𝑓(𝑡)𝑑𝑡,
𝑥

0
                                                      (5.4.5) 

 

assuming  𝑓 is continuous. So integrate both sides from  0 to 𝑥, we get 
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𝐼(𝑥) − 𝐼(0) = � 𝐼′(𝑠)𝑑𝑠 = � �� 𝑓(𝑡)𝑑𝑡
𝑠

0
� 𝑑𝑠.

𝑥

0

𝑥

0
 

The two components of  𝐼(𝑥) are equal and we get 

� �� 𝑓(𝑡)𝑑𝑡
𝑠

0
� 𝑑𝑠 = � (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡.

𝑥

0

𝑥

0
 

This is the first version of (5.4.2).  

The second version of (5.4.2) we get by integrating both sides of (5.4.5) from 0 to 𝑥,  

considering that 𝐼(0) = 0 and from (5.4.4), we find 

                                                    𝐼(𝑥) = � � 𝑓(𝑡)𝑑𝑡𝑑𝑡                                                    (5.4.6)
𝑥

0

𝑥

0
 

Equating the right-hand sides of (5.4.4) and (5.4.6) completes the proof for this special 

case of (5.4.2).                                 

Now we use the technique to convert an initial value problem to an equivalent 

Volterra integral equation. Here we have a third order initial value problem given by 

                  𝑦′′′(𝑥) + 𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑔(𝑥)                            (5.4.7) 

subject to the initial conditions  

              𝑦(0) = 𝛼,  𝑦′(0) = 𝛽,      𝑦′′(0) = 𝛾   and   𝛼, 𝛽, 𝛾   are constants.            (5.4.8) 

The functions 𝑝(𝑥),𝑞(𝑥) and 𝑟(𝑥) must have enough continuous derivatives to make my 

computations work, especially any integration by parts, and have Taylor expansions 

about the origin. Assume that  𝑔(𝑥) is continuous through the interval of discussion. To 

transform (5.4.7) into an equivalent Volterra integral equation we set 

                                                                 𝑦′′′ = 𝑢(𝑥).                                                            (5.4.9) 

By integrating both sides of (5.4.9) from 0 to 𝑥 we found 

                                                  𝑦′′(𝑥) − 𝑦′′(0) = � 𝑢(𝑡)𝑑𝑡,                                           (5.4.10)
𝑥

0
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or equivalently 

                                                     𝑦′′(𝑥) = 𝛾 + � 𝑢(𝑡)𝑑𝑡.                                                 (5.4.11)
𝑥

0
 

To obtain 𝑦′(𝑥) we integrate both sides of (5.4.11) from 0 to 𝑥 to find that 

                                             𝑦′(𝑥) = 𝛽 + 𝛾𝑥 + � � 𝑢(𝑡)𝑑𝑡𝑑𝑡.
𝑥

0

𝑥

0
                                    (5.4.12) 

We integrate both sides of (5.4.12) from 0 to 𝑥 to obtain 

                                 𝑦(𝑥) = 𝛼 + 𝛽𝑥 +
1
2
𝛾𝑥2 + � � � 𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡.

𝑥

0

𝑥

0

𝑥

0
                       (5.4.13) 

Using the conversion formulas (5.4.2) and (5.4.3), to reduce the double and triple 

integrals in (5.4.12) and (5.4.13) respectively to single integrals yields 

                                              𝑦′(𝑥) = 𝛽 + 𝛾𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,                                 (5.4.14)
𝑥

0
 

                                    𝑦(𝑥) = 𝛼 + 𝛽𝑥 +
1
2
𝛾𝑥2 +

1
2
� (𝑥 − 𝑡)2
𝑥

0
𝑢(𝑡)𝑑𝑡.                      (5.4.15) 

Substituting (5.4.9), (5.4.11), (5.4.14) and (5.4.15) into (5.4.7) leads to the following 

Volterra integral equation of the second kind 

                                        𝑢(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,                                             (5.4.16)
𝑥

0
 

 where                

                       𝐾(𝑥, 𝑡) = 𝑝(𝑥) + 𝑞(𝑥)(𝑥 − 𝑡) + 1
2!
𝑟(𝑥)(𝑥 − 𝑡)2,                                  (5.4.17) 

and 

  𝑓(𝑥) = 𝑔(𝑥) − �𝛾𝑝(𝑥) + 𝛽𝑞(𝑥) + 𝛼𝑟(𝑥) + 𝛾𝑥𝑞(𝑥) + 𝑟(𝑥) �𝛽𝑥 +
1
2
𝛾𝑥2�� .      (5.4.18) 

The following example will be used to illustrate this technique.  
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Example 1. Find the equivalent Volterra integral equation to the following initial value 

problem 

𝑦′′′ − 𝑦′′ − 𝑦′ + 𝑦 = 0, 𝑦(0) = 2, 𝑦′(0) = 0, 𝑦′′(0) = 2. 

First we set  𝑦′′′ = 𝑢(𝑥). Integrate both sides this equation from 0 to x. We get 

𝑦′′(𝑥) − 𝑦′′(0) = � 𝑢(𝑡)𝑑𝑡   →   𝑦′′(𝑥) = 2 + � 𝑢(𝑡)𝑑𝑡.
𝑥

0

𝑥

0
 

Integrate both sides from 0 to x. We get 

𝑦′(𝑥) − 𝑦′(0) = 2𝑥 + � � 𝑢(𝑡)𝑑𝑡𝑑𝑡 → 
𝑥

0

𝑥

0
𝑦′(𝑥) = 2𝑥 + � � 𝑢(𝑡)𝑑𝑡𝑑𝑡.

𝑥

0

𝑥

0
 

Integrate both sides from 0 to x. We get 

𝑦(𝑥) − 2 = 𝑥2 + � � � 𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0
. 

We use  

𝑦′(𝑥) = 2𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

    

to integrate both sides from 0 to x. We get 

𝑦(𝑥) = 2 + 𝑥2 +
1
2
� (𝑥 − 𝑡)2
𝑥

0
𝑢(𝑡)𝑑𝑡. 

Substitute in  𝑦′′′ − 𝑦′′ − 𝑦′ + 𝑦 = 0, we get 

𝑢(𝑥) = 2𝑥 − 𝑥2 + � �1 + (𝑥 − 𝑡) −
1
2

(𝑥 − 𝑡)2�
𝑥

0
𝑢(𝑡)𝑑𝑡. 

This is the equivalent Volterra integral equation. Solving it gives us 𝑢 = 𝑦′′′. Then 

integrate three times to get 𝑦 (for most of alternative approach to get a Volterra equation). 
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5.5 Converting Boundary Value Problem to Fredholm Equation 

The procedure of reducing a boundary value problem to a Fredholm integral 

equation is complicated and rarely used. The method is similar to the technique that 

reduces initial value problem to Volterra integral equation, with the exception that we are 

given boundary conditions. It seems practical to illustrate this method by applying it to an 

example rather than proving it. 

Example 1. Find a Fredholm integral equation equivalent to the following boundary 

value problem 

𝑦′′(𝑥) + 𝑦(𝑥) = 𝑥,     0 < 𝑥 < 𝜋, 

subject to the boundary conditions,    𝑦(0) = 1,     𝑦(𝜋) = 𝜋 − 1. 

First, we set 

𝑦′′(𝑥) = 𝑢(𝑥).  

Integrating both sides of from 0 to 𝑥 gives 

� 𝑦′′(𝑡)𝑑𝑡 = � 𝑢(𝑡)𝑑𝑡,
𝑥

0

𝑥

0
 

or equivalently 

𝑦′(𝑥) = 𝑦′(0) + � 𝑢(𝑡)𝑑𝑡.
𝑥

0
 

Integrating both sides from 0 to 𝑥 and using boundary condition 𝑦(0) = 1 we found 

𝑦(𝑥) = 1 + 𝑥𝑦′(0) + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
 

here we converted the double integral to a single integral as discussed before. By 

substituting 𝑥 = 𝜋  in both sides, we found 

𝑦(𝜋) = 1 + 𝜋𝑦′(0) + � (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡.
𝜋

0
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Solving for 𝑦′(0) we get 

𝑦′(0) =
1
𝜋

((𝜋 − 2) −� (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡).
𝜋

0
 

After substitution , yields 

𝑦(𝑥) = 1 +
𝑥
𝜋

((𝜋 − 2) −� (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡) + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡.
𝑥

0

𝜋

0
 

The final substitution gives 

𝑢(𝑥) =  𝑥 − 1 −
𝑥
𝜋

((𝜋 − 2) −� (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡) −� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡.
𝑥

0
 

𝜋

0
 

Using identity 

� (∙) = � (∙) + � (∙),
𝜋

𝑥

𝑥

0

𝜋

0
 

We will get the equation  

𝑢(𝑥) = 𝑥 − 1 −
𝑥
𝜋

(𝜋 − 2)

+
𝑥
𝜋
� (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡 +

𝑥
𝜋
� (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡 − � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,

𝑥

0

𝜋

𝑥

𝑥

0
 

after simple calculations and adding integrals with similar limits we get 

𝑢(𝑥) =
2𝑥 − 𝜋
𝜋

− �
𝑡(𝑥 − 𝜋)

𝜋

𝑥

0
𝑢(𝑡)𝑑𝑡 −�

𝑥(𝑡 − 𝜋)
𝜋

𝜋

𝑥
𝑢(𝑡)𝑑𝑡. 

Finally, the desired Fredholm integral equation of the second kind is given by 

𝑢(𝑥) =
2𝑥 − 𝜋
𝜋

− � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
𝜋

0
 

where the kernel  𝐾(𝑥, 𝑡) is defined by 

𝐾(𝑥, 𝑡) = �

𝑡(𝑥 − 𝜋)
𝜋

     0 ≤ 𝑡 ≤ 𝑥

𝑥(𝑡 − 𝜋)
𝜋

      𝑥 ≤ 𝑡 ≤ 𝜋.
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As before, the solution to the integral equation given by 𝑢 = 𝑦′′ we need integrate twice 

to get 𝑦. Computing first the value of  𝑦′(0) needed to do this from the partial result 

above. 
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CHAPTER 6 
 

Fredholm Integral Equations 

6.1 Introduction 

This chapter studies the nonhomogeneous Fredholm integral equations of the 

second kind of the form 

                      𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,        𝑎 ≤ 𝑥 ≤ 𝑏,                                 (6.1.1)
𝑏

𝑎
 

where  𝐾(𝑥, 𝑡) is the kernel and 𝜆 is a parameter. Here we focus our attention on 

degenerate or separable kernels. The standard form of the degenerate or separable kernel 

is given by 

                                                  𝐾(𝑥, 𝑡) = �𝑔𝑘(𝑥)ℎ𝑘(𝑡).
𝑛

𝑘=1

                                                  (6.1.2) 

Examples of separable kernels are: 𝑥 − 𝑡, 𝑥 + 𝑡, 𝑥𝑡, 𝑥2 − 3𝑥𝑡 + 𝑡2, etc. For non-separable 

kernels, we can approximate by expanding these kernels using Taylor’s expansion. The 

partial sums of the Taylor’s series are separable kernels. The kernel is said to be square 

integrable in both 𝑥, 𝑡 in the square 𝑎 ≤ 𝑥 ≤ 𝑏,    

𝑎 ≤ 𝑡 ≤ 𝑏 if the following regularity condition 

                                            � � |𝐾(𝑥, 𝑡)|2𝑑𝑥𝑑𝑡 < ∞
𝑏

𝑎

𝑏

𝑎
                                                       (6.1.3) 

is satisfied. This condition gives rise to the development of the solution of the Fredholm 

integral equation (6.1.1). Here we need to state, without proof, the so called Fredholm 

Alternative Theorem that relates the solutions of  Fredholm integral equations. For more 

details about the regularity condition and the Fredholm Alternative Theorem the reader is 
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referred to [5], [8], [9] and [11]. If the kernel 𝐾(𝑥, 𝑡) is real, continuous and bounded in 

the square 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑎 ≤ 𝑡 ≤ 𝑏, i.e. if  

                   |𝐾(𝑥, 𝑡)| ≤ 𝑀, 𝑎 ≤ 𝑥 ≤ 𝑏   and  𝑎 ≤ 𝑡 ≤  𝑏,                                         (6.1.4) 

and if 𝑓(𝑥) ≠ 0, and continuous in  𝑎 ≤ 𝑥 ≤ 𝑏, then the necessary condition that will 

guarantee that  (6.1.1) has only a unique solution is given by 

                                                          |𝜆|𝑀(𝑏 − 𝑎) < 1.                                                    (6.1.5) 

This comes from the Banach fixed point theorem. The transform 

(𝑇𝑢)(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 

a contractive with respect to the uniform norm on 𝐶([𝑎, 𝑏]) and so guarantees a unique 

fixed point. 

