
This article was downloaded by: [California State University L A], [Jingjing Li]
On: 21 January 2015, At: 10:23
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

International Journal of Remote
Sensing
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tres20

An object-based approach for
verification of precipitation estimation
J. Lia, K. Hsub, A. AghaKouchakb & S. Sorooshianb

a Department of Geosciences and Environment, California State
University Los Angeles, Los Angeles, CA, USA
b Center for Hydrometeorology and Remote Sensing, Department
of Civil & Environmental Engineering, University of California
Irvine, Irvine, CA, USA
Published online: 19 Jan 2015.

To cite this article: J. Li, K. Hsu, A. AghaKouchak & S. Sorooshian (2015) An object-based approach
for verification of precipitation estimation, International Journal of Remote Sensing, 36:2, 513-529,
DOI: 10.1080/01431161.2014.999170

To link to this article:  http://dx.doi.org/10.1080/01431161.2014.999170

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2014.999170&domain=pdf&date_stamp=2015-01-19
http://www.tandfonline.com/loi/tres20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2014.999170
http://dx.doi.org/10.1080/01431161.2014.999170


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


An object-based approach for verification of precipitation estimation

J. Lia*, K. Hsub, A. AghaKouchakb, and S. Sorooshianb

aDepartment of Geosciences and Environment, California State University Los Angeles,
Los Angeles, CA, USA; bCenter for Hydrometeorology and Remote Sensing, Department of Civil

& Environmental Engineering, University of California Irvine, Irvine, CA, USA

(Received 4 July 2014; accepted 27 October 2014)

Verification has become an integral component in the development of precipitation
algorithms used in satellite-based precipitation products and evaluation of numerical
weather prediction models. A number of object-based verification methods have been
developed to quantify the errors related to spatial patterns and placement of precipita-
tion. In this study, an image processing technique known as watershed transformation,
capable of detecting closely spaced, but separable precipitation areas, is adopted in the
object-based approach. Several key attributes of the segmented precipitation objects
are selected and interest values of those attributes are estimated based on the distance
measurement of the estimated and reference images. An overall interest score is
estimated from all the selected attributes and their interest values. The proposed
object-based approach is implemented to validate satellite-based precipitation estima-
tion against ground radar observations. The results indicate that the watershed seg-
mentation technique is capable of separating the closely spaced local-scale
precipitation areas. In addition, three verification metrics, including the object-based
false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill
of precipitation estimates in depicting the spatial and geometric characteristics of the
precipitation structure against observations.

1. Introduction

Accurate representation of observed precipitation spatial patterns and structures is essen-
tial for hydrologic applications. It has been noted that the spatial variability of precipita-
tion has a major impact on the accuracy of modelled runoff volumes (Faurès et al. 1995;
Goodrich et al. 1995). Especially in distributed hydrological modelling, the spatial
patterns and locations of precipitation events are important to describe the spatial hetero-
geneity of precipitation (Foufoula-Georgiou and Vuruputur 2001).

In the last decade, satellite-based precipitation products and numerical weather prediction
(NWP) models have provided precipitation estimates and forecasts, respectively, with high
spatial and temporal resolution suitable for hydrologicmodelling and watershedmanagement.
However, the quality of the simulated precipitation datasets is a vital factor in the decision to
use these estimates for practical applications. Therefore, it is imperative that verification be an
integral component of precipitation algorithms and dataset development.

Several coordinated verification activities have been established to evaluate the accu-
racy of precipitation estimation against ground observations, such as ground radar and rain
gauge data (Adler et al. 2001; AghaKouchak et al. 2012; AghaKouchak, Behrangi, et al.
2011; Arkin and Turk 2006; Arkin and Xie 1994; Colle, Olson, and Tongue 2003; Ebert,
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Janowiak, and Kidd 2007; Ebert et al. 2003; Mass et al. 2002; McBride and Ebert 2000;
Mehran and AghaKouchak 2014; Olson, Junker, and Korty 1995; Sapiano and Arkin 2009;
Smith et al. 1998; Tian et al. 2009). In general, these activities have focused on pixel-based
measures of errors, including continuous metrics (e.g. correlation coefficient, root mean
square error) and/or categorical statistics (e.g. probability of detection (POD), false alarm
ratio (FAR), critical success index (CSI) derived from contingency tables; Wilks (2011)).
Volumetric versions of the above metrics have also been developed and used in validation
and verification studies (AghaKouchak and Mehran 2013). These verification measures
summarize pixel-to-pixel differences between observations and estimates. However, while
providing valuable information, these measures do not explicitly quantify errors related to
spatial patterns, structure, and placement of precipitation (Baldwin and Kain 2006; Casati
et al. 2008), which are fundamental in hydrologic applications. Figure 1 illustrates the
inability of traditional verification methods to capture spatial characteristics of precipitation
errors. Five examples of observation (O) and estimate/forecast (E) pairs are presented in
Figure 1. The first four examples yield the same statistics: POD = 0, FAR = 1, CSI = 0,
indicating that the estimate/forecast completely fails to capture the event. However, visual
inspection of Figure 1 shows that in case (a), the estimate (E) captures the observation (O),
but with a slight displacement. Case (b) shows larger displacement, but (E) still manages to
capture the shape of the storm. Cases (c) and (d) poorly capture the observation, with (c)
overestimating the area and (d) misorientating the estimate (E). Case (e) scores better in
traditional verification metrics (POD > 0, FAR < 1, CSI > 0), but is probably a poorer
estimate than (a). Thus, these verification statistics are not able to diagnose spatial and
geometrical features of errors.

