
IMPLEMENTING AN APPROXIMATE PROBABILISTIC ALGORITHM FOR ERROR RECOVERY
IN CONCURRENT PROCESSING SYSTEMS

Silvia Heubach
Dept. of Mathematics and Computer Science

California State University, Los Angeles

Raj S. Pamula
Dept. of Mathematics and Computer Science

California State University, Los Angeles

ABSTRACT

We have developed a probabilistic algorithm for improved error recovery in a system of concurrent processes.
Simulations for various lengths of checkpoint intervals have shown that in most cases the probabilistic method
is more cost effective than the iterative rollback method. However, implementation of the probabilistic
algorithm requires knowledge of the distribution function of the latency times between error occurrence and
error detection. In this paper, we present a method for obtaining an approximate empirical distribution function
for the latency times using the iterative rollback method. The cost effectiveness of the probabilistic method,
when based on the approximate distribution function, is investigated for various parameters (number of data
points collected, length of error interval). We show that using the probabilistic algorithm in conjunction with the
approximate distribution function still leads to significant cost reduction over the iterative method, while not
requiring knowledge of the theoretical distribution function, making this implementation universally applicable.

Keywords: Checkpoint, Rollback and Error Recovery, Error Latency, Acceptance Test, Concurrent Processing,
Implementation, Probabilistic Algorithm.

INTRODUCTION

A design of a reliable system requires a careful study of errors, causes of errors, and system response to
overcome errors. Transient errors pose a difficult problem as all traces of their nature are long gone by the time
the error is detected. A popular means of detecting errors is the use of acceptance tests (ATs) [1, 2]. After a
failure has been detected, recovery is commonly attempted by rolling back to a previously established
checkpoint [3-9]. Most of the research in the design of a reliable system to overcome transient failures is
focussed on data collection, modeling and simulation [3, 6, 10].

In a concurrent processing system, inter-process communications can lead to propagation of an error from one
process to another. Therefore, an error in process i may be detected by an AT in another process k, where
processes i and k have communicated directly or indirectly after the error has occurred. The time between the
occurrence and detection of an error, referred to as error latency, is a random variable and can span many
checkpoint intervals. Consequently, several checkpoints have to be maintained to ensure error recovery. These
checkpoints may have been established locally for each process (local checkpointing) [11, 12] or
simultaneously across all processes at the same time (global checkpointing) [3, 8, 13].

We have described two algorithms, the iterative rollback algorithm and the probabilistic (= selective) rollback
algorithm, for error recovery using global checkpointing [3]. The iterative rollback algorithm works its way
backwards one checkpoint at a time, starting from the most recent one, attempting error recovery after each
rollback. By contrast, the probabilistic rollback algorithm determines the checkpoint to which the system rolls
back based on the error latency distribution. Simulations have shown that the probabilistic rollback algorithm
performed better in most cases.

The problem in implementing the probabilistic roll back algorithm is the determination of the error latency
distribution. Due to the dependence introduced by the inter-communications, a theoretical determination of this
distribution is not an easy problem, even in the idealized case where the waiting times between failures, inter-
process communications, and ATs can be modeled as independent exponential random variables. Furthermore,
even if the theoretical distribution can be determined, it will depend on the parameters for the exponential
waiting times which have to be estimated from the past behavior of the system. Unlike the occurrence of inter-
process communications and ATs, errors cannot be observed (since errors are recognized only when they are
detected), making the estimation of the latter parameters very difficult. If other types of distributions for the

waiting times between events are assumed or the independence assumption is relaxed, the theoretical derivation
of the error latency distribution becomes even more difficult, if not impossible.

In this paper, we propose a mechanism to determine an approximate error latency distribution, independent of
any assumptions about the individual distribution functions or the independence of the various events, making
parameter estimation obsolete. Performance of the probabilistic rollback mechanism based on this approximate
latency distribution will be analyzed with a simulation that uses the same parameters as in [3].