           The continuous solution to Fredholm integral equation may exist [15], even 

though the condition (6.1.5) is not satisfied. 

6.2 The Decomposition Method 

Adomian [2] recently developed the so-called Adomian decomposition method or 

simply the decomposition method. The method was introduced by Adomian in his resent 

books [2] and [3] and several related papers [1] and [4] for example. This method 

provides the solution in a series form. The decomposition method can be applied for 

linear and nonlinear integral equations. In the decomposition method we express the 

solution 𝑢(𝑥) of the integral equation (6.1.1) in a series form defined by 

                                                          𝑢(𝑥) = �𝑢𝑛(𝑥).                                                         (6.2.1)
∞

𝑛=0

 

Substituting the decomposition (6.2.1) into both sides of (6.1.1) yields 
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                                   �𝑢𝑛(𝑥) = 𝑓(𝑥) +
∞

𝑛=0

𝜆� 𝐾(𝑥, 𝑡)
𝑏

𝑎
��𝑢𝑛(𝑡)

∞

𝑛=0

�𝑑𝑡,                        (6.2.2) 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                   +𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                   +𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                                           +⋯                                         (6.2.3) 

The components 𝑢0,𝑢1,𝑢2, … of the unknown function 𝑢(𝑥) are determined if we set 

                                                              𝑢0(𝑥) = 𝑓(𝑥),                                                            (6.2.4) 

                                                  𝑢1(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
,                                            (6.2.5) 

                                                 𝑢2(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
,                                             (6.2.6) 

and so on. Solution of (6.1.1) can be written in recursive manner by 

                                                              𝑢0(𝑥) = 𝑓(𝑥),                                                             (6.2.7) 

                                          𝑢𝑛+1(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
,       𝑛 ≥ 0.                            (6.2.8) 

It is important to note that the series obtained from 𝑢(𝑥) frequently gives the exact 

solution. 

In the following example for solution we use the decomposition method. 

Example 1. We consider here the Fredholm integral equation 

𝑢(𝑥) = 𝑒𝑥 − 1 + � 𝑡𝑢(𝑡)𝑑𝑡.
1

0
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Applying the decomposition technique as discussed before we find 

𝑢0(𝑥) = 𝑒𝑥 − 1, 

             𝑢1(𝑥) = � 𝑡𝑢0(𝑡)𝑑𝑡 = � 𝑡(𝑒𝑡 − 1)𝑑𝑡 =
1
2

1

0

1

0
 , 

𝑢2(𝑥) = � 𝑡𝑢1(𝑡)
1

0
𝑑𝑡 = �

1
2
𝑡𝑑𝑡 =

1
4

.
1

0
 

We get solution in a series form given by 

𝑢(𝑥) = 𝑒𝑥 − 1 +
1
2

+
1
4

+
1
8

… 

                          = 𝑒𝑥 − 1 +
1
2
�1 +

1
2

+
1
4

+ ⋯�, 

where �1 + 1
2

+ 1
4

+ ⋯� is infinite geometric series,  𝑠 = 𝑎1
1−𝑟

= 1
1−1 2�

= 2, so for solution 

we get 

𝑢(𝑥) = 𝑒𝑥. 

For easier calculations there is a modified decomposition method for cases where 

𝑓(𝑥) consists of polynomial, or a combination of polynomial and other trigonometric or 

transcendental functions. In this modified method, we simply split the given function 

𝑓(𝑥) into two parts defined by 

                                                    𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥),                                                     (6.2.1.1) 

where 𝑓1(𝑥) consists of one term of 𝑓(𝑥) in many problems or two terms for other cases, 

and 𝑓2(𝑥) includes the remaining terms of 𝑓(𝑥). 

The integral equation (6.1.1) becomes 

                       𝑢(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,         𝑎 ≤ 𝑥 ≤ 𝑏.            (6.2.1.2)
𝑏

𝑎
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Substituting the decomposition given by (6.2.1) into both sides of (6.2.1.2) and using few 

terms of the expansion we obtain 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                                    +𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                                    +𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑏

𝑎
 

                                                                                                       +⋯                                   (6.2.1.3)                                                                 

The modified decomposition method works if we set 

𝑢0(𝑥) = 𝑓1(𝑥), 

                𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡,
𝑏

𝑎
 

𝑢2(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡,
𝑏

𝑎
 

𝑢3(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡,
𝑏

𝑎
 

and so on. This scheme for the determination of components 𝑢0(𝑥),𝑢1(𝑥),𝑢2(𝑥), … of 

the solution 𝑢(𝑥) of (6.1.1) can be written in a recursive manner by 

                                                            𝑢0(𝑥) = 𝑓1(𝑥),                                                          (6.2.1.4) 

                                  𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡,                                         (6.2.1.5)
𝑏

𝑎
 

                                   𝑢𝑛+1(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡,       𝑛 ≥ 1.                                 (6.2.1.6)
𝑏

𝑎
 

In many problems we need to use 𝑢0(𝑥) and 𝑢1(𝑥) only.  

           The following example illustrates the modified decomposition scheme. 
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Example 2.   We consider here the Fredholm integral equation 

𝑢(𝑥) = 𝑡𝑎𝑛−1𝑥 +
1
2
�𝑙𝑛2 −

𝜋
2
� 𝑥 + � 𝑥𝑢(𝑡)𝑑𝑡.

1

0
 

Applying the modified decomposition method, we first split the function 𝑓(𝑥) into 

𝑓1(𝑥) = 𝑡𝑎𝑛−1𝑥,    and    𝑓2(𝑥) = 1
2
�𝑙𝑛2 − 𝜋

2
� 𝑥. 

Therefore, we set 

                                                    𝑢0(𝑥) = 𝑡𝑎𝑛−1𝑥, 

and we get 

           𝑢1(𝑥) =
1
2
�𝑙𝑛2 −

𝜋
2
� 𝑥 + � 𝑥𝑢0(𝑡)𝑑𝑡

1

0
, 

                                   =
1
2
�𝑙𝑛2 −

𝜋
2
� 𝑥 + 𝑥� 𝑡𝑎𝑛−1𝑡𝑑𝑡

1

0
= 0. 

The components 𝑢𝑛(𝑥) = 0,    𝑛 ≥ 1 and for exact solution we get 

𝑢(𝑥) = 𝑡𝑎𝑛−1𝑥. 

6.3 The Direct Computation Method 

We next introduce an efficient method for solving Fredholm integral equations of 

the second kind  

𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡.
𝑏

𝑎
 

Our attention will be focused on separable or degenerate kernel 𝐾(𝑥, 𝑡), expressed in the 

form defined by (6.1.2). For simplicity we assume a single term kernel be expressed as 

                                                         𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡).                                                       (6.3.1) 

The equation (6.1.1) becomes 

                                       𝑢(𝑥) = 𝑓(𝑥) +  𝜆𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡.                                        (6.3.2)
𝑏

𝑎
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We substitute by 𝛼 the integral on right hand side by 

                                                            𝛼 = � ℎ(𝑡)𝑢(𝑡)𝑑𝑡.                                                    (6.3.3)
𝑏

𝑎
 

It follows that equation (6.3.2) becomes 

                                                    𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝛼𝑔(𝑥).                                                    (6.3.4) 

The solution 𝑢(𝑥) determined upon evaluating the constant 𝛼.This can be done by 

substituting (6.3.4) into (6.3.3). This approach [21] is different than other techniques. The 

direct computation method determines the exact solution in a closed form. This method 

gives rise to a system of algebraic equations depending on the structure of the kernel, 

where we need to evaluate more than one constant.  

This technique is illustrated in the next example. 

Example 1. We will use the direct computation method to solve the Fredholm integral 

equation 

𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥 − 𝑥 + � 𝑥𝑢(𝑡)𝑑𝑡.
𝜋/2

0
 

We set 

𝛼 = � 𝑢(𝑡)𝑑𝑡
𝜋/2

0
. 

If 𝑢 is a solution, then 

𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥 − 𝑥 +  𝛼𝑥. 

𝛼 = � (𝑡𝑠𝑖𝑛𝑡 − 𝑡 +
𝜋/2

0
 𝛼𝑡)𝑑𝑡 = 1. 

Substituting 𝛼 = 1  in 𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥 − 𝑥 +  𝛼𝑥, we get the exact solution 

𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥. 
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If there are two terms in the separable equation then technique become as two 

linear equations for two unknown coefficients and so for 𝑛 we have 𝑛 terms. 

6.4 The Successive Approximations Method 

In this method we replace the unknown function under the integral sign of the 

Fredholm integral equation of the second kind 

                               𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,         𝑎 ≤ 𝑥 ≤ 𝑏,
𝑏

𝑎
                      (6.4.1) 

by any selective real valued function 𝑢0(𝑥),     𝑎 ≤ 𝑥 ≤ 𝑏. The first approximation 𝑢1(𝑥) 

of 𝑢(𝑥) and the second approximation 𝑢2(𝑥) of 𝑢(𝑥)  are defined by 

                                   𝑢1(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡,                                            (6.4.2)
𝑏

𝑎
 

                                  𝑢2(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡.
𝑏

𝑎
                                            (6.4.3) 

This process can be continued in the same manner to obtain the  𝑛𝑡ℎ approximation given 

by  

�
𝑢0(𝑥)   =   𝑎𝑛𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

                                   𝑢𝑛(𝑥)  =   𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡,     𝑛 ≥ 1.       
𝑏

𝑎
         (6.4.4)                

 

The most commonly selected function for 𝑢0(𝑥) are 0,1 or 𝑥. At the limit, the solution 

𝑢(𝑥) is obtained by 

                                                          𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥),                                                       (6.4.5) 

so that the solution 𝑢(𝑥) is independent of the choice of 𝑢0(𝑥).  

The successive approximations method will be illustrated by the following example. 

Example 1.  Consider the Fredholm integral equation 
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𝑢(𝑥) = 𝑒𝑥 + 𝑒−1 � 𝑢(𝑡)𝑑𝑡.
1

0
 

As indicated above we can select any real valued function for the zeroth approximation, 

we set 

𝑢0(𝑥) = 0. 

After substitution for 𝑢1(𝑥), 𝑢2(𝑥) and 𝑢3(𝑥) we get 

𝑢1(𝑥) = 𝑒𝑥 + 𝑒−1 � 𝑢0(𝑡)𝑑𝑡 =
1

0
𝑒𝑥 , 

      𝑢2(𝑥) = 𝑒𝑥 + 𝑒−1 � 𝑒𝑡𝑑𝑡 =
1

0
𝑒𝑥 + 1 − 𝑒−1, 

𝑢3(𝑥) = 𝑒𝑥 + 1 − 𝑒−2. 

We obtain the 𝑛𝑡ℎ component 

𝑢𝑛(𝑥) = 𝑒𝑥 + 1 − 𝑒−(𝑛−1),         𝑛 ≥ 1. 

The solution 𝑢(𝑥) is given by 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

                                                     = lim
𝑛→∞

(𝑒𝑥 + 1 − 𝑒−(𝑛−1)) = 𝑒𝑥 + 1. 