A number of spatial verification methods have been proposed to provide diagnostic
information regarding the ability of a NWP model to depict the spatial pattern, intensity, and
placement of precipitation entities compared with the observations (see Ahijevych
et al. (2009), Gilleland et al. (2009, 2010), and references therein). Furthermore, Gilleland
et al. (2009, 2010) categorized the spatial verification methods into four groups: (1)
neighbourhood approaches, (2) scale separation/decomposition, (3) features-based/object-
based approaches, and (4) field deformation verification. These groups have been further
compared and examined for high-resolution precipitation forecasts. For example, in the
object-based approaches, Ebert and McBride (2000) and Ebert and Gallus (2009) developed
the contiguous rain area (CRA) method, in which the total mean squared error is decom-
posed into volume, pattern, and displacement error. Davis et al. (2006a, 2006b, 2009)
introduced the method for object-based diagnostic evaluation (MODE), which focuses on
multiple attributes of rain entities (e.g. orientation, rain area) to derive the median of
maximum interest (i.e. an object-based measure of forecast skill) using a fuzzy logic
algorithm. Wernli et al. (2008, 2009) considered three components: structure (S), amplitude
(A), and location (L), associated with precipitation fields in the verification domain.
Marzban and Sandgathe (2006, 2008) adopted a statistical method termed cluster analysis

O E 

(a)

O
E 

(d)

O E

(b)

O E

(c)

        E O 

(e)

Figure 1. A schematic instance of various observation (O) and estimate/forecast (E) combinations
(Davis, Brown, and Bullock 2006a).

514 J. Li et al.

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 



to identify objects and assessed the forecast performance on different scales. Micheas
et al. (2007) proposed Procrustes shape analysis to evaluate the forecast skill. Lack,
Limpert, and Fox (2010) advanced Micheas et al. (2007)’s method by using a discrete
Fourier transform to allow object identification on multiple scales.

In the advanced concept workshop on remote sensing of precipitation on multiple
scales (Sorooshian et al. 2011), further study of diagnostic techniques such as object-
based verification approaches was identified as one of the research priorities in the remote
sensing of precipitation. A number of object-based verification and pattern analysis
approaches have been implemented in satellite precipitation estimates (e.g.
AghaKouchak, Nasrollahi, et al. 2011; Demaria et al. 2011). For instance, Skok
et al. (2009) adopted MODE to compare the spatial distribution and movement of
precipitation systems derived from tropical rainfall measuring mission (TRMM) 3B42
and precipitation estimation from remotely sensed information using artificial neural
networks (PERSIANN) over the intertropical convergence zone. In addition, Demaria
et al. (2011) examined the systematic errors related to volume, pattern, and displacement
using the CRA method for three satellite precipitation products: TRMM, PERSIANN, and
the climate prediction centre morphing technique (CMORPH), against rain gauge obser-
vations in the La Plata river basin.

Most object-based methods use a threshold to define objects as contiguous regions of
pixels that exceed the specified threshold (Gilleland et al. 2009). A schematic one-
dimensional example of using a threshold in the precipitation field is shown in
Figure 2. Two peaks of precipitation intensity are observed in the example, which can
indicate two localized precipitation areas in the field. Using the high threshold ‘a’, two
precipitation objects can be identified, but only a few points are above the threshold and
are included in each object. Using the low threshold ‘c’, one precipitation object can be
identified. This large object is useful when analysing large-scale or meso-scale precipita-
tion systems. Using the threshold ‘b’, two objects with many points included can be
identified. This threshold is an appropriate threshold to distinguish localized precipitation
areas. However, the appropriate threshold needs to be selected from a specific range in
order to separate closely spaced precipitation areas. This increases the difficulty in
identifying localized precipitation areas using the thresholding technique. Meanwhile,
localized precipitation areas are found to possess different spatial characteristics, such
as sizes, shapes, and orientations. Also, they are found to experience differences in the
temporal domain, such as different advection, and growth/decay rates. In this article, an
advanced object identification technique is proposed for the spatial verification of

Intensity

a

b

c

x

Figure 2. A schematic example of using different thresholds in the precipitation field in one
dimension. The precipitation intensity function is defined on the x–y plane. Here, the example is
based on one dimension x. The black curve represents the precipitation intensity. Grey dash lines
represent different thresholds.