DESCRIPTION OF ALGORITHMS

We assume that a fixed number of (global) checkpoints (CPs) are maintained throughout, labeled 1 (oldest CP)
to m (most recent CP). In the iterative method, recovery is initially attempted from CP m. If recovery from CP k
is unsuccessful, a new attempt is made from CP k-1. If the failure occurred after CP 1 was established, then
error recovery will eventually be successful and will start from the checkpoint just prior to the checkpoint
interval in which the failure originated. By contrast, the probabilistic method chooses the checkpoint from
which recovery is attempted by using the error latency distribution. Pairs of consecutive checkpoints are
compared for lower expected cost of recovery until a (local) minimum for the cost is found. If recovery from the
selected checkpoint is unsuccessful, the probabilities for error occurrence in each checkpoint interval are
updated (taking into account the unsuccessful recovery) prior to the next recovery attempt.

Let C0 = time needed to save/load a checkpoint, C = length of checkpoint interval, and C
~

= cycle time = C0 + C.
We assume that recovery is successful if the program passes the AT at which the failure was detected1. If total
= min{m, # of checkpoints established so far}, and d = time between last checkpoint and the detection of the
error, then

kT = cost of recovery from CP k = (total - k) C
~

+ C0 + d

)dC)ktotal((P)k(PPk +⋅−≤== latencyerror CPafter occured failure

i
kC = cost of successful recovery (iterative method) from CP i = ∑

=

i

kl
lT (given recovery starts at CP k > i)

kEC = expected cost of recovery given unsuccessful recovery from CP k = 1
1

1

1
)(−

+
−

=
⋅−∑ k

ll

k

l
l CPP

The probabilistic method can now be described as follows:

Step 1: k = min{m, # of current checkpoints}; P = 0; TOS = 0;
Step 2: If k = 1, go to Step 4.
Step 3: If 1111 1 −−−− ⋅−+⋅− kkkk EC)P(T)PP(kkkk EC)P(T)PP(⋅−+⋅−≤ 1 , set k:= k-1; go to Step 2.

Step 4: Roll back to CP k and attempt recovery. Set ;TTOSTOS;PP kk +==
If recovery is successful, resume normal execution. Otherwise indicate system failure.

APPROXIMATING THE LATENCY DISTRIBUTION

From the description of the probabilistic algorithm, it is clear that we need the distribution of the latency times
to compute the expected values used in the determination of the checkpoint from which the system is to be
restarted. The basic idea is to initially use the iterative algorithm to record approximate latency times, and then
to switch to the probabilistic algorithm. Figure 1 shows how the approximate latency times are measured.

 Failure Check point Acceptance Test

Figure 1

1 This is a refined version of the assumption in [3] which does not affect the main results of [3].

The lower arrow («) shows the actual latency time between occurrence of the failure and its detection. (We are
only concerned with the time line, not at which individual process the failure occurred or in which process the
failure was detected.) The upper arrow shows the approximate latency time resulting from the use of the
iterative algorithm which can be measured easily from system records. The error made in this approximation is
at most the length of the checkpoint interval and can thus be regulated by the user. Two questions arise: "How
long should the checkpoint interval be during the initial phase?" and "How much data needs to be collected?"
These two questions will be investigated with the help of a simulation.

SIMULATION

The simulation consists of two parts: The first part of the simulation is used to "collect" data, both the exact
latency times (possible only in a simulation), as well as the latency times as they would be measured for
different lengths of the error intervals (= checkpoint intervals). The second part of the simulation uses the
collected data to establish the number of checkpoints to be maintained, to determine the checkpoint for rollback
in the probabilistic algorithm, and to compute the cost for both iterative and probabilistic algorithms.

Even though the method works for any kind of distribution, we use the same setup as in our previous paper [3],
namely independent exponential waiting times between events (inter-connections between processes, failures
and acceptance tests). The ranges for the average times (in hours) between inter-process communications,
failures, and ATs were taken to be (0.25, 1), (10, 40), and (1, 2), respectively [8, 11, 13].