6.5 The Method of Successive Substitutions 

This method introduces the solution of integral equations in a series form through 

evaluating single integral and multiple integrals. In this method, we set 𝑥 = 𝑡 and 𝑡 = 𝑡1 

in the Fredholm integral equation 

                                    𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,         𝑎 ≤ 𝑥 ≤ 𝑏,                 (6.5.1)
𝑏

𝑎
 

to obtain 
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                                  𝑢(𝑡) = 𝑓(𝑡) +  𝜆� 𝐾(𝑡, 𝑡1)𝑢(𝑡1)𝑑𝑡1.
𝑏

𝑎
                                             (6.5.2) 

Replacing 𝑢(𝑡) in the right-hand side of (6.5.1) by its value given by (6.5.2) yields 

   𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑏

𝑎

+ 𝜆2 � 𝐾(𝑥, 𝑡)� 𝐾(𝑡, 𝑡1)𝑢(𝑡1)
𝑏

𝑎

𝑏

𝑎
𝑑𝑡1𝑑𝑡.                                                 (6.5.3) 

Substituting  𝑥 = 𝑡1 and 𝑡 = 𝑡2 in (6.5.1) we obtain 

                                         𝑢(𝑡1) = 𝑓(𝑡1) +  𝜆� 𝐾(𝑡1, 𝑡2)𝑢(𝑡2)𝑑𝑡2.                                (6.5.4)
𝑏

𝑎
 

Substituting the value of 𝑢(𝑡1) obtained in (6.5.4) into the right-hand side of (6.5.3) leads 

to   

                   𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑏

𝑎
 

                                      +𝜆2 � � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1𝑑𝑡
𝑏

𝑎

𝑏

𝑎
 

                                    +𝜆3 � � � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1
𝑏

𝑎
)𝐾(𝑡1, 𝑡2)𝑢(𝑡2)𝑑𝑡2𝑑𝑡1

𝑏

𝑎

𝑏

𝑎
𝑑𝑡.             (6.5.5) 

The general series form for 𝑢(𝑥) can be written as 

𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑏

𝑎
 

                         +𝜆2� � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1𝑑𝑡
𝑏

𝑎

𝑏

𝑎
 

                         +𝜆3� � � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1
𝑏

𝑎
)𝐾(𝑡1, 𝑡2)𝑓(𝑡2)𝑑𝑡2𝑑𝑡1

𝑏

𝑎

𝑏

𝑎
𝑑𝑡 

                         +⋯                                                                                                                     (6.5.6) 

We note that the series solution converges uniformly in the interval [𝑎, 𝑏] if  
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𝜆𝑀(𝑏 − 𝑎) ≤ 1 where |𝐾(𝑥, 𝑡)| ≤ 𝑀. This comes from the contractive mapping 

principle or Banach fixed point theorem the proof of which appears in the texts [15], [17], 

[19] and others. The substitution of  𝑢(𝑥) occurs several times through the integrals. This 

is why it is called the method of successive substitutions. The technique is illustrated by 

the following example.  

Example 1. We solve the following Fredholm integral equation 

𝑢(𝑥) =
11
6
𝑥 +

1
4
� 𝑥𝑡𝑢(𝑡)𝑑𝑡,
1

0
 

by using the method of successive substitutions.  

Substituting  𝜆 = 1
4
, 𝑓(𝑥) = 11

6
𝑥, and 𝐾(𝑥, 𝑡) = 𝑥𝑡 into (6.5.6) yields 

𝑢(𝑥) =
11
6
𝑥 +

1
4
�

11
6
𝑥𝑡2

1

0
𝑑𝑡 +

1
16

� �
11
6

1

0

1

0
𝑥𝑡12𝑡2𝑑𝑡1𝑑𝑡 + ⋯, 

𝑢(𝑥) =
11
6
𝑥 �1 +

1
12

+
1

144
+ ⋯�, 

where  �1 + 1
12

+ 1
144

+ ⋯� is infinite geometric series and its sum 𝑠 = 1
1−1 12�

= 12
11

,  

this gives the exact solution by 

𝑢(𝑥) = 2𝑥. 

6.6 Homogeneous Fredholm Equations 

In this section we study the homogeneous Fredholm equation with separable 

kernel given by 

                                              𝑢(𝑥) =  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡.                                                   (6.6.1)
𝑏

𝑎
 

The trivial solution 𝑢(𝑥) = 0 is a solution of the homogeneous Fredholm equation. Our 

goal will be focused on finding nontrivial solutions if they exist. To get these solutions 
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we use the direct computational method that was used for nonhomogeneous Fredholm 

integral equations. Consider a one term kernel given by 

                                                       𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡),                                                        (6.6.2) 

so that (6.6.1) becomes 

                                                𝑢(𝑥) = 𝜆𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡.                                              (6.6.3)
𝑏

𝑎
 

Using the direct computation method we set 

                                                           𝛼 = � ℎ(𝑡)𝑢(𝑡)𝑑𝑡,                                                     (6.6.4)
𝑏

𝑎
 

so that (6.6.3) becomes 

                                                               𝑢(𝑥) = 𝜆𝛼𝑔(𝑥).                                                        (6.6.5) 

Substitute (6.6.5) into (6.6.4) we obtain  

                                                      𝛼 = 𝜆𝛼� ℎ(𝑡)𝑔(𝑡)𝑑𝑡,                                                     (6.6.6)
𝑏

𝑎
 

or equivalently 

                                                         1 = 𝜆� ℎ(𝑡)𝑔(𝑡)𝑑𝑡,                                                    (6.6.7)
𝑏

𝑎
 

which gives a numerical value for 𝜆 ≠ 0. Non-zero values of 𝜆 that result from solving 

the algebraic system of equations are called the eigenvalues of the kernel. Substituting 

these values of 𝜆 in (6.6.5) gives the eigenfunctions of the equation which are the 

nontrivial solutions of (6.6.1). 

The following example will be used to explain the technique introduced above 

and the concept of eigenvalues and eigenfunctions. 

Example 1. Solve the homogenous Fredholm integral equation with a two term kernel 
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𝑢(𝑥) = 𝜆� (6𝑥 − 2𝑡)𝑢(𝑡)𝑑𝑡.
1

0
 

This equation can be rewritten as 

𝑢(𝑥) = 6𝜆𝛼𝑥 − 𝛽𝜆, 

where 𝛼 and 𝛽 defined by 

𝛼 = � 𝑢(𝑡)𝑑𝑡,
1

0
              𝛽 = � 2𝑡𝑢(𝑡)𝑑𝑡.

1

0
         

Substituting 𝑢(𝑥) in the formula 𝛼 and 𝛽, we get 

𝛼 = � (6𝜆𝛼𝑡 − 𝛽𝜆)
1

0
𝑑𝑡,             𝛽 = � 2𝑡(6𝜆𝛼𝑡 − 𝛽𝜆)𝑑𝑡.

1

0
   

Thus 

𝛼 = 3𝜆𝛼 − 𝛽𝜆,            𝛽 = 4𝜆𝛼 − 𝛽𝜆,     

(1 − 3𝜆)𝛼 + 𝜆𝛽 = 0 

−4𝜆𝛼 + (1 + 𝜆)𝛽 = 0. 

�(1 − 3𝜆) 𝜆
−4𝜆 (1 + 𝜆)� = 0, 

(1 − 3𝜆)(1 + 𝜆) + 4𝜆2 = 0. 

Solving the quadratic equation for 𝜆 we get 𝜆1 = 𝜆2 = 1. Then substituting in algebraic 

equations, we get  𝛽 = 2𝛼. The eigenfunctions corresponding to 𝜆1 = 𝜆2 = 1 are given 

by        𝑢1(𝑥) = 𝑢2(𝑥) = 6𝛼𝑥 − 2𝛼.  Thus 𝜆 = 1 is the only eigenvalue and the 

corresponding eigenspace is one-dimensional and spanned by the eigenfunction  

𝑢(𝑥) = 3𝑥 − 1. 
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CHAPTER 7 

 Volterra Integral Equations 

7.1 Introduction 

In this chapter we introduce the nonhomogeneous Volterra integral equation of 

the second kind of the form  

                                      𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
                                            (7.1.1) 

where  𝐾(𝑥, 𝑡) is the kernel, and 𝜆 is parameter. As indicated earlier the limits of 

integration for Volterra integral equations [20] are functions of 𝑥 and not constants as in 

Fredholm integral equations. The kernel here will be considered as a separable kernel. 

We want to determine the solution 𝑢(𝑥) applying various methods. 

7.2 The Adomian Decomposition Method 

            Adomian recently developed the Adomian decomposition method that proved to 

work for all types of differential, integral and integro-differential equations, linear or 

nonlinear [1], [2], [3], [4].   

The decomposition method establishes the solution in the form of power series. In 

this method 𝑢(𝑥) will be composed into components that will be determined, given by 

the series form 

                                                              𝑢(𝑥) = �𝑢𝑛(𝑥),                                                     (7.2.1)
∞

𝑛=0

 

with 𝑢0 identified as all terms out of the integral sign, i.e. 

                                                             𝑢0(𝑥) = 𝑓(𝑥).                                                              (7.2.2) 

Substituting (7.2.1) into (7.1.1) yields 
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�𝑢𝑛(𝑥) =
∞

𝑛=0

 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)(�𝑢𝑛(𝑡)
∞

𝑛=0

)𝑑𝑡,
𝑥

0
 

which by using few terms of the expansion gives 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
 

+ 𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
 

+ 𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑥

0
 

+ 𝜆� 𝐾(𝑥, 𝑡)𝑢3(𝑡)𝑑𝑡
𝑥

0
 

                                                     +⋯                                                                        (7.2.3) 

The components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥), … of the unknown function 𝑢𝑛(𝑥) are 

determined if we set 

                                                              𝑢0(𝑥) = 𝑓(𝑥),                                                             (7.2.4) 

                                              𝑢1(𝑥) =  𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
,                                               (7.2.5) 

                                             𝑢2(𝑥) =  𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
,                                                (7.2.6) 

                                             𝑢3(𝑥) =  𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑥

0
,                                                (7.2.7) 

and so on. This scheme for the determination of components of solution can be written in 

a recursive scheme by 

                                                            𝑢0(𝑥) = 𝑓(𝑥),                                                               (7.2.8) 

                                    𝑢𝑛+1(𝑥) =  𝜆� 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

0
,      𝑛 ≥ 0.                                  (7.2.9) 
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The solution 𝑢(𝑥) is determined in a series form using 

𝑢(𝑥) = �𝑢𝑛(𝑥).
∞

𝑛=0

 

The series obtained for 𝑢(𝑥) always provides the exact solution. It is important to 

note here that a few terms of the series usually provide the higher accuracy level of the 

approximation of the solution if compared with other numerical techniques. 

It is important to indicate that the decomposition method provides the solution of 

any style of equations in the form of series with easily computable components. These 

applications have shown a very fast convergence of the series solution.   

The following illustrative example will be discussed to explain the decomposition 

method. 

Example 1. We consider the Volterra integral equation 

𝑢(𝑥) = 4𝑥 + 2𝑥2 − � 𝑢(𝑡)𝑑𝑡.
𝑥

0
 

Applying the decomposition technique we find 𝑢0(𝑥),𝑢1(𝑥),𝑢2(𝑥),𝑢3(𝑥) by 

𝑢0(𝑥) = 4𝑥 + 2𝑥2, 

                𝑢1(𝑥) = −� (4𝑡 + 2𝑡2)𝑑𝑡,
𝑥

0
 

                       = −�2𝑥2 +
2
3
𝑥3�, 

                          𝑢2(𝑥) = −� −�2𝑡2 +
2
3
𝑡3� 𝑑𝑡,

𝑥

0
 

               =
2
3
𝑥3 +

1
6
𝑥4, 

                      𝑢3(𝑥) = −� �
2
3
𝑡3 +

1
6
𝑡4� 𝑑𝑡,

𝑥

0
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                        = −�
1
6
𝑥4 +

1
30

𝑥5�. 

For solution in series form we get 

𝑢(𝑥) = 4𝑥 + 2𝑥2 − �2𝑥2 +
2
3
𝑥3� +

2
3
𝑥3 +

1
6
𝑥4 − �

1
6
𝑥4 +

1
30

𝑥5� + ⋯, 

The solution is 

𝑢(𝑥) = 4𝑥. 