International Journal of Remote Sensing 515

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 



localized precipitation areas. An image processing technique known as the watershed
transformation (Beucher and Lantuejoul 1979; Meyer 1994) is adopted in the object-based
approach to detect the closely spaced, but separable local-scale precipitation areas both in
the estimations and observations. Lakshmanan, Hondl, and Rabin (2009) used the
watershed transformation technique to identify storm cells in radar reflectivity and infra-
red temperature satellite data. This study employed the watershed transformation techni-
que to identify the localized precipitation areas in the precipitation estimations and
observations for the verification purpose, which is one of the main goals of this study.

The objective of this study is to develop an advanced technique for the verification of
local-scale precipitation areas focusing on their spatial and geometric characteristics.
There are already numerous categorical and volumetric verification measures in the
literature (e.g. Wilks 2011; AghaKouchak and Mehran 2013). Thus, the focus of this
study is on geometrical characterization. The proposed verification method uses the
watershed transformation to identify and delineate the separable local-scale precipitation
objects, and then uses a distance measurement for selected precipitation object attributes
by estimating the interest values. The selected precipitation objects are used for relative
comparison of the precipitation geometric characteristics, but not precipitation intensity.

2. Methodology

2.1. Precipitation object identification

The first step is to identify separable local-scale precipitation objects. The watershed
segmentation/transformation is the main algorithm used for identification of precipitation
objects, which was developed by Meyer (1994). This algorithm partitions the image into
different catchment basins/segmented regions based on local minima. The image is
interpreted as a topographic surface, where the value of each pixel represents the altitude
at that point. In this study, watershed transformation is adopted to segment precipitation
intensity images based on storm centres. Since storm centres are associated with the
highest rainfall intensity (i.e. they are local maxima), the precipitation data that possess
storm centres are converted to possess local minima in order to apply the watershed
transformation algorithm. This conversion of the precipitation data is described as:

p0 ¼ �1ð Þ � pþ λ; (1)

where p is the original precipitation intensity at each pixel and λ is a positive number that
assures that p′ is a positive value for any given p.

Watershed transformation often leads to over-segmentation in the images due to numer-
ous local minima (Meyer and Beucher 1990). Additionally, the local minima, which are
minor fluctuations, are insignificant for the purpose of segmentation (Meyer 1994). The
H-minima transform is used to suppress/fill the local shallow minima prior to segmentation
(Soille 1999), where the local shallow minima are the local minima whose depths are
smaller or equal to the merge threshold. These minima are filled by increasing the minima
with the merge threshold and are suppressed in the images. Figure 3 shows the effect of
suppressing the local shallow minima using the H-minima transform.

After using the H-minima transform, the watershed transformation algorithm is then
applied to identify catchment basins. The algorithm is based on topographical distance. It
is assumed that the image h is in the space C(E). This space represents the real twice
continuously differentiable functions on the connected domain E with only isolated
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critical points (Roerdink and Meijster 2000). The topographical distance (TD) between
two points, a and b in domain E, is defined as:

TDhða; bÞ ¼ inf
γ

ð
γ
�hðγðsÞÞk kds; (2)

where inf refers to infimum and γ represents all paths between a and b in domain E, with
γ(0) = a, γ(1) = b. The shortest TD between a and b is obtained from the path that has the
steepest slope. Given that {mk}k∈I is the set of local minima in h and I contains a set of
indices k, the catchment basin, CB(mi) with the minimum mi, is defined as the set of
points x ∈ E, which are closer to mi than any other local minimum mj based on TD:

CBðmiÞ ¼ x 2 Ej"j 2 I; j�i : hðmiÞ þ TDhðx;miÞ<hðmjÞ þ TDhðx;mjÞ
� �

: (3)

The watershed line (WL) of h is the set of points that do not belong to any catchment
basins:

WLðhÞ ¼ E \ [
i2I

CBðmiÞð Þ
� �c

: (4)

Every point in the WL is assigned to a certain CB based on the minimum value difference
between this point and its eight neighbourhood points. Then, the watershed transformation
algorithm assigns different labels to each CB.