For the data collection phase, 10 simulations were executed, each for a time period of 100 hours. For each
simulation, the parameters for the exponential waiting times were computed as the reciprocal of a randomly
chosen number from the respective interval, for each of the 4 processes. This resulted in a total of 231 detected
failures, and consequently, 231 arrays of exact and approximate failure times. The error intervals used for the
approximate latency times were chosen to be 0.1 (= 20 0C), 0.15, 0.2, and 0.25. Smaller values do not make
sense as the frequent saving of the resulting large number of checkpoints would be too disruptive for the system
operation. Furthermore, the iterative and probabilistic methods performed virtually identical for checkpoint
interval lengths of 0.45 (~ median of the latency time distribution for the chosen simulation parameters) [3], so
0.25 was chosen as the largest data collection interval.

Figure 2

Figure 2 shows bar charts for the exact and approximate latency distributions. Notice how the structure of the
distribution function changes as the error interval becomes longer. However, for C = 0.1, the exact and the
approximate latency distribution functions have essentially the same shape.

For the second part of the simulation, in which the recovery process and its associated cost were simulated, we
considered the following parameters: checkpoint interval length (C = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and
0.45), probability of recovery (R = 90% and 95%), and number of data points (N = 25, 50, 75, 100, 150, and
200). For each combination of the three parameters, 30 simulations (each up to time 100) were executed, where
N data points were randomly selected from the 231 records. The resulting exact and approximate empirical
distribution functions were then used to 1) determine the number of concurrent checkpoints needed to ensure a
90% or 95% level of recovery, and 2) compute the conditional probabilities required for the probabilistic
algorithm. The cost of both the iterative and the probabilistic rollback algorithm were recorded for the five
empirical distribution functions simultaneously, allowing for a comparison with regard to the length of the error
interval for given values of C, R, and N.

RESULTS

To measure the efficiency of the (approximate) probabilistic over the iterative algorithm, we computed the cost
for the probabilistic method as a percentage of the cost for the iterative method for each simulation. Since the
probabilistic method may roll back further than necessary, it can occasionally incur a larger cost than the
iterative algorithm; on the other hand, the probabilistic method tends to perform much better when the latency
time is large. Since it is a probabilistic method, it needs to be judged by its average performance (which is why
the average was taken over the 30 simulations). The results are similar for both levels of recovery, so we will
restrict ourselves to recovery level R = 90% in the discussion below.

For each of the tables in Figures 3 - 5, the entries are percentages. (For easier comparison across different error
intervals (= different tables), the percentages have been grouped according to the efficiency brackets indicated
in the legend given in Figure 3.) The columns indicate the number of data points used to compute the
distribution function, whereas the rows relate to the lengths of the checkpoint intervals used in the cost
simulation. Figure 3 shows the results when using the exact empirical distribution function. Note that as the
checkpoint interval length approaches 0.45, the probabilistic and the iterative methods become virtually
identical; furthermore, in each case, the probabilistic method performs better or equal to the iterative method.

N

25 50 75 100 150 200

0.10 56.5 50.5 46.7 49.6 54.2 49.1

 ≤ 59.99 0.15 71.7 65.5 63.8 64.0 65.7 63.4

60 - 69.99 0.20 82.5 75.5 72.5 74.2 73.5 76.2

70 - 79.99 C 0.25 88.8 83.1 82.4 81.3 80.7 80.4

80 - 89.99 0.30 94.4 88.9 87.2 86.5 89.1 87.6

0.35 93.6 95.8 95.2 91.7 94.3 96.5

0.40 97.0 97.9 94.7 99.3 97.6 96.7

>100.5 0.45 99.2 99.2 97.3 99.2 96.9 97.1

Figure 3: Percentage Cost for Exact Latency Times

Figure 4 and Figure 5 show the corresponding results when using the approximate empirical distribution
function for the various lengths of the error intervals (and thus, the potential errors). With the error introduced
by the approximate distribution function, we now have cases in which the iterative method is better than the
probabilistic method. However, these primarily occur when the checkpoint interval is C = 0.45, where the
probabilistic method would usually not be used. The other occurrences of a percentage above 100 are in the
columns for N = 25 (with one exception). This indicates that at least 50 data points should be used.

