California State University – Los Angeles Department of Mathematics Master's Degree Comprehensive Examination Analysis Spring 2021 Gutarts, Hajaiej, Zhong*

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used.

- (1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
- (2) Write on one side of the paper only.
- (3) Begin each problem on a new page.
- (4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

SECTION 1 - Do two (2) problems from this section. If you attempt all three, then the best two will be used for your grade.

Spring 2021 #1. Compute the inf, \sup , max and min (when they exist) of the following sets:

- (a) $\{x \in \mathbb{Q} | x^5 < 243\}.$
- (b) $\{x \in \mathbb{R} \setminus \mathbb{Q} \mid x^5 < 243\}.$
- (c) $\{1 + \frac{(-1)^n}{n} | n \in \mathbb{N}\}.$

Spring 2021 #2. Using the $\varepsilon - \delta$ definition show that

$$\lim_{x \to 0} \frac{1}{(x-1)^2} = 1$$

Is the function $\frac{1}{(x-1)^2}$ continuous at zero? Justify your answer.

Spring 2021 #3. Consider the set $S = [0, \infty)$. Consider the open cover:

$$X = \{ (n-2, n) \mid n \in \mathbb{N} \}.$$

(a) Is X a cover of S? Justify your answer.

(b) Prove that X contains no finite subcover of S.

(c) Is S closed? Is it bounded? Justify your answer.

SECTION 2 – Do three (3) problems from this section. If you attempt more than three, then the best three will be used for your grade.

Spring 2021 #4. We define a transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ by

$$Tx = Cx + b,$$

where $C = (c_{ij})$ is a real $n \times n$ matrix and $b \in \mathbb{R}^n$ is given.

(a) If we equip \mathbb{R}^n with the metric $d(x, y) = \max_{1 \le i \le n} |x_i - y_i|$, under what general condition on the matrix C will T be a proper contraction? Justify your answer.

(b) Repeat Part (a) with the metric $d(x, y) = (\sum_{i=1}^{n} |x_i - y_i|^2)^{1/2}$.

(c) With either of the metric from (a) or (b), describe an iteration process for solving the linear system of equations

$$x = Cx + b$$

by specifying the transformation to be iterated and explaining how this leads to a solution.

Spring 2021 #5. Let $p_0(x) = 1$ and $p_1(x) = x$, and let \mathcal{P}_1 be the subspace of the space C([0, 2]) of all continuous functions on [0, 2] spanned by p_0 and p_1 .

(a) Find a basis for \mathcal{P}_1 which is orthonormal with respect to the inner product $\langle f, g \rangle = \int_0^2 f(t) \overline{g(t)} dt$.

(b) Use the results of Part (a) to find the function f(x) = ax + b in \mathcal{P}_1 which makes the quantity

$$J(f) = \int_0^2 |x^2 - f(x)|^2 \, dx$$

as small as possible.

Spring 2021 #6. If *d* is a metric on a vector space $X \neq \{0\}$ which is obtained from a norm $\|\cdot\|$, and \tilde{d} is defined by

$$d(x, x) = 0,$$
 $d(x, y) = d(x, y) + 1$ $(x \neq y).$

- (a) Show that \tilde{d} is a metric on X.
- (b) Show that \tilde{d} cannot be obtained from a norm.

Spring 2021 #7. Let $f(t) = t^2$ for $t \in [-\pi, \pi]$, and extend it to be 2π -periodic on \mathbb{R} .

- (a) Find the Fourier series for f(t) in the trigonometric form.
- (b) Use the result of Part (a) to show that

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}.$$