Catchment basins/storm objects are identified in the converted precipitation intensity
images after applying the watershed transformation. Then, the minimum size threshold
is used to decide the lower bound coverage of precipitation objects; the objects above
the threshold will be further considered in the evaluation. The precipitation objects are
compared for the precipitation estimates and the observations at the same merge and
minimum size thresholds. The same thresholds are used to test the similarity between
the estimated and observed precipitation fields. An example of the segmentation process
of the precipitation objects is illustrated in Figure 4. This figure serves as an instance to

(a) Catchment basins Catchment basins (b)

x x

Figure 3. A sketch of the H-minima transform applied to a one-dimensional example. (a) Grey line
representing the original image in one dimension. The black cross markers represent local minima. Five
catchment basins are identified based on five local minima. (b) Black dot line representing the image
values after applying the H-minima transform. The black cross markers represent local minima. Three
shallow minima are filled. Two catchment basins are identified based on two local minima.
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Figure 4. (a) Original precipitation distribution in mm day−1 obtained from National Oceanic and
Atmospheric Administration (NOAA) stage IV multi-sensor precipitation analyses (MPE) in the mid-
USA on 30 July 2008. White background represents rainfall intensity below 1 mm day−1. (b)
Distribution of segmented precipitation objects with merge threshold 15 mm day−1 after applying
watershed transformation. (c)–(h) Distribution of segmented precipitation objects with merge threshold
1 mm day−1, 5 mm day−1, 10 mm day−1, 25 mm day−1, 35 mm day−1, 40 mm day−1, correspondingly.
Different colours represent different precipitation objects.
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demonstrate how the merge threshold affects the resulting precipitation objects in the
reference data (i.e. observations). Here, different merge thresholds were used to show
the separation of precipitation areas. When the merge threshold is small (1 to 10 mm
day−1 in this case), segmented precipitation objects tend to delineate small-scale pre-
cipitation objects. On the other hand, when the merge threshold is large (greater than
25 mm day−1 in this case), segmented precipitation objects tend to combine the closely
spaced precipitation areas. Therefore, the appropriate merge threshold should be
selected based on the scale at which validation information is required. Note that the
merge threshold can be determined based on the user’s particular application. If a user is
interested in a more detailed structure/pattern of the precipitation field, a relatively lower
merge threshold can be considered. If a user is interested in the large-scale structure/
pattern of the precipitation field, a relatively higher merge threshold can be implemen-
ted. In this study, a 15 mm day−1 threshold is used for a local-scale evaluation of
satellite precipitation information.

2.2. Precipitation object evaluation

After identifying the precipitation objects, the next step is to evaluate how well the
estimated objects match with the observed objects. The estimated and observed precipita-
tion objects, obtained from estimation and observation fields, are categorized into match-
ing objects and unmatching objects based on overlapping criteria. Each observed object is
searched for an estimated matching object by examining the overlap between the two
objects. The two objects can be partially overlapped or fully overlapped. Both situations
are considered as matching cases. For the unmatching objects, two scores are generated to
examine the ability of the estimation for detecting the precipitation events. The estimated
objects that do not overlap with any observed objects are counted as false alarms; the
object-based false alarm ratio (OFAR) is determined by dividing the false alarm object
area by the total object area in the estimate. The same procedures are conducted on the
observed objects. The observed objects that do not overlap with any estimated objects are
counted as misses; and the object-based missing ratio (OMR) is determined by dividing
the miss object area by the total object area in the observation. The two scores are
defined as:

OFAR ¼ False alarm objects area

Total area of estimated objects
; (5)

OMR ¼ Miss objects area

Total area of observed objects
: (6)

It should be noted that the object-based false alarms and misses are different from the
traditional pixel-based false alarms and misses, respectively. The object-based false
alarms/misses include only the pixels that have not been matched as part of objects.
Thus, the false alarm/miss object area tends to include fewer pixels than the traditional
false alarm/miss pixels. OFAR and OMR relax the requirement of traditional pixel-
based hits by allowing all the pixels that are within the matching objects to be
considered as hits. For the matching objects, four key attributes are selected to
examine the performance of the estimated precipitation objects for depicting the
geometric characteristics against the observed precipitation objects. The attributes are
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the centroid location distance (cd), object area ratio (ar), intersection area ratio (iar),
and orientation difference (od). They are defined as:

cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
; (7)

ar ¼ Aj

Ai
(8)

iar ¼
Ai;j

Ai
if Ai <Aj

Ai;j

Aj
if Ai >Aj

(
; (9)