The series solution usually employed for numerical approximation, and the more 

terms we obtain provide more accuracy in the approximation of the solution. Even 

through the decomposition method proved to be powerful and reliable, but it can be used 

in a more effective manner which we called the modified decomposition method. The 

volume of calculations will be reduced by evaluating only the first two components 

𝑢0(𝑥) and 𝑢1(𝑥). The modified technique works for specific problems where 𝑓(𝑥) 

consists of at least of two terms. 

It is important to note that the modified decomposition method, which was 

introduced before for the Fredholm integral equations, is also applicable here. In Volterra 

integral equations where 𝑓(𝑥) consists of a polynomial, or a combination of polynomial 

and other trigonometric or transcendental functions, the modified decomposition method 

works well. In this case we decompose 𝑓(𝑥) into two parts such as 

                                                   𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥).                                                      (7.2.1.1) 

                               𝑢(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡.                                (7.2.1.2)
𝑥

0
 

Using few terms of the expansions we obtain 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 𝑓1(𝑥) + 𝑓2(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
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                                                                                    +𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
 

                                                                                       +𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑥

0
 

                                                                                       +𝜆� 𝐾(𝑥, 𝑡)𝑢3(𝑡)𝑑𝑡
𝑥

0
 

                                                                                                          +⋯                                (7.2.1.3)                            

We assign 𝑓1(𝑥) only to the component 𝑢0(𝑥), and the 𝑓2(𝑥)  will be added to the 

component 𝑢1(𝑥). We set 

                                                           𝑢0(𝑥) = 𝑓1(𝑥),                                                           (7.2.1.4) 

                                     𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡,
𝑥

0
                                      (7.2.1.5) 

                                                    𝑢2(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡,                                       (7.2.1.6)
𝑥

0
 

                                                   𝑢3(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡,                                        (7.2.1.7)
𝑥

0
 

and so on. The components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥), …of the solution can be written 

by 

                                                            𝑢𝑜(𝑥) = 𝑓1(𝑥),                                                          (7.2.1.8) 

                                     𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡,                                       (7.2.1.9)
𝑥

0
 

                                    𝑢𝑛+1(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡,       𝑛 ≥ 1.
𝑥

0
                             (7.2.1.10) 

The following example illustrates how to obtain the solution of the Volterra 

integral equation by using the modified decomposition method.  
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Example 2. Solve the following Volterra integral equation by using the modified 

decomposition method  

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 + �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥 + 𝑥� 𝑒𝑠𝑖𝑛𝑡𝑢(𝑡)𝑑𝑡.
𝑥

0
 

Using this method, we first decompose the function 𝑓(𝑥) into 

𝑓1(𝑥) = 𝑐𝑜𝑠𝑥, 

𝑓2(𝑥) = �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥. 

We find 𝑢0(𝑥) and 𝑢1(𝑥) by 

𝑢0(𝑥) = 𝑐𝑜𝑠𝑥, 

𝑢1(𝑥) = �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥 + 𝑥� 𝑒𝑠𝑖𝑛𝑡𝑢0(𝑡)𝑑𝑡,
𝑥

0
 

         = �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥 + 𝑥� 𝑒𝑠𝑖𝑛𝑡𝑐𝑜𝑠𝑡𝑑𝑡,
𝑥

0
 

          = �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥 − �1 − 𝑒𝑠𝑖𝑛𝑥�𝑥 = 0. 

The exact solution is 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥. 

It is clear that only two components are calculated to determine the exact solution. 

7.3 The Series Solution Method 

Now we introduce the series solution method that is practical method to solve the 

Volterra integral equation with variable limits of integration 

                                        𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                                             (7.3.1)
𝑥

0
 

where 𝐾(𝑥, 𝑡) is the kernel of the integral equation, and 𝜆 is parameter. In this method we 

will follow a parallel approach to the method of the series solution that usually applied in 

solving an ordinary differential equation around ordinary point. The method applicable 
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when 𝑢(𝑥) is an analytic function, i. e. 𝑢(𝑥) has a Taylor expansion around 𝑥 = 0  so, 

𝑢(𝑥) can be expressed by a series expansion [21] given by 

                                                        𝑢(𝑥) = �𝑎𝑛𝑥𝑛,
∞

𝑛=0

                                                            (7.3.2) 

where the coefficients 𝑎𝑛 are constants that will be determined. Substituting (7.3.2) into 

both sides of (7.3.1) yields 

                              �𝑎𝑛𝑥𝑛 = 𝑓(𝑥) +
∞

𝑛=0

 𝜆� 𝐾(𝑥, 𝑡)��𝑎𝑛𝑡𝑛
∞

𝑛=0

� 𝑑𝑡,                              (7.3.3)
𝑥

0
 

by using few terms of the expansions in both sides, we find 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑎0𝑑𝑡,
𝑥

0
 

                                                                      +𝜆� 𝐾(𝑥, 𝑡)𝑎1𝑡𝑑𝑡,
𝑥

0
 

                                                                        +𝜆� 𝐾(𝑥, 𝑡)𝑎2𝑡2𝑑𝑡,
𝑥

0
 

                                                                        +𝜆� 𝐾(𝑥, 𝑡)𝑎3𝑡3𝑑𝑡,
𝑥

0
 

                                                                                                  +⋯                                            (7.3.4) 

We write the Taylor expansion for 𝑓(𝑥) and evaluate the first few integrals. Then 

we equate the coefficients of like powers of 𝑥 in both sides, so we find 𝑎1,𝑎2,𝑎3, … . 

Substituting these coefficients 𝑎𝑛, 𝑛 ≥ 0,  gives the solution in a series form. This may 

lead to a solution in a closed form if the expansion obtained is a Taylor expansion to a 

well-known elementary function.  

           The following example illustrates the series solution method. 

Example 1. Use the series solution method to solve 
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𝑢(𝑥) = 1 + � (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0
.  

Substituting 𝑢(𝑥) by the series  

                  𝑢(𝑥) = �𝑎𝑛𝑥𝑛,
∞

𝑛=0

 

into both sides of the equation  leads to 

�𝑎𝑛𝑥𝑛 = 1 + � (𝑡 − 𝑥)��𝑎𝑛𝑡𝑛
∞

𝑛=0

� 𝑑𝑡,
𝑥

0

∞

𝑛=0

 

which gives 

�𝑎𝑛𝑥𝑛 = 1 + � ��𝑎𝑛𝑡𝑛+1 − 𝑥�𝑎𝑛𝑡𝑛
∞

𝑛=0

∞

𝑛=0

� 𝑑𝑡.
𝑥

0

∞

𝑛=0

 

Evaluating the integrals on the right-hand side that involves terms of the form 𝑡𝑛,  𝑛 ≥ 0 

yields 

�𝑎𝑛𝑥𝑛 = 1 −�
1

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛𝑥𝑛+2,

∞

𝑛=0

∞

𝑛=0

 

or equivalently 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 1 −
1
2!
𝑎0𝑥2 −

1
3!
𝑎1𝑥3 −

1
12

𝑎2𝑥4 + ⋯ 

Equating the coefficients of like powers of 𝑥 in both sides we find 

𝑎0 = 1,     𝑎1 = 0,     𝑎2 = −
1
2!

,     𝑎3 = 0,     𝑎4 =
1
4!

 , 

and generally 

𝑎2𝑛 = (−1)𝑛 1
(2𝑛)!

 ,     for   𝑛 ≥ 0, 

𝑎2𝑛+1 = 0,    for   𝑛 ≥ 0. 

We find the solution in series form   𝑢(𝑥) = 1 − 1
2!
𝑥2 + 1

4!
𝑥4 − 1

6!
𝑥6 + ⋯, 
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the solution in a closed form     𝑢(𝑥) = 𝑐𝑜𝑠𝑥.  

7.4 Successive Approximations Method  

            The method of successive approximations used before for handling Fredholm 

integral equations will be implemented here to solve Volterra integral equation. In this 

method we replace the unknown function 𝑢(𝑥) under integral sign of the Volterra 

equation  

                                         𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                                           (7.4.1)
𝑥

0
 

by any real valued continuous function 𝑢0(𝑥), called the zeroth approximation. This 

substitution will give the first approximation 𝑢1(𝑥) by 

                                      𝑢1(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡.                                          (7.4.2)
𝑥

0
 

The second approximation obtained by replacing 𝑢0(𝑥) in (7.4.2) by 𝑢1(𝑥) obtained 

above, hence we find 

                                        𝑢2(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡.                                        (7.4.3)
𝑥

0
 

This process can be continued to obtain the 𝑛-th approximation. So, we have 

�
𝑢0(𝑥) = 𝑎𝑛𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡,     𝑛 ≥ 1.
𝑥

0
   

The most commonly selected functions for 𝑢0(𝑥)  are  0, 1,  or 𝑥. The successive 

approximation are leading to a solution 𝑢(𝑥)   

                                                       𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥).                                                          (7.4.4) 

of the equation (7.4.1) 
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So the solution 𝑢(𝑥) will be independent of the choice of 𝑢0(𝑥) if we know for some 

series such as in the contraction mapping principle that the solution is unique. In this case 

the solution is given in a series form 

𝑢(𝑥) = lim
𝑛→∞

(�𝑢𝑛(𝑥)
∞

𝑛=0

). 

The zeroth approximation is not defined and given by a selective real valued function. 

To illustrate this method we solve the following example.  

Example 1. Solve the Volterra integral equation 

𝑢(𝑥) = 𝑥 + � (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0
 

by the successive approximations method. We first select any real valued function for the 

zeroth approximation, hence we set  𝑢0(𝑥) = 0. 

                                       𝑢1(𝑥) = 𝑥 + � (𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡,
𝑥

0
 

𝑢1(𝑥) = 𝑥. 

                              𝑢2(𝑥) = 𝑥 + � (𝑡 − 𝑥)𝑡𝑑𝑡,
𝑥

0
 

              𝑢2(𝑥) = 𝑥 −
1
3!
𝑥3, 

                           𝑢3(𝑥) = 𝑥 −
1
3!
𝑥3 +

1
5!
𝑥5, 

                                          𝑢𝑛(𝑥) = �(−1)𝑘−1
𝑥2𝑘−1

(2𝑘 − 1)!

𝑛

𝑘=1

,        𝑛 ≥ 1. 

The solution 𝑢𝑛(𝑥) is given by 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥), 
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                                           = lim
𝑛→∞

(�(−1)𝑘−1
𝑥2𝑘−1

(2𝑘 − 1)!

𝑛

𝑘=1

), 

= 𝑠𝑖𝑛𝑥. 

7.5 The Method of Successive Substitutions 

           The technique to be used here is completely identical to that we used before. In 

this method, we set 𝑥 = 𝑡 and 𝑡 = 𝑡1 in the Volterra integral equation 

                                       𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
                                             (7.5.1) 

to obtain 

                                     𝑢(𝑡) = 𝑓(𝑡) + 𝜆� 𝑘(𝑡, 𝑡1)𝑢(𝑡1)𝑑𝑡1.
𝑡

0
                                            (7.5.2) 

Replacing 𝑢(𝑡) at the right-hand side of (7.5.1) by obtained value given by (7.5.2) yields 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
 

                                                          +𝜆2 � 𝐾(𝑥, 𝑡)� 𝐾(𝑡, 𝑡1)𝑢(𝑡1)𝑑𝑡1𝑑𝑡.
𝑥

0

𝑥

0
                   (7.5.3) 

Substituting  𝑥 = 𝑡1 and 𝑡 = 𝑡2 in (7.5.1) we obtain 

                                    𝑢(𝑡1) = 𝑓(𝑡1) +  𝜆� 𝐾(𝑡1, 𝑡2)𝑢(𝑡2)𝑑𝑡2.                                     (7.5.4)
𝑡1

0
 

Substituting the value of 𝑢(𝑡1) obtained in (7.5.4) into the right hand side of (7.5.3) leads 

to 

                          𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
 

      +𝜆2� � 𝐾(𝑥, 𝑡)
𝑡

0
𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1𝑑𝑡

𝑥

0
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                                     +𝜆3 � � � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝐾(𝑡1, 𝑡2)𝑢(𝑡2)𝑑𝑡2𝑑𝑡1𝑑𝑡.
𝑡1

0

𝑡

0

𝑥

0
 

                                                                                                                                    (7.5.5) 

The general series form for 𝑢(𝑥) can be rewritten as 

                          𝑢(𝑥) = 𝑓(𝑥) + 𝜆� 𝑘(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
 

        +𝜆2� � 𝐾(𝑥, 𝑡)
𝑡

0
𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1𝑑𝑡

𝑥

0
 

                                       +𝜆3 � � � 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝐾(𝑡1, 𝑡2)𝑓(𝑡2)𝑑𝑡2𝑑𝑡1𝑑𝑡.
𝑡1

0

𝑡

0

𝑥

0
 

                                                   +⋯                                                                                (7.5.6)                                  

In this method the unknown function 𝑢(𝑥) is substituted by the given function 

𝑓(𝑥) that makes the evaluation of the multiple integrals easily computable. This process 

occurs several times through the integrals and this is why it is called the method of 

successive substitutions. The technique will be illustrated by solving the last example in 

this new format. 