We will now look at each error interval separately, starting with error interval 0.1 (left table in Figure 4). If we
disregard the column N = 25 and restrict our attention to checkpoint intervals with 250.C ≤ , then we can
achieve the same efficiency brackets as with the exact latency times: C = 0.1 leads to at least a 40% reduction,
C = 0.15 leads to at least a 30% reduction, C = 0.2 leads to at least a 20% reduction, and finally C = 0.25 can
achieve at least a 10% reduction in cost over the iterative method. The individual percentages for the entries in
the left table of Figure 4 are slightly higher than those in Figure 3, but the brackets are the same. This indicates
that for an error interval of size 0.1 and N > 25, the approximate probabilistic algorithm performs comparably to
the probabilistic algorithm based on the exact latency times for C ≤ 0.25.

N N

25 50 75 100 150 200 25 50 75 100 150 200

0.1 54.9 53.3 53.1 52.1 57.2 51.6 0.1 60.5 50.6 50.3 52.0 57.1 51.6

0.15 79.6 69.8 65.1 67.2 69.7 66.9 0.15 79.6 68.1 64.9 65.3 70.9 67.8

0.2 85.2 76.6 72.8 78.4 76.1 75.8 0.2 87.7 77.0 72.9 82.1 80.2 76.1

C 0.25 93.6 80.8 85.1 88.9 84.3 81.7 C 0.25 95.9 83.9 85.5 89.0 86.8 82.5

0.3 97.5 97.4 87.6 87.1 98.8 94.0 0.3 100.6 91.4 88.0 87.9 99.2 94.1

0.35 100.8 95.1 94.4 97.7 93.7 93.5 0.35 102.6 96.0 96.4 94.0 94.9 95.3

0.4 99.7 95.6 95.7 94.6 95.9 96.5 0.4 102.6 95.7 96.5 95.7 96.1 97.0

0.45 100.7 108.9 99.1 99.5 107.4 109.6 0.45 107.0 97.9 100.0 99.6 109.1 110.2

Figure 4: Percentage Cost for Error Interval 0.1 (left table) and 0.15 (right table)

As the error interval gets larger, the efficiency varies more. For error interval 0.15 (right table in Figure 4), we
can still achieve at least a 40% reduction with C = 0.1. However, there is now one case (N = 150), where for C
= 0.15, the cost reduction is not quite 30%. If we relax our efficiency requirement by 2% (e.g. from 60% to
62%), then we have the same structure as with error interval 0.1. If the efficiency brackets remain the same as
before, then we have to use a smaller checkpoint interval to achieve the same brackets: C = 0.1 for at least a
30% reduction, C = 0.15 for at least a 20% reduction, and C = 0.2 or C = 0.25 for at least a 10% cost reduction.

The observations made for error interval 0.15 also apply in the case of error interval 0.2 (left table in Figure 5),
except now we would have to adjust our efficiency brackets by 3.5% to achieve the brackets of the exact
distribution function.

N N

25 50 75 100 150 200 25 50 75 100 150 200

0.1 62.0 52.3 52.4 57.4 58.1 52.7 0.1 65.5 58.5 52.5 54.0 62.6 53.3

0.15 81.1 70.8 67.5 70.1 71.1 68.2 0.15 88.9 77.5 68.5 68.7 75.8 69.9

0.2 90.5 77.2 75.0 83.5 78.5 76.1 0.2 98.9 85.1 75.1 83.5 85.1 78.2

C 0.25 94.0 83.8 84.9 89.6 86.4 82.6 C 0.25 100.9 89.4 89.1 89.2 93.2 83.5

0.3 102.0 97.9 88.0 88.5 98.1 93.3 0.3 108.5 97.6 92.2 88.5 101.3 94.1

0.35 103.9 92.2 97.7 99.3 95.2 94.0 0.35 107.1 100.1 98.2 99.7 94.4 93.2

0.4 101.7 93.7 96.3 93.9 96.5 97.4 0.4 109.3 94.3 96.6 94.4 96.1 97.2

0.45 101.8 109.4 100.1 101.4 109.5 110.1 0.45 107.3 108.6 99.7 100.1 109.6 109.6

Figure 5: Percentage Cost for Error Interval 0.2 (left table) and 0.25 (right table)

Finally, for error interval 0.25 (right table in Figure 5), we can no longer achieve at least a 40% cost reduction
with C = 0.1. In general, the changes have become quite large compared to the results for exact latency times,
indicating that a smaller error interval should be chosen.