od ¼ δi � δj
�� �� if δi � δj

�� ��< 90
�

180
� � δi � δj

�� �� if δi � δj
�� ��> 90�

�
; (10)

where (xi, yi) and (xj, yj) are the coordinates of the geometrical centroids of the ith
observed object and the jth estimated object, respectively. Ai and Aj are the area coverages
of the ith observed object and the jth estimated object, respectively. Ai;j is the overlap area
between the pair of matching objects. δi and δj are the angles between the x-axis/
horizontal direction and the major axis of the fitted eclipse for the ith observed object
and the jth estimated object, respectively. In addition, four interest functions (see Figure 5)
are designed for each object attribute to obtain commensurable measures, termed interest
values. The interest values, ranging from 0 to 1, can be aggregated and compared across
object attributes. They represent how well the estimated object matched the observed
object, and the highest interest value means a perfect performance of the estimated object
for that specific attribute. Based on an attribute’s histogram shown in Figure 6, a
probability density function is created for each attribute. The extreme of 2.5% of each
tail in the probability density function is given the worst or best interest values based on
the attribute. Taking centroid distance for example, two extremes were discovered at 0.8
and 36 pixels. Note that one pixel unit is approximately 25 km in length. The interest
value of 1 is assigned to the object pair whose centroid distance is smaller than 0.8 pixels,
while the interest value of 0 is assigned to the object pair whose centroid distance is larger
than 36 pixels. Here, the four interest functions are defined as:

Mcd ¼
1 0 � cd � 0:8

2ffiffi
3

p cosð π
105:6 � ðcd � 0:8Þþ π

6Þ 0:8< cd< 36
0 cd � 36

8<
: ; (11)

Mar ¼

0 0< ar � 0:01
2ffiffi
3

p sinð π
2:76 � ðar � 0:01ÞÞ 0:01< ar< 0:93

1 0:93 � ar � 1
0:93

2ffiffi
3

p sinð π
2:76 � ð1ar � 0:01ÞÞ 1

0:93 < ar < 1
0:01

0 ar � 1
0:01

8>>>>><
>>>>>:

; (12)

Miar ¼
0 0< iar � 0:01
2ffiffi
3

p sinð π
2:97 � ðiar � 0:01ÞÞ 0:01< iar � 1

�
; (13)
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Mod ¼
1 0 � od � 1:1
2ffiffi
3

p cosð π
252:9 � ðod� 1:1Þ þ π

6Þ 1:1< od< 85:4
0 85:4 � od � 90

8<
: : (14)

An overall interest score is generated for matching estimated/observed objects:

oi;j ¼ Mi;j;cd � wcd þMi;j;ar � war þMi;j;iar � wiar þMi;j;od � wod; (15)

oi ¼
X
j2Si

ðai;j � oi;jÞ; ai;j ¼ oi;jP
p2Si

oi;p
; Si 2 for all jðAi;j�ϕÞ; (16)

o ¼ medianðoiÞ; (17)

where Mi,j,cd, Mi,j,ar, Mi,j,iar, and Mi,j,od are the interest values of attributes cd, ar, iar, and od
between the ith observed and the jth estimated object pair. The terms wcd, war, wiar, and
wod are the weights of each attribute, where the same weight of 25% is assigned in this
study. oi;j is the overall interest value of the object pair. For each observed object, a
weighted interest value, oi, is obtained based on the set of matching estimated objects (Si).
If the observed object matches with one estimated object, Si contains one matching
estimated object and consequently oi is equal to oi;j. If the observed object matches
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Figure 5. Defined interest functions of four attributes, including (a) centroid distance, (b) area
ratio, (c) intersection area ratio, and (d) orientation difference. The annotated attribute values in each
function are defined in Equations (11), (12), (13), and (14). In the centroid distance function, one
pixel unit is approximately 25 km in length.
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with multiple estimated objects, Si contains multiple matching estimated objects. oi is then
calculated using the weights ai;j, with better matches getting a higher weight. The overall
interest score, o, is the median of the weighted interest values oi from all of the matching
observed objects. For a domain, the overall interest score, o, provides the information on
the quality of the estimated data in an aggregated sense. In general, with a small centroid
distance, a large intersection area ratio, a small object size difference, and a small
orientation difference for the matching objects, the overall interest score would be high.
On the other hand, with a large centroid distance, a small intersection area ratio, a large
object size difference, and a large orientation difference, the overall interest score would
be low.

3. Case study

In this section, the object-based approach described above is applied for validation of a
satellite-based precipitation product against ground radar observations. It should be noted
that the case study serves as an application of the framework to examine its feasibility.