Example 1.  We solve the following Volterra integral equation 

𝑢(𝑥) = 𝑥 −� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
 

by using the method of successive substitutions. Substituting 𝜆 = −1, 𝑓(𝑥) = 𝑥, and 

𝐾(𝑥, 𝑡) = (𝑥 − 𝑡) into (7.5.6) we obtain 

𝑢(𝑥) = 𝑥 − � (𝑥 − 𝑡)𝑡𝑑𝑡 + � � (𝑥 − 𝑡)
𝑡

0

𝑥

0

𝑥

0
(𝑡 − 𝑡1)𝑡1𝑑𝑡1𝑑𝑡 + ⋯, 

or equivalently 

𝑢(𝑥) = 𝑥 − � (𝑥𝑡 − 𝑡2)𝑑𝑡 + � � (𝑥 − 𝑡)(𝑡𝑡1 − 𝑡12)𝑑𝑡1𝑑𝑡 + ⋯ ,
𝑡

0

𝑥

0

𝑥

0
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therefore, we obtain the solution in a series form 

𝑢(𝑥) = 𝑥 −
1
3!
𝑥3 +

1
5!
𝑥5 + ⋯, 

or in a closed form 

𝑢(𝑥) = 𝑠𝑖𝑛𝑥 

upon using the Taylor expansion for 𝑠𝑖𝑛𝑥. We get the same solution as before. 

7.6 Volterra Integral Equations of the First Kind 

            In this section we will study the Volterra integral equation of the first kind with 

separable kernel given by 

                                                       𝑓(𝑥) = � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡.                                             (7.6.1)
𝑥

0
 

It is important to note that the Volterra integral equation of the first kind can be handled 

by reducing this equation to Volterra equation of the second kind. This goal can be 

accomplished by differentiating both sides of (7.6.1) with respect to 𝑥 to obtain 

                                           𝑓′(𝑥) = 𝐾(𝑥, 𝑥)𝑢(𝑥) + � 𝐾𝑥(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                          (7.6.2)
𝑥

0
 

by using Leibnitz rule. If  𝐾(𝑥, 𝑥) ≠ 0 in the interval of discussion, then dividing both 

sides of (7.6.2) by 𝐾(𝑥, 𝑥) yields 

                                              𝑢(𝑥) =
𝑓′(𝑥)
𝐾(𝑥, 𝑥)

−
1

𝐾(𝑥, 𝑥)� 𝐾𝑥(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
                   (7.6.3) 

a Volterra integral equation of the second kind. The case in which the kernel 𝐾(𝑥, 𝑥) = 0, 

leads to a complicated behavior of the problem that will not be investigated here. 

To solve (7.6.3) we select any method that we discussed before. The technique of 

differentiating both sides of Volterra integral equation of the first kind, verifying that 
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𝐾(𝑥, 𝑥) ≠ 0, reducing to Volterra integral equation of the second kind and solving the 

resulting equation will be illustrated by discussing the following example. 

Example 1. Find the solution of the Volterra equation of the first kind 

5𝑥2 + 𝑥3 = � (5 + 3𝑥 − 3𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
. 

Note that 𝐾(𝑥, 𝑡) = 5 + 3𝑥 − 3𝑡, therefore 𝐾(𝑥, 𝑥) = 5 ≠ 0, and differentiating, gives 

10𝑥 + 3𝑥2 = 5𝑢(𝑥) + � 3𝑢(𝑡)𝑑𝑡,
𝑥

0
 

or equivalently 

𝑢(𝑥) = 2𝑥 +
3
5
𝑥2 −

1
5
� 3𝑢(𝑡)𝑑𝑡,
𝑥

0
 

We prefer to use the modified decomposition method. We set   𝑢0(𝑥) = 2𝑥, which gives 

𝑢1(𝑥) =
3
5
𝑥2 −

3
5
� 2𝑡𝑑𝑡
𝑥

0
= 0. 

For 𝑢𝑛(𝑥) = 0,     𝑛 ≥ 2. Exact solution is  𝑢(𝑥) = 2𝑥.  
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CHAPTER 8 

  Integro-Differential Equations 

8.1 Introduction 

            In this chapter we shall be concerned with the integro-differential equations where 

both differential and integral operators will appear in same equation. This type of 

equations was introduced by Volterra [5], [6] and [20] in 1900. These equations came up 

in his research work on population growth. More details about the sources where these 

equations arise can be found in physics, biology and engineering applications as well as 

in advanced integral equations books such as [7], [11], [12] and [16]. In integro-

differential equations the unknown function 𝑢(𝑥) and one or more its derivatives such as 

𝑢′(𝑥),𝑢′′(𝑥), … appear outside and under the integral sign as well. 

The following are examples of linear integro-differential equations: 

                                         𝑢′(𝑥) = 𝑥 − � 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡,   𝑢(0) = 0,
1

0
                                 (8.1.1) 

                      𝑢′′(𝑥) = 𝑒𝑥 − 𝑥 + � 𝑥𝑡𝑢′(𝑡)𝑑𝑡,     𝑢(0) = 1,   𝑢′(0) = 1,
1

0
                    (8.1.2) 

                              𝑢′(𝑥) = 𝑥 − � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,     𝑢(0) = 0,                                       (8.1.3)
𝑥

0
 

                      𝑢′′(𝑥) = −𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,     𝑢(0) = 0,   𝑢′(0) = −1.               (8.1.4)
𝑥

0
 

Of these equations (8.1.1) and (8.1.2) are Fredholm integro-differential equations, which 

are linear, and equations (8.1.3) and (8.1.4) are the Volterra integro-differential 

equations. Our concern in this paper will be focused only on the linear integro-differential 

equations. The initial conditions are needed to determine the constants of integration. 
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8.2 Fredholm Integro-Differential Equations 

            In this section we will discuss methods used to solve Fredholm integro-

differential equations. We focus our concern on the equations that involve separable 

kernels where the kernel 𝐾(𝑥, 𝑡) can be expressed as a finite sum of the form 

                                                𝐾(𝑥, 𝑡) = �𝑔𝑘(𝑥)ℎ𝑘(𝑡).
𝑛

𝑘=1

                                                    (8.2.1) 

We will make our analysis on a one term kernel 𝐾(𝑥, 𝑡) of the form 

                                                    𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡),                                                            (8.2.2) 

and this can be generalized for other cases. The non-separable kernel can be 

approximated by a separable kernel by using the Taylor expansion for the kernel 

involved. Then we have the exact solution or an approximation to the solution with the 

highest desirable accuracy. We first start with the most practical method. 

8.2.1 The Direct Computation Method 

            This method has been introduced in previous chapter. The standard form to the 

Fredholm Integro-Differential Equation given by 

    𝑢(𝑛)(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
1

0
   𝑢(𝑘)(0) = 𝑏𝑘,     0 ≤ 𝑘 ≤ (𝑛 − 1),         (8.2.1.1) 

where 𝑢(𝑛)(𝑥) indicates the 𝑛-th derivative of 𝑢(𝑥) with respect to 𝑥 and 𝑏𝑘 are constants 

that define the proper initial conditions. Substitute (8.2.2) into (8.2.1.1) to get  

    𝑢(𝑛)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡,
1

0
    𝑢𝑘(0) = 𝑏𝑘,   0 ≤ 𝑘 ≤ (𝑛 − 1).        (8.2.1.2) 

We set 

                                                      𝛼 = � ℎ(𝑡)𝑢(𝑡)𝑑𝑡.
1

0
                                                       (8.2.1.3) 
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With 𝛼 defined in (8.2.1.3), the equation (8.2.1.2) can be written by 

                                               𝑢(𝑛)(𝑥) = 𝑓(𝑥) + 𝛼𝑔(𝑥).                                                    (8.2.1.4) 

 We need to determine the constant 𝛼 to evaluate the exact solution 𝑢(𝑥). We 

integrate both sides 𝑛 times from 0 to 𝑥, and by using the given initial conditions we 

obtain 𝑢(𝑥) given by 

                                                        𝑢(𝑥) = 𝑝(𝑥;𝛼),                                                             (8.2.1.5) 

 Where 𝑝(𝑥;𝛼) is the result derived from integrating equation (8.2.1.4) and by 

using the given initial condition.  Substituting (8.2.1.5) into right side of (8.2.1.3), 

integrating and solving the resulting equation leads to determination of 𝛼. The exact 

solution of (8.2.1.1) follows immediately upon substituting the resulting value of 𝛼 into 

(8.2.1.5). To give a clear view of the technique, we illustrate the method by solving the 

following example. 

Example 1. Solve the Fredholm integro-differential equation 

𝑢′(𝑥) = 1 −
1
3
𝑥 + 𝑥� 𝑡𝑢(𝑡)𝑑𝑡,        𝑢(0) = 0,

1

0
  

by using direct computation method. 

The equation may be written in the form 

𝑢′(𝑥) = 1 −
1
3
𝑥 + 𝛼𝑥,      𝑢(0) = 0   

Where the constant 𝛼 is defined by 

𝛼 = � 𝑡𝑢(𝑡)𝑑𝑡
1

0
,  

Integrating both sides of  𝑢′(𝑥) from 0 to 𝑥 and using initial condition we obtain 

𝑢(𝑥) = 𝑥 + �
𝛼
2
−

1
6
� 𝑥2. 
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Substitute this into the integral defining 𝛼, integrate, and solve for 𝛼 to find  

𝛼 =
1
3

. 

So, the exact solution is 

𝑢(𝑥) = 𝑥. 

8.2.2 The Adomian Decomposition Method 

            This method has been introduced already for handling Fredholm integral 

equations. In this section we will show how it can be implemented to determine a series 

solution to the Fredholm integro-differential equations. As in the last section, consider the 

Fredholm integro-differential equation given by 

    𝑢(𝑛)(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,    𝑢(𝑘)(0) = 𝑏𝑘,   0 ≤ 𝑘 ≤ (𝑛 − 1)      (8.2.2.1)
1

0
 

where  𝑢(𝑛)(𝑥) indicates the 𝑛-th derivative of 𝑢(𝑥) with respect to x and 𝑏𝑘 are 

constants that give the initial conditions. Substituting 𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡)  into (8.2.2.1) 

we obtain 

                                            𝑢(𝑛)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡.                           (8.2.2.2)   
1

0
 

In an operator form, the equation (8.2.2.2) can be written as 

                                    𝐿𝑢(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡,                                     (8.2.2.3)  
1

0
 

where the differential operator 𝐿 is given by 

                                                                 𝐿 =
𝑑𝑛

𝑑𝑥𝑛
.                                                          (8.2.2.4) 

Here 𝐿 is an invertible operator, therefore the integral operator 𝐿−1 is an 𝑛-fold 

integration operator and may be considered as definite integrals from 0 to 𝑥 for each 



 

83 
 

integral. Applying 𝐿−1 to both sides of (8.2.2.3), yields 

𝑢(𝑥) =  𝑏0 + 𝑏1𝑥 +
1
2!
𝑏2𝑥2 + ⋯+

1
(𝑛 − 1)!