Overall, the cost coefficients displayed in Figure 4 and Figure 5 suggest that with error interval 0.1, the
approximate probabilistic method performs almost as well as the probabilistic method based on the exact
distribution function. This can be achieved with a modest amount of data collection, namely N = 50. For larger
error intervals (0.15 and 0.2), the user may have to choose a smaller checkpoint interval or collect more data
points to achieve the same efficiency bracket. Finally, the probabilistic method based on an error interval of
0.25 does not consistently outperform the iterative algorithm, even for N > 25 and C < 0.45, indicating that the
error interval should be less than 0.25.

One possibly surprising result, namely that performance does not always increase with increased data
collection, can be explained by the fact that for each combination of parameter values for C, N, and R, a new set
of parameters for the exponential waiting times was selected. This variation in parameters carries through to the
cost coefficients. In a future simulation, the cost will be computed simultaneously not only for the different
error intervals, but also for the different values of N.

CONCLUSION

We have analyzed the performance of the probabilistic algorithm based on an approximate empirical
distribution function for the latency times. This approximate distribution function was computed by initially
employing the iterative rollback algorithm. The simulation showed that for an error interval of 0.1, with a
modest number of data, N = 50, the algorithm based on the approximate distribution function achieved the same
efficiency brackets as the one based on the exact latency times. Depending on the lengths of the checkpoint
intervals used with the probabilistic algorithm, a cost reduction of up to 40% (over the iterative algorithm) can
be achieved. This method of computing the approximate empirical distribution function does not depend on the
distribution functions of the waiting times between inter-connections, failures and ATs, nor on independence
assumptions; therefore, this approximate probabilistic rollback method is universally applicable.

REFERENCES

[1] A.K. Somai and N.H. Vaidya, Understanding Fault Tolerance and Reliability, Computer, 1997.
[2] B. Randell, System Structure for Software Fault Tolerance, IEEE Transactions on Software Engineering,

June 1995.
[3] S. Heubach and R. Pamula, Modeling and Simulation of Error Recovery in a Concurrent Processing

System, Proceedings of the 2nd International IASTED Conference: European Parallel and Distributed
Systems (Euro-PDS'98), IASTED/ACTA Press, pp. 29-35, 1998

[4] R. Koo and S. Toueg, Checkpointing and Rollback -Recovery for Distributed Systems, IEEE Transactions
on Software Engineering, January 1987.

[5] K. Mani Chandi and Leslie Lamport, Distributed Snapshots: Determining Global States of Distributed
Systems, ACM Transactions on Computer Systems, February 1985.

[6] K.L. Wu et al., Error Recovery in Shared Memory Multiprocessors Using Private Caches, IEEE
Transactions on Parallel and Distributed Systems, April 1990.

[7] K.M. Chandy et al., Analytic Models For Rollback And Recovery Strategies In Database Systems, IEEE
Trans. on Software Engineering, March 1975.

[8] Krishna Kant, A Model For Error Recovery With Global Checkpointing, Information Sciences, No. 30,
1978.

[9] J. Gray and D. Siewiorek, High Availability Computer Systems, Computer, Sep. 1991.
[10] Y.K. Malaiya and S.Y.H. Su, Reliability Measure of Hardware Redundancy Fault-Tolerant Digital

Systems with Intermittent Faults, IEEE Trans. on Computers, Aug. 1981.
[11] K.G. Shin and Y.H. Lee, Error Detection Process - Model, Design, and Impact on Computer

Performance, IEEE Trans. on Computers, June 1984.
[12] G.S. Kang and Y.H. Lee, Analysis Of Backward Error Recovery For Concurrent Processes With Recovery

Blocks, Proceedings of International Conference on Parallel Processes, June 1983.
[13] R.S. Pamula et al., Global Checkpointing For A Concurrent Processing System, Int. Journal of Systems

Sciences, 1990.