3.1. Data

The satellite-based precipitation product used in this study is PERSIANN (Hsu
et al. 1997; Sorooshian et al. 2000). It is a global precipitation estimation system using

(b)
1000

800

600

400

200

0
403020

Area Ratio
101

(d)
350

250

150

50

0
15 30 45 60 75 90

Orientation Difference/degrees

(c)
1000

0.2 0.4 0.6 0.8 1
Intersection Area Ratio

800

600

400

200

0

(a)
400

10 20 30 40 50
Centroid Distance/pixels

300

200

100

0

Figure 6. Histograms of four attributes including (a) centroid distance, (b) area ratio, (c) intersec-
tion area ratio, and (d) orientation difference for satellite product PERSIANN in the summer of
2008. In the centroid distance histogram, one pixel unit is approximately 25 km in length.
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an artificial neural network approach. It estimates the rainfall rate at each 0.25° × 0.25°
pixel based on geostationary long-wave infrared imagery and is corrected by passive
microwave information. NOAA stage IV MPE (Lin and Mitchell 2005) is used as the
ground-observation reference. The stage IV data combines the precipitation measurements
from radar and rain gauge at a 4 km spatial resolution. Here, the stage IV data are
processed to derive the same spatial resolution as for the PERSIANN data. Four-kilometre
grid stage IV data contained in a 0.25° × 0.25° pixel are averaged to obtain the stage IV
data at a 0.25° spatial resolution. The case study is conducted at 0.25° × 0.25° on a daily
scale in the summer of 2008 over the contiguous United States (CONUS). Here, daily
precipitation estimates are selected for evaluation, because a large number of climate and
hydrologic applications require daily precipitation estimates as their inputs. In addition,
the reference data obtained from ground radar and rain gauges provide good quality at the
24-hour time scale. Therefore, the evaluation of precipitation estimates at the daily scale is
performed in order to provide useful information about the skill of precipitation estimates
for the hydrology community.

3.2. Precipitation object identification

Figure 7(a) and (b) demonstrates the precipitation distribution obtained from stage IV and
PERSIANN at a daily accumulation of rainfall intensity on 23 July 2008, over CONUS.
Coherent areas of rainfall generated by convective storms are depicted in both figures. In
general, the precipitation areas of stage IV present different spatial characteristics and
structures in the local scale compared to that of PERSIANN. Figure 7(c) and (d) shows
the precipitation objects identified using the convolution threshold technique (Davis
et al. 2009). The convolution threshold technique uses the process of convolution and a
threshold to identify objects in the precipitation estimation and observation. The process
of convolution replaces the centred pixel value with the average over the window covered
area. After convolution, the contiguous regions of pixels that exceed the threshold are
defined as the precipitation objects. As seen in Figure 7(c) and (d), two dominant large
rainfall objects over the middle and eastern USA are observed for stage IV and
PERSIANN by using this thresholding approach. These rainfall objects represent synoptic
scale precipitation areas and depict the precipitation structures in the synoptic scale.
Figure 7(e) and (f) indicates how rainfall objects are shaped and distributed by implement-
ing the watershed transformation on stage IV and PERSIANN with a merge threshold of
15 mm day−1. Here, the segmented rainfall objects well represent the closely spaced, but
separable local-scale 24-hour accumulated precipitation areas for stage IV and
PERSIANN. The resulting rainfall objects are the separable local-scale precipitation
areas that a human expert would likely see from the precipitation fields. This demonstrates
the capability of the watershed transformation for separating the closely spaced meso-
scale precipitation areas. The different precipitation objects delineate different precipita-
tion areas generated from convective storms, and the precipitation object distribution
depicts the accumulated precipitation structure in the local scale. In addition,
PERSIANN precipitation objects are larger in size compared to stage IV precipitation
objects. This is because PERSIANN tends to estimate larger precipitating areas as shown
in Figure 7(b) compared to stage IV precipitating areas in Figure 7(a). PERSIANN uses
the cloud-top brightness temperature to estimate the precipitation that results in producing
a larger coverage for precipitation systems. This implies that the watershed transformation
is able to preserve the original features of the precipitation in the segmented precipitation
objects, which allows a diagnostic evaluation at the local scale.
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3.3. Precipitation object evaluation