𝑏𝑛−1𝑥𝑛−1 + 𝐿−1(𝑓(𝑥)) 

                                            + �� ℎ(𝑡)𝑢(𝑡)𝑑𝑡
1

0
� 𝐿−1�𝑔(𝑥)�.                                        (8.2.2.5) 

We have integrated (8.2.2.2) 𝑛 times from 0 to 𝑥 and using the initial conditions at every 

step of integration. It is important to indicate that the equation (8.2.2.5) is a standard 

Fredholm integral equation. In the decomposition method we define the solution  𝑢(𝑥) of 

(8.2.2.1) in a series form given by 

                                                         𝑢(𝑥) =  �𝑢𝑛(𝑥)
∞

𝑛=0

.                                                 (8.2.2.6) 

Substituting (8.2.2.6) into both sides of (8.2.2.5) we get 

�𝑢𝑛(𝑥) =  �
1
𝑘!
𝑏𝑘𝑥𝑘 +

𝑛−1

𝑘=0

∞

𝑛=0

𝐿−1(𝑓(𝑥)) 

                                                          +�� ℎ(𝑡)
1

0
��𝑢𝑛(𝑡)

∞

𝑛=0

�𝑑𝑡� 𝐿−1�𝑔(𝑥)�,          (8.2.2.7) 

or equivalently  

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ =  �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1(𝑓(𝑥))

𝑛−1

𝑘=0

 

+(� ℎ(𝑡)𝑢0(𝑡)𝑑𝑡
1

0
)𝐿−1(𝑔(𝑥)) 

+(� ℎ(𝑡)𝑢1(𝑡)𝑑𝑡
1

0
)𝐿−1(𝑔(𝑥)) 

    +(� ℎ(𝑡)𝑢2(𝑡)𝑑𝑡
1

0
)𝐿−1(𝑔(𝑥)) 
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                                                    +⋯                                                                               (8.2.2.8) 

The components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥), … of the unknown function 𝑢(𝑥) are 

determined in a recursive manner, in a similar fashion as discussed before, if we set 

                         𝑢0(𝑥) =  �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1�𝑓(𝑥)�,

𝑛−1

𝑘=0

                                                (8.2.2.9) 

                            𝑢1(𝑥) =  �� ℎ(𝑡)𝑢0(𝑡)𝑑𝑡
1

0
� 𝐿−1�𝑔(𝑥)�,                                        (8.2.2.10) 

                           𝑢2(𝑥) = �� ℎ(𝑡)𝑢1(𝑡)𝑑𝑡
1

0
� 𝐿−1�𝑔(𝑥)�,                                          (8.2.2.11) 

                          𝑢3(𝑥) = �� ℎ(𝑡)𝑢2(𝑡)𝑑𝑡
1

0
� 𝐿−1�𝑔(𝑥)�,                                           (8.2.2.12) 

and so on. For the determination of the components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥), … of the 

solution 𝑢(𝑥) in general can be written in a recursive relationship by 

                                          𝑢0(𝑥) =  �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1�𝑓(𝑥)�,

𝑛−1

𝑘=0

                                  (8.2.2.13) 

                            𝑢𝑛+1(𝑥) =  �� ℎ(𝑡)𝑢𝑛(𝑡)𝑑𝑡
1

0
� 𝐿−1�𝑔(𝑥)�,   𝑛 ≥ 0.                    (8.2.2.14) 

The solution 𝑢(𝑥) is immediately determined with these components calculated.  

The series obtained for 𝑢(𝑥) frequently provides the exact solution as will be illustrated 

later.  

 In some problems, where a closed form is not easy to find, we can use the series 

form obtained to approximate the solution. It can be shown [6] that a few terms of the 

series derived by decomposition method usually provide a highly accurate 

approximation. The decomposition method avoids massive computational work and 

difficulties that arise from other methods.  
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            The exact solution of any integral equation or integro-differential equations may 

be obtained by considering the first two components 𝑢0 and 𝑢1 only. If we observe the 

appearance of like terms in both components with opposite signs, then by cancelling 

these terms, the remaining non-cancelled terms of 𝑢0 may in some cases provide the 

exact solution. The self-cancelling terms between the components 𝑢0 and 𝑢1 are called 

the noise terms. The other terms in other components will vanish in the limit if the noise 

terms occurred in 𝑢0(𝑥) and 𝑢1(𝑥). However, if the exact solution was not attainable by 

using this phenomenon, then we should continue determining other components of 𝑢(𝑥) 

to get a closed form solution or an approximate solution. In the following we discuss one 

example which illustrates the decomposition scheme where we will examine the 

phenomena of the self-cancelling noise terms as well. 

Example 1. Solve the following Fredholm integro-differential equation  

𝑢′(𝑥) = 𝑐𝑜𝑠𝑥 +
1
4
𝑥 −

1
4
� 𝑥
𝜋
2

0
𝑡 𝑢(𝑡)𝑑𝑡,       𝑢(0) = 0, 

by using the decomposition method. 

Integrating both sides of the equation from 0 to 𝑥, since  𝑢(0) = 0 and 𝑠𝑖𝑛0 = 0 gives 

𝑢(𝑥) = 𝑠𝑖𝑛𝑥 +
1
8
𝑥2 −

1
8
𝑥2 � 𝑡𝑢(𝑡)𝑑𝑡.

𝜋/2

0
 

Using the decomposition technique we decompose the solution into a series form given 

by 

𝑢(𝑥) =  �𝑢𝑛(𝑥).
∞

𝑛=0

 

Substituting into both sides yields 
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�𝑢𝑛(𝑥)
∞

𝑛=0

= 𝑠𝑖𝑛𝑥 +
1
8
𝑥2 −

1
8
𝑥2 � 𝑡 ��𝑢𝑛(𝑡)

∞

𝑛=0

�𝑑𝑡,
𝜋/2

0
 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ =  𝑠𝑖𝑛𝑥 +
1
8
𝑥2 

                                                                                                  −
1
8
𝑥2(� 𝑡𝑢0(𝑡)𝑑𝑡

𝜋/2

0
) 

                                                                                                −
1
8
𝑥2(� 𝑡𝑢1(𝑡)𝑑𝑡

𝜋/2

0
) 

                                                                                               −
1
8
𝑥2(� 𝑡𝑢2(𝑡)𝑑𝑡

𝜋/2

0
) 

                                                               +⋯. 

We set 

𝑢0(𝑥) = 𝑠𝑖𝑛𝑥 +
1
8
𝑥2 

which gives 

𝑢1(𝑥) =  −
1
8
𝑥2 � 𝑡 �𝑠𝑖𝑛𝑡 +

1
8
𝑡2� 𝑑𝑡 =  −

1
8
𝑥2 −

𝜋4

163

𝜋
2

0
𝑥2. 

 Considering 𝑢0(𝑥) and 𝑢1(𝑥) we see that the two identical terms 1
8
𝑥2 appear in 

these components with opposite signs. Cancelling these terms, and substituting the 

remaining non cancelled term in 𝑢0(𝑥) it satisfies the given equation lead to 

𝑢(𝑥) = 𝑠𝑖𝑛𝑥  

this is the exact solution in closed form. 

8.2.3 Converting to Fredholm Integral Equations 

            In this section we will discuss a technique that will reduce Fredholm integro- 
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differential equation to an equivalent Fredholm integral equation. This can be done by 

integrating both sides of the integro-differential equation as many times as the order of 

the derivative involved in the equation from 0 to 𝑥 for every time we integrate by using 

the given initial conditions. This technique is applicable only if the Fredholm integro-

differential equation involves the unknown function 𝑢(𝑥) only, and not any of its 

derivatives, under the integral sign. We can use the decomposition method, the direct 

computation method, the successive approximation method or the method of successive 

substitutions. To make a clear overview of this method we solve the example of section 

8.2.1. 

Example 1. Solve the following Fredholm integro-differential equation  

𝑢′(𝑥) = 1 −
1
3
𝑥 + 𝑥� 𝑡𝑢(𝑡)𝑑𝑡,       𝑢(0) = 0,

1

0
 

by converting it to a standard Fredholm integral equation. 

     Integrating both sides from 0 to 𝑥 and using the initial condition we get 

𝑢(𝑥) = 𝑥 −
1
3!
𝑥2 +

1
2!
𝑥2 �� 𝑡𝑢(𝑡)𝑑𝑡

1

0
�.  

This is the Fredholm integral equation and we choose the successive approximation 

method to solve this equation. We set a zeroth approximation by 

                             𝑢0(𝑥) = 𝑥,                     

This gives the first approximation 

𝑢1(𝑥) = 𝑥 −
1
3!
𝑥2 +

1
2!
𝑥2 �� 𝑡2𝑑𝑡

1

0
� = 𝑥 −

1
3!
𝑥2 +

1
3

1
2!
𝑥2 = 𝑥  

since 

                        𝑢1(𝑥) = 𝑥 = 𝑢0(𝑥),            
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If we continue we get 

                                               𝑢𝑛(𝑥) = 𝑥                    for all  𝑛. 

Accordingly 

     𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

                                 = lim
𝑛→∞

𝑥                             

       = 𝑥.         

And this is the same solution we obtained before.  

8.3 Volterra Integro-Differential Equations 

            In this section we will present a method to handle Volterra integro-differential 

equations. We will focus on equations that involve separable kernels of the form 

                                                  𝐾(𝑥, 𝑡) = �𝑔𝑘(𝑥)ℎ𝑘(𝑡)
𝑛

𝑘=1

.                                                  (8.3.1) 

We consider the cases where the kernel 𝐾(𝑥, 𝑡) consists of product of the functions 𝑔(𝑥) 

and ℎ(𝑡) given by  𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡),  where the other cases can be generalized in the 

same manner. The non-separable kernel can be approximated by separable kernel by 

using the Taylor expansion for the kernel involved. We use most practical method, the 

series solution method. 

8.3.1 The Series Solution Method 

            We consider a standard form to the Volterra integro-differential equation given by 

𝑢𝑛(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,       𝑢𝑘(0) = 𝑏𝑘,      0 ≤ 𝑘 ≤ (𝑛 − 1),
𝑥

0
            (8.3.1.1) 

where 𝑢𝑛(𝑥) indicates the 𝑛-th derivative of 𝑢(𝑥) with respect to 𝑥, and 𝑏𝑘 are constants 

that define the initial conditions. Substituting 𝐾(𝑥, 𝑡) = 𝑔(𝑥)ℎ(𝑡) into (8.3.1.1) we get 
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𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)� ℎ(𝑡)𝑢(𝑡)𝑑𝑡,       𝑢𝑘(0) = 𝑏𝑘,      0 ≤ 𝑘 ≤ (𝑛 − 1).
𝑥

0
        (8.3.1.2) 

As before, follow a parallel analogy to that for ordinary differential equations around an 

ordinary point. We assume that the solution is an analytic function and it can be 

represented by a series expansion given by 

                                                      𝑢(𝑥) = �𝑎𝑘𝑥𝑘 ,                                                           (8.3.1.3)
∞

𝑘=0

 

where 𝑎𝑘 are constants that will be determined by using the initial conditions so that 

                          𝑎0 = 𝑢(0),       𝑎1 = 𝑢′(0),     𝑎2 =
1
2!
𝑢′′(0),                                      (8.3.1.4) 

and so on depending on the number of the initial conditions. Substituting (8.3.1.3) into 

both sides of (8.3.1.2) yields 

                 (�𝑎𝑘𝑥𝑘
∞

𝑘=0

)(𝑛) = 𝑓(𝑥) + 𝑔(𝑥)� ℎ(𝑡)��𝑎𝑘𝑡𝑘
∞

𝑘=0

� 𝑑𝑡
𝑥

0
.                             (8.3.1.5) 

Equation (8.3.1.5) can be easily evaluated if we have to integrate terms of the form 𝑡𝑛, 

𝑛 ≥ 0 only. The next step is to write the Taylor expansion for 𝑓(𝑥), evaluate the resulting 

integrals, and then equating the coefficients of like powers of 𝑥  in both sides of the 

equation. This will lead to a determination of the coefficients 𝑎0,𝑎1,𝑎2, … of the series. 

This may give a solution in closed form. The following example illustrates the series 

solution method for Volterra integro-differential equation. 

