California State University - Los Angeles

Department of Mathematics

Master's Degree Comprehensive Examination

Analysis Spring 2022

Gutarts, Hajaiej, Zhong*

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used.
(1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
(2) Write on one side of the paper only.
(3) Begin each problem on a new page.
(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

SECTION 1 - Do two (2) problems from this section. If you attempt all three, then the best two will be used for your grade.

Spring 2022 \#1. Are the following sets open, closed or neither. Justify your answer.
(a) \mathbb{Q}.
(b) $\left\{x \in \mathbb{R} \backslash \mathbb{Q}: x^{3}<27\right\}$.
(c) $\left\{1+(-1)^{n} / n: n \in \mathbb{Z}^{+}\right\} \bigcup\{1\}$
(d) $\bigcup_{n=1}^{\infty}(1-1 / n, 1+1 / n)$.

Spring $2022 \#$. Let D be a nonempty set. Suppose that $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ are functions such that $f(x)>0$ and $g(x)>0$ for all $x \in D$. Compare

$$
\sup _{x \in D}[f(x) \cdot g(x)] \quad \text { and } \quad\left(\sup _{x \in D} f(x)\right) \cdot\left(\sup _{x \in D} g(x)\right),
$$

and justify your answer.

Spring $2022 \#$. Let D be an interval of \mathbb{R}, f a continuous function from D to \mathbb{R}, and $a \in D$ an interior point of D. Prove the following two statements are equivalent:
(a) f is continuous at a.
(b) For any sequence $\left\{x_{n}\right\}$ in D such that $x_{n} \rightarrow a$, we have $f\left(x_{n}\right) \rightarrow$ $f(a)$.

SECTION 2 - Do three (3) problems from this section. If you attempt more than three, then the best three will be used for your grade.

Spring $2022 \# 4$.
(a) Suppose $\langle\cdot, \cdot\rangle$ is an inner product on a vector space \mathcal{V} over \mathbb{C}, and $\|\cdot\|$ is the associated norm. Show that

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

for all v and w in \mathcal{V}.
(b) Show that there is no possible inner product on \mathbb{R}^{2} for which the norm $\|(x, y)\|=|x|+|y|$ is the associated norm.

Spring $2022 \#$. For each continuous function f on the interval $[0,2]$ define a function $T f$ by

$$
\begin{equation*}
(T f)(x)=x+\lambda \int_{0}^{x} x t f(t) d t \tag{1}
\end{equation*}
$$

(a) Suppose \mathcal{X} is a metric space with metric d. A mapping $T: \mathcal{X} \rightarrow \mathcal{X}$ is said to be a proper contraction on \mathcal{X} if there is a real constant c with $0 \leq c<1$ and $d(T(x), T(y)) \leq c \cdot d(x, y)$ for all $x, y \in \mathcal{X}$.

Find a range of values for the parameter λ for which the transformation T defined in (1) is a proper contraction on $C([0,2])$ with respect to the supremum norm. Justify your answer.
(b) Describe the iterative process for solving the integral equation

$$
f(x)=x+\lambda \int_{0}^{x} x t f(t) d t
$$

specifying the transformation to be iterated and explaining how this leads to a solution. With $f_{0}(x)=0$ for all x as the starting function, compute the first two iterates, $f_{1}(x)$ and $f_{2}(x)$.
(c) Show that if f is a solution to the integral equation of Part (b), then it is also a solution to the differential equation

$$
f^{\prime \prime}(x)-\lambda x^{2} f^{\prime}(x)-3 \lambda x f(x)=0
$$

with $f(0)=0, f^{\prime}(0)=1$.

Spring $2022 \#$. Let \mathcal{X} be the space $C([0,2 \pi] ; \mathbb{R})$ of all continuous real valued functions on the interval $[0,2 \pi]$ equipped with the supremum norm, $\|f\|_{\infty}=\sup \{|f(t)|: t \in[0,2 \pi]\}$. Let \mathcal{Y} be the subspace $C^{1}([0,2 \pi] ; \mathbb{R})$ consisting of those f in \mathcal{X} which are differentiable with f^{\prime} also continuous. Let $T: \mathcal{Y} \rightarrow \mathcal{X}$ be the linear transformation given by $T f=f^{\prime}$.
(a) Show that $T:\left(\mathcal{Y},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathcal{X},\|\cdot\|_{\infty}\right)$ is not continuous. (Hint: the functions $f_{k}(x)=\sin (k x), k=1,2, \ldots$ might be useful.)
(b) Show that the formula $[[f]]=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ gives a norm on \mathcal{Y}.
(c) Show that $T:(\mathcal{Y},[[\cdot]]) \rightarrow\left(\mathcal{X},\|\cdot\|_{\infty}\right)$ is continuous.

Spring $2022 \#$. Let $f(t)=|t|$ for $t \in[-\pi, \pi]$, and extend it to be 2π-periodic on \mathbb{R}.
(a) Compute the Fourier series for f. (Either exponential or trigonometric form, your choice).
(b) Use the result of Part (a) to show that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{4}}=\frac{\pi^{4}}{96}
$$