In the verification approach, the precipitation objects obtained from PERSIANN are
evaluated against the precipitation objects obtained from stage IV. Figure 6 illustrates the
histograms of four attributes in the summer of 2008, including centroid distance, area ratio,
intersection area ratio, and orientation difference. In the centroid distance histogram, the
number of matching object pairs decreases as the centroid distance increases. Most of the
centroid distance is less than 20 pixels (one pixel unit is approximately 25 km in length),
which indicates that the majority of matching objects have acceptable centroid distances.
From the area ratio histogram, the peak is discovered at the value of 1. There are more object
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Figure 7. (a) and (b) Original precipitation distribution in mm day−1 obtained from NOAA stage
IV MPE and PERSIANN at 0.25° × 0.25° over CONUS. Grey area represents no data. White
background represents rainfall intensity below a threshold of 1 mm day−1. (c) and (d) Distribution of
rainfall objects after using the convolution threshold technique on original precipitation data shown
in (a) and (b). Different colours represent different rainfall objects. (e) and (f) Distribution of rainfall
objects after applying the watershed segmentation technique on original precipitation data shown in
(a) and (b). Different colours represent different precipitation objects.
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pairs with area ratios (greater than 1) than the others. This shows that PERSIANN tends to
generate larger size rain objects than stage IV. In the intersection area ratio histogram, the
matching objects spread almost evenly between the lower bound and the higher bound. A
peak is noted at the value of 1, representing perfect overlapping. Finally, from the orienta-
tion difference histogram, it is observed that the number of object pairs decreases as the
orientation difference increases. Fifty-five per cent of the orientation difference is less than
30°, which indicates that PERSIANN performs well with regard to the orientation angle.

Three verification scores, including the object-based false alarm ratio, missing
ratio, and overall interest score, are derived using the proposed object-based approach.
Figure 8 illustrates the time series of these scores for the summer of 2008. As seen in
the figure, the object-based false alarm ratio and missing ratio are mostly below a
value of 0.1. This indicates that PERSIANN is capable of detecting the local-scale
precipitation areas correctly and placing them at the right location when compared
with the stage IV observations. The overall interest score, summarized from four
attributes of matching precipitation objects, shows good results throughout the entire
summer. This indicates that PERSIANN has the ability to depict the similar character-
istics of local-scale precipitation areas against reference data with respect to matching
objects. Overall, the three scores reveal that PERSIANN has the skill to depict the
spatial and geometric characteristics of the precipitation structure in the local scale
compared to observations.
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Figure 8. Time series of three scores including (a) object-based missing ratio, (b) object-based false
alarm ratio, and (c) overall interest score for satellite product PERSIANN in the summer of 2008.
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4. Summary and conclusions

An object-based approach is presented in this article to evaluate simulated precipitation by
focusing on separable local-scale precipitation areas. The application of the approach is
demonstrated in the validation of the satellite precipitation product PERSIANN against the
stage IV rain analysis on a daily scale for the summer of 2008. The watershed transformation is
adopted in the approach in order to identify the closely spaced, but separable local-scale
precipitation areas. The application of watershed transformation allows the separation of closely
spaced precipitation areas and identification of local-scale precipitation objects in the mean-
time. This assures that the precipitation object characteristics, acquired from separable local-
scale precipitation areas, are diagnostic and valuable for future evaluation. In addition, the three
metrics, including the object-based false alarm ratio, missing ratio, and overall interest score, are
examined to be informative and meaningful. These three scores are capable of demonstrating
whether the simulated precipitation correctly detects the rainfall and how well the simulated
precipitation can depict the spatial and geometric features of the precipitation structure. Hence,
this object-based approach provides new insights into the object-based evaluation of precipita-
tion estimation by characterizing the local-scale precipitation characteristics.

The proposed object-based approach is suggested for further implementation on other
satellite-based precipitation products. The performance for depicting the spatial and geometric
characteristics of the precipitation structure at the local-scale can be examined for different
products on a daily scale. These evaluation activities using the object-based approach can be
included in the satellite precipitation intercomparison project for a comprehensive under-
standing of different satellite-based precipitation products. Another promising application of
the approach is the assessment of NWP models. More insights can be learned from the
evaluation of NWP models by focusing on the local-scale precipitation structure.

Acknowledgements
The authors would like to acknowledge the MODE developers (Davis et al. 2009) for inspiring the
research direction. The authors would also like to thank Yudong Tian, Christa Peters-Lidard, and
Phil Arkin for their helpful suggestions. Furthermore, the authors would like to thank Dan
Braithwaite for his assistance with the data preparation and the reviewers for their valuable
comments and suggestions that led to the improvement of this work.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
Support for this study was provided by the NASA NESSF fellowship [NNX10AO61H], NASA
Precipitation Measurement Mission [grant number NNX10AK07G] and US Army Research Office
[grant number W911NF-11-1-0422].