Example 1. Solve the following Volterra integro-differential equation 

𝑢′′(𝑥) = 𝑥𝑐𝑜𝑠ℎ𝑥 − � 𝑡𝑢(𝑡)𝑑𝑡,        𝑢(0) = 0,   𝑢′(0) = 1
𝑥

0
 

by using the series solution method. Notice that ℎ(𝑡) = 𝑡, so we will be interpreting 

terms of the form 𝑡𝑛.  
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            Substituting 𝑢(𝑥) by the series  

𝑢(𝑥) = �𝑎𝑛𝑥𝑛
∞

𝑛=0

 

into both sides of the equation and using the Taylor expansion of 𝑐𝑜𝑠ℎ𝑥 we obtain 

�𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 = 𝑥 ��
𝑥2𝑘

(2𝑘)!

∞

𝑘=0

� − � 𝑡 ��𝑎𝑛𝑡𝑛
∞

𝑛=0

�𝑑𝑡.
𝑥

0

∞

𝑛=2

 

Using the initial conditions yields 𝑎0 = 0,   𝑎1 = 1, evaluating the integrals that involve 

terms of the form 𝑡𝑛, 𝑛 ≥ 0, and using few terms for both sides yield 

2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + 20𝑎5𝑥3 + ⋯ = 𝑥(1 +
1
2!
𝑥2 +

1
4!
𝑥4 + ⋯ ) 

                                                                        −�
1
3
𝑥3 +

1
4
𝑎2𝑥4 + ⋯�. 

Equating the coefficients of like powers of 𝑥 in both sides we find 

𝑎2 = 0,   𝑎3 =
1
3!

,   𝑎4 = 0, 

and generally 

𝑎2𝑛 = 0,   𝑓𝑜𝑟   𝑛 ≥ 0, 

and 

𝑎2𝑛+1 =
1

(2𝑛 + 1)!
,    𝑓𝑜𝑟   𝑛 ≥ 0. 

We find the solution 𝑢(𝑥) in a series form 

𝑢(𝑥) = 𝑥 +
1
3!
𝑥3 +

1
5!
𝑥5 +

1
7!
𝑥7 + ⋯, 

and in a closed form the solution is 

𝑢(𝑥) = 𝑠𝑖𝑛ℎ 𝑥. 
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8.3.2 The Decomposition Method 

            The decomposition method and the modified decomposition method were 

discussed earlier. In this section we will show how this method can be implemented to 

determine series solutions to Volterra integro-differential equations. A standard form of 

the Volterra integro-differential equation is 

𝑢(𝑛)(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,    𝑢𝑘(0) = 𝑏𝑘,   0 ≤ 𝑘 ≤ (𝑛 − 1)                  (8.3.2.1)
𝑥

0
 

We can find 𝑢(𝑥) by integrating both sides of (8.3.2.1) from 0 to 𝑥 as many times as the 

order of the derivative involved. We obtain 

                𝑢(𝑥) = �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1�𝑓(𝑥)� + 𝐿−1 �� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
� ,                 (8.3.2.2)

𝑛−1

𝑘=0

 

where ∑ 1
𝑘!
𝑏𝑘𝑥𝑘𝑛−1

𝑘=0  is obtained by using the initial conditions, and 𝐿−1 is an n-fold 

integration operator. Now we apply the decomposition method by defining the solution 

𝑢(𝑥) of (8.3.2.2) in a decomposition series given by 

                                                         𝑢(𝑥) = �𝑢𝑛(𝑥)
∞

𝑛=0

.                                                      (8.3.2.3) 

Substituting (8.3.2.3) into both sides of (8.3.2.2) we get 

 �𝑢𝑛(𝑥) = �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1�𝑓(𝑥)� + 𝐿−1 �� 𝐾(𝑥, 𝑡)��𝑢𝑛(𝑡)

∞

𝑛=0

�𝑑𝑡
𝑥

0
�       (8.3.2.4)

𝑛−1

𝑘=0

∞

𝑛=0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = �
1
𝑘!
𝑏𝑘𝑥𝑘 + 𝐿−1(𝑓(𝑥))

𝑛−1

𝑘=0

 

+𝐿−1(� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
) 
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+𝐿−1(� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
) 

+𝐿−1(� 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑥

0
) 

                                                          +⋯ .                                                                               (8.3.2.5)                         

The components 𝑢0(𝑥),𝑢1(𝑥),𝑢2(𝑥),𝑢3(𝑥), … of the unknown function 𝑢(𝑥) are 

determined in a recursive manner, in a similar way as discussed before, if we set 

                                                𝑢0(𝑥) =  �
1
𝑘!
𝑎𝑘𝑥𝑘 + 𝐿−1(𝑓(𝑥))

𝑛−1

𝑘=0

,                                 (8.3.2.6) 

                                                𝑢1(𝑥) = 𝐿−1 �� 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
� ,                                 (8.3.2.7) 

                                                  𝑢2(𝑥) = 𝐿−1 �� 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
� ,                               (8.3.2.8) 

and so on. The solution 𝑢(𝑥) of the equation (8.3.2.1) can be written as 

                                             𝑢0(𝑥) =  �
1
𝑘!
𝑎𝑘𝑥𝑘 + 𝐿−1(𝑓(𝑥))

𝑛−1

𝑘=0

,                                   (8.3.2.9) 

                                              𝑢𝑛+1(𝑥) = 𝐿−1 �� 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

0
� ,    𝑛 ≥ 0.            (8.3.2.10) 

The series obtained for 𝑢(𝑥) can provide the exact solution in a closed form.  

 The following example will illustrate this technique. 

Example 1.  Solve the following Volterra integro-differential equation  

𝑢′′(𝑥) = 𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,    𝑢(0) = 0,   𝑢′(0) = 1
𝑥

0
 

by using decomposition method. 

Applying the two-fold integration operator 𝐿−1 we get 
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𝐿−1(. ) = � � (. )𝑑𝑥𝑑𝑥,
𝑥

0

𝑥

0
 

to both sides of equation integrating twice from 0 to 𝑥, and using the given initial 

conditions yield 

𝑢(𝑥) = 𝑥 +
1
3!
𝑥3 + 𝐿−1 �� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
�. 

Following the decomposition scheme (8.3.2.9) and (8.3.2.10) we find 

𝑢0(𝑥) =  𝑥 +
1
3!
𝑥3, 

𝑢1(𝑥) = 𝐿−1 �� (𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

0
� 

   =
1
5!
𝑥5 +

1
7!
𝑥7,             

𝑢2(𝑥) = 𝐿−1 �� (𝑥 − 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
� 

 =
1
9!
𝑥9 +

1
11!

𝑥11.        

Combining these equations we get the solution 𝑢(𝑥) in series form given by 

𝑢(𝑥) = 𝑥 +
1
3!
𝑥3 +

1
5!
𝑥5 +

1
7!
𝑥7 +

1
9!
𝑥9 +

1
11!

𝑥11 + ⋯ 

and this leads to 

𝑢(𝑥) = sinh 𝑥, 

the exact solution in a closed form. 

8.3.3 Converting to Volterra Integral Equations 

            We can easily convert the Volterra integro-differential equation to an equivalent 

Volterra integral equation, provided that the kernel is a difference kernel defined by the 

form  𝐾(𝑥, 𝑡) = 𝐾(𝑥 − 𝑡). This can be done by integrating both sides of the equation and 
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using the initial conditions. To perform the conversion to a regular Volterra integral 

equation we should use the formula that converts multiple integral to a single integral. 

The following two formulas 

                                     � � 𝑢(𝑡)𝑑𝑡𝑑𝑡 = � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0

𝑥

0

𝑥

0
                                       (8.3.2.1) 

                                   � � � 𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡 =
1
2!
� (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡.                        (8.3.2.2)
𝑥

0

𝑥

0

𝑥

0

𝑥

0
 

are used to transform double integrals and triple integrals respectively to a single integral. 

To give clear overview of this method we discuss the following example. 

Example 1. Solve the following Volterra integro-differential equation  

𝑢′(𝑥) = 2 −
1
4
𝑥2 +

1
4
� 𝑢(𝑡)𝑑𝑡,      𝑢(0) = 0,
𝑥

0
 

by converting to a standard Volterra integral equation. 

Integrating both sides from 0 to 𝑥 and using the initial condition we obtain 

𝑢(𝑥) = 2𝑥 −
1

12
𝑥3 +

1
4
� � 𝑢(𝑡)𝑑𝑡𝑑𝑡,

𝑥

0

𝑥

0
 

which gives 

𝑢(𝑥) = 2𝑥 −
1

12
𝑥3 +

1
4
� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡.
𝑥

0
 

This is a standard Volterra integral equation and can be solved by using the 

decomposition method. We set 

𝑢0(𝑥) = 2𝑥 −
1

12
𝑥3, 

which gives 

          𝑢1(𝑥) =
1
4
� (𝑥 − 𝑡) �2𝑡 −

1
12

𝑡3� 𝑑𝑡,
𝑥

0
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=
1

12
𝑥3 −

1
240

𝑥5. 

The term  1
12
𝑥3 appears with opposite signs in the components 𝑢0(𝑥) and 𝑢1(𝑥), and by 

cancelling this noise term from 𝑢0(𝑥) and justifying that 

𝑢(𝑥) = 2𝑥 

is the exact solution. 
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CHAPTER 9 

Singular Integral Equations 

9.1 Definitions  

            An integral equation is called a singular integral equation if one or both limits of 

integration become infinite, or if the kernel 𝐾(𝑥, 𝑡) of the equation becomes infinite at 

one or more points in the interval of integration. For example, the integral of the first kind 

                                                  𝑓(𝑥) = 𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
                                           (9.1.1) 

or the integral equation of the second kind 

                                            𝑢(𝑥) = 𝑓(𝑥) +  𝜆� 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
                                  (9.1.2) 

is called singular if the lower limit 𝛼(𝑥), the upper limit 𝛽(𝑥) or both limits of integration 

are infinite. Examples of the first type of singular equations are the following examples: 

                                                         𝑢(𝑥) = 1 + 𝑒−𝑥 − � 𝑢(𝑡)𝑑𝑡,                                    (9.1.3)
∞

0
 

                                                        𝐹(𝜆) = � 𝑒−𝑖𝜆𝑥𝑢(𝑥)𝑑𝑥,
∞

−∞
                                              (9.1.4) 

                                                         𝐿[𝑢(𝑥)] = � 𝑒−𝜆𝑥𝑢(𝑥)𝑑𝑥.
∞

0
                                         (9.1.5) 

The integral equations (9.1.4) and (9.1.5) are the Fourier transform and Laplace transform 

of the function 𝑢(𝑥) respectively. In addition, these equations are Fredholm integral 

equations of the first kind with kernels given by 𝐾(𝑥, 𝑡) = 𝑒−𝑖𝜆𝑥 and 𝐾(𝑥, 𝑡) = 𝑒−𝜆𝑥. It is 

important to note that the Laplace transforms and the Fourier transforms are used for 

solving ordinary and partial differential equations with constant coefficients. 

Examples of the second type of singular integral equations are given by the following 
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                                                𝑥2 = �
1

√𝑥 − 𝑡
𝑢(𝑡)𝑑𝑡,                                                        (9.1.6)

𝑥

0
 

                                                𝑥 = �
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,     0 < 𝛼 < 1,                              (9.1.7)

𝑥

0
 

                                               𝑢(𝑥) = 1 + 2√𝑥 − �
1

√𝑥 − 𝑡
𝑢(𝑡)𝑑𝑡,                                (9.1.8)

𝑥

0
 

where the singular behavior has been attributed to the kernel 𝐾(𝑥, 𝑡) becoming infinite 

as 𝑡 → 𝑥. Integral equations similar to examples (9.1.6) and (9.1.7) are called Abel’s 

problems and generalized Abel’s integral equations respectively. These styles of singular 

integral equations are among the earliest integral equations established by the Norwegian 

mathematician Niles Abel in 1823. 

9.2 Abel’s Problem 

            Abel in 1823 investigated the motion of a particle that slides down along a smooth 

unknown curve, in a vertical plane, under the influence of the gravitational field. It is 

assumed that the particle starts from rest at the point P, with vertical elevation x, slides 

along the unknown curve, to the lowest point 𝑂 on the curve where the vertical distance 

is 𝑥 = 0. The total time of descent T from the highest point to the lowest point on the 

curve is given in advance, and dependent on the elevation 𝑥, hence expressed by 

                                                                  𝑇 = ℎ(𝑥).                                                                (9.2.1) 

Assuming that the curve of motion between the point 𝑃 and 𝑂 has an arc length 𝑠, then 

the velocity at a point 𝑄 on the curve, between 𝑃 and 𝑂, is given by 

                                                           
𝑑𝑠
𝑑𝑇

= −�2𝑔(𝑥 − 𝑡)                                                   (9.2.2) 

where 𝑡 is a variable coordinate defines the vertical distance of the point 𝑄, and 𝑔 is the 

acceleration of gravity assumed to be constant on the scale of the problem . Integrating 
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both sides of (9.2.2) gives 

                                                    𝑇 = −�
𝑑𝑠

�2𝑔(𝑥 − 𝑡)
.

𝑃

𝑂
                                                     (9.2.3) 

Setting 

                                                          𝑑𝑠 = 𝑢(𝑡)𝑑𝑡,                                                                  (9.2.4) 

and using (9.2.1) we find the equation of motion of the sliding particle 

                                                   𝑓(𝑥) = �
1

√𝑥 − 𝑡
𝑢(𝑡)𝑑𝑡

𝑥

0
.                                                 (9.2.5) 

We point out that 𝑓(𝑥) is a predetermined function that depends on the elevation 𝑥 and 

given by 

                                                         𝑓(𝑥) = �2𝑔 ℎ(𝑥),                                                         (9.2.6) 

where 𝑔 is the gravitational constant, and ℎ(𝑥) is the time of descent from the highest 

point to the lowest point on the curve. The main goal of Abel’s problem is to determine 

the unknown function 𝑢(𝑥)  under the integral sign that will define the equation of the 

curve. Notice that Abel’s integral equation is a Volterra integral equation of the first kind 

with singular kernel. The kernel in (9.2.5) is 

                                                          𝐾(𝑥, 𝑡) =
1

√𝑥 − 𝑡
,                                                          (9.2.7) 

which shows that the kernel (9.2.7) is singular in that 

                                                   𝐾(𝑥, 𝑡) → ∞       𝑎𝑠       𝑡 → 𝑥.                                             (9.2.8) 

Taking Laplace transforms of both sides of (9.2.5) leads to 

𝐿[𝑓(𝑥)] = 𝐿[𝑢(𝑥)]𝐿[𝑥−1/2] 

                                                                      = 𝐿[𝑢(𝑥)]
𝛤 �1

2�

𝑧
1
2

,                                               (9.2.9) 
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where 𝛤 is the gamma function. In Appendix B, the definition of the gamma function and 

some of the relations related to it are given. Notice that 𝛤 �1
2
� = √𝜋, the equation (9.2.9) 

becomes 

                                                   𝐿[𝑢(𝑥)] =
𝑧1/2

√𝜋
𝐿[𝑓(𝑥)],                                                    (9.2.10) 

which can be rewritten by 

                                             𝐿[𝑢(𝑥)] =
𝑧
𝜋
�√𝜋 𝑧−

1
2𝐿[𝑓(𝑥)]� .                                            (9.2.11) 

Setting 

                                             ℎ(𝑥) = � (𝑥 − 𝑡)−
1
2𝑓(𝑡)𝑑𝑡,                                                  (9.2.12)

𝑥

0
 

into (9.2.11) yields 

                                                 𝐿[𝑢(𝑥)] =
𝑧
𝜋
𝐿[ℎ(𝑥)],                                                           (9.2.13) 

this gives 

                                                       𝐿[𝑢(𝑥)] =
1
𝜋
𝐿[ℎ′(𝑥)],                                                   (9.2.14) 

upon using the fact 

                                                          𝐿[ℎ′(𝑥)] = 𝑧𝐿[ℎ(𝑥)].                                                  (9.2.15) 

Appling 𝐿−1 to both sides of (9.2.14) yields easily calculable formula 

                                                   𝑢(𝑥) =
1
𝜋
𝑑
𝑑𝑥

�
𝑓(𝑡)
√𝑥 − 𝑡

𝑑𝑡,
𝑥

0
                                              (9.2.16) 

that will be used for the determination of the solution. Appendix A supplies a helpful tool 

for evaluating the integrals involved in (9.2.16). 

            The procedure of using the formula (9.2.16) that determines the solution of Abel’s 

problem (9.2.5) will be illustrated by the following example. 
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Example 1. We consider the following Abel’s problem 

𝜋 = �
1

√𝑥 − 𝑡

𝑥

0
𝑢(𝑡)𝑑𝑡. 

Substituting 𝑓(𝑥) = 𝜋 in equation 9.2.16 for 𝑢(𝑥)  

𝑢(𝑥) =
1
𝜋
𝑑
𝑑𝑥

�
𝜋

√𝑥 − 𝑡
𝑑𝑡,

𝑥

0
 

      =
𝑑
𝑑𝑥

�
1

√𝑥 − 𝑡
𝑑𝑡.

𝑥

0
 

Setting the substitution 𝑦 = 𝑥 − 𝑡, we obtain 

𝑢(𝑥) =
𝑑
𝑑𝑥

�2√𝑥�, 

=
1
√𝑥

. 

            Abel introduced the more general singular integral equation 

                                 𝑓(𝑥) = �
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡,      0 < 𝛼 < 1,

𝑥

0
                                 (9.2.1.1) 

known as the Generalized Abel’s integral equation. Abel’s problem discussed above is a 

special case of the generalized equation where 𝛼 = 1
2
. To determine a practical formula 

for the solution 𝑢(𝑥) of (9.2.1.1), and hence for Abel’s problem, we use the Laplace 

transform on both sides of equation (9.2.1.1). This yields 

𝐿[𝑓(𝑥)] = 𝐿[𝑢(𝑥)]𝐿[𝑥−𝛼] 

                                                                         = 𝐿[𝑢(𝑥)]
𝛤(1 − 𝛼)
𝑧1−𝛼

,                                  (9.2.1.2) 

where 𝛤 is the gamma function. The equation (9.2.1.2) can be written as 

                               𝐿[𝑢(𝑥)] =
𝑧

𝛤(𝛼)𝛤(1 − 𝛼)
𝛤(𝛼)𝑧−𝛼𝐿[𝑓(𝑥)],                                  (9.2.1.3) 
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or equivalently 

                                              𝐿[𝑢(𝑥)] =
𝑧

𝛤(𝛼)𝛤(1 − 𝛼)
𝐿[𝑔(𝑥)],                                   (9.2.1.4) 

where  

                                                       𝑔(𝑥) = � (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡.
𝑥

0
                                    (9.2.1.5) 

Accordingly, equation (9.2.1.4) can be written as 

                                                          𝐿[𝑢(𝑥)] =
sin (𝛼𝜋)

𝜋
𝐿[𝑔′(𝑥)],                                   (9.2.1.6) 

upon using the identities 

                                                           𝐿[𝑔′(𝑥)] = 𝑧𝐿[𝑔(𝑥)],                                              (9.2.1.7)  

and 

                                         𝛤(𝛼)𝛤(1 − 𝛼) =
𝜋

sin (𝛼𝜋)
,                                                       (9.2.1.8) 

from Laplace transforms and Appendix B respectively. Applying 𝐿−1 to both sides of 

(9.2.1.6) yields the easily calculable formula for determining the solution 

                     𝑢(𝑥) =
sin (𝛼𝜋)

𝜋
𝑑
𝑑𝑥

�
𝑓(𝑡)

(𝑥 − 𝑡)1−𝛼
𝑑𝑡,         0 < 𝛼 < 1.

𝑥

0
                         (9.2.1.9) 

We first integrate the integral at the right hand side of (9.2.1.9) by parts to obtain 

     �
𝑓(𝑡)

(𝑥 − 𝑡)1−𝛼
𝑑𝑡 = −

1
𝛼

[𝑓(𝑡)(𝑥 − 𝑡)𝛼]0𝑥 +
1
𝛼
� (𝑥 − 𝑡)𝛼𝑓′(𝑡)𝑑𝑡,
𝑥

0

𝑥

0
 

                                                        =
1
𝛼
𝑓(0)𝑥𝛼 +

1
𝛼
� (𝑥 − 𝑡)𝛼𝑓′(𝑡)𝑑𝑡.                    (9.2.1.10)
𝑥

0
 

Differentiating both sides of (9.2.1.10) and using the Leibnitz rule, yields 

                                      
𝑑
𝑑𝑥

�
𝑓(𝑡)

(𝑥 − 𝑡)1−𝛼
𝑥

0
𝑑𝑡 =

𝑓(0)
𝑥1−𝛼

+ �
𝑓′(𝑡)

(𝑥 − 𝑡)1−𝛼
𝑥

0
𝑑𝑡.               (9.2.1.11) 

Substituting (9.2.1.11) into (9.2.1.9) yields the desired formula  
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                           𝑢(𝑥) =
sin (𝛼𝜋)

𝜋
�
𝑓(0)
𝑥1−𝛼

+ �
𝑓′(𝑡)

(𝑥 − 𝑡)1−𝛼
𝑥

0
𝑑𝑡� ,       0 < 𝛼 < 1,     (9.2.1.12) 

that will be used to determine the solution of the generalized Abel’s equation and also of 

the standard Abel’s problem as well.    

            The following example shows how one can use (9.2.1.12) in solving Abel’s 

equations. 

Example 2. Solve the following Abel’s problem 

𝜋𝑥 = �
1

√𝑥 − 𝑡

𝑥

0
𝑢(𝑡)𝑑𝑡. 

In this example 𝑓(𝑥) = 𝜋𝑥, hence 𝑓(0) = 0 and 𝑓′(𝑥) = 𝜋. Also,  𝛼 = 1
2
  so that 

sin(𝛼𝜋) = 1. Using the formula (9.2.1.12) and formula from Appendix A we obtain 

         𝑢(𝑥) =
1
𝜋
�

𝜋
√𝑥 − 𝑡

𝑥

0
𝑑𝑡, 

= 2√𝑥. 
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APPENDIX A 

Integrals of Irrational Functions 

Integrals Involving function  𝑡𝑛

√𝑥−𝑡
 , 𝑛 = 0,1,2,3, … 

1.   �
1

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 = 2√𝑥.  

  2.   �
𝑡

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 =

4
3
𝑥3/2. 

     3.   �
𝑡2

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 =

16
15

𝑥5/2. 

      4.    �
𝑡3

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 =

32
35

𝑥7/2. 

        5.   �
𝑡4

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 =

256
315

𝑥9/2.  

         6.   �
𝑡5

√𝑥 − 𝑡
𝑑𝑡 =

512
693

𝑥11/2
𝑥

0
. 

              7.    �
𝑡6

√𝑥 − 𝑡
𝑑𝑡 =

2048
3003

𝑥13/2.
𝑥

0
  

             8.    �
𝑡7

√𝑥 − 𝑡

𝑥

0
𝑑𝑡 =

4096
6435

𝑥15/2. 

                  9.    �
𝑡8

√𝑥 − 𝑡
𝑑𝑡 =

65536
109395

𝑥17/2.
𝑥

0
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APPENDIX B 

The Gamma Function 𝛤(𝑥) 

     1.  𝛤(𝑥) = � 𝑡𝑥−1𝑒−𝑡𝑑𝑡.
∞

0
 

2.   𝛤(𝑥 + 1) = 𝑥 𝛤(𝑥). 

                                                      3.   𝛤(1) = 1,      𝛤(𝑛 + 1) = 𝑛!, 𝑛 𝑖𝑠 𝑎 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

                        4.   𝛤(𝑥)𝛤(1 − 𝑥) =
𝜋

sin (𝜋𝑥)
.             

                                                            5.   𝛤 �
1
2
� = √𝜋. 

                   6.   𝛤 �
3
2
� =

1
2√

𝜋.                              

     7.   𝛤 �
1
2
� 𝛤 �−

1
2
� = −2𝜋. 

 

 