References
Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman. 2001. “Intercomparison of

Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP-3).”
Bulletin of the American Meteorological Society 82: 1377–1396. doi:10.1175/1520-0477
(2001)082<1377:IOGPPT>2.3.CO;2.

526 J. Li et al.

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 

http://dx.doi.org/10.1175/1520-0477(2001)082%3C1377:IOGPPT%3E2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082%3C1377:IOGPPT%3E2.3.CO;2


AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai. 2011. “Evaluation of
Satellite-Retrieved Extreme Precipitation Rates across the Central United States.” Journal of
Geophysical Research 116. doi:10.1029/2010JD014741.

AghaKouchak, A., and A. Mehran. 2013. “Extended Contingency Table: Performance Metrics for
Satellite Observations and Climate Model Simulations.” Water Resources Research 49: 7144–
7149. doi:10.1002/wrcr.20498.

AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi. 2012. “Systematic and Random Error
Components in Satellite Precipitation Data Sets.” Geophysical Research Letters 39.
doi:10.1029/2012GL051592.

AghaKouchak, A., N. Nasrollahi, J. Li, B. Imam, and S. Sorooshian. 2011. “Geometrical
Characterization of Precipitation Patterns.” Journal of Hydrometeorology 12: 274–285.
doi:10.1175/2010JHM1298.1.

Ahijevych, D., E. Gilleland, B. Brown, and E. Ebert. 2009. “Application of Spatial Verification
Methods to Idealized and NWP Gridded Precipitation Forecasts.” Weather and Forecasting 24:
1485–1497. doi:10.1175/2009WAF2222298.1.

Arkin, P., and J. Turk. 2006. “Program to Evaluate High Resolution Precipitation Products
(PEHRPP): A Contribution to GPM Planning.” In 6th GPM International Planning
Workshop. Annapolis, MD: NASA. Preprints.

Arkin, P. A., and P. P. Xie. 1994. “The Global Precipitation Climatology Project: First Algorithm
Intercomparison Project.” Bulletin of the American Meteorological Society 75: 401–419.
doi:10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2.

Baldwin, M. E., and J. S. Kain. 2006. “Sensitivity of Several Performance Measures to
Displacement Error, Bias, and Event Frequency.” Weather and Forecasting 21: 636–648.
doi:10.1175/WAF933.1.

Beucher, S., and C. Lantuejoul. 1979. “Use of Watersheds in Contour Detection.” Proceedings of
International Workshop on Image Processing, Real-Time Edge and Motion Detection/
Estimation, Rennes, September 17–21.

Casati, B., L. J. Wilson, D. B. Stephenson, P. Nurmi, A. Ghelli, M. Pocernich, U. Damrath, E. E.
Ebert, B. G. Brown, and S. Mason. 2008. “Forecast Verification: Current Status and Future
Directions.” Meteorological Applications 15: 3–18. doi:10.1002/met.52.

Colle, B. A., J. B. Olson, and J. S. Tongue. 2003. “Multiseason Verification of the MM5. Part II:
Evaluation of High-Resolution Precipitation Forecasts over the Northeastern United States.”
Weather and Forecasting 18: 458–480. doi:10.1175/1520-0434(2003)18<458:MVOTMP>2.0.
CO;2.

Davis, C. A., B. Brown, and R. Bullock. 2006a. “Object-Based Verification of Precipitation
Forecasts. Part I: Methodology and Application to Mesoscale Rain Areas.” Monthly Weather
Review 134: 1772–1784. doi:10.1175/MWR3145.1.

Davis, C. A., B. Brown, and R. Bullock. 2006b. “Object-Based Verification of Precipitation
Forecasts. Part II: Application to Convective Rain Systems.” Monthly Weather Review 134:
1785–1795. doi:10.1175/MWR3146.1.

Davis, C. A., B. G. Brown, R. Bullock, and J. Halley-Gotway. 2009. “The Method for Object-Based
Diagnostic Evaluation (MODE) Applied to Numerical Forecasts from the 2005 NSSL/SPC
Spring Program.” Weather and Forecasting 24: 1252–1267. doi:10.1175/2009WAF2222241.1.

Demaria, E. M. C., D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, and J. B. Valdes 2011. “Evaluation
of Mesoscale Convective Systems in South America Using Multiple Satellite Products and an
Object-Based Approach.” Journal of Geophysical Research 116. doi:10.1029/2010JD015157.

Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin. 2003. “The WGNE assessment of Short-
term Quantitative Precipitation Forecasts.” Bulletin of the American Meteorological Society 84:
481–492. doi:10.1175/BAMS-84-4-481.

Ebert, E. E., and W. A. Gallus. 2009. “Toward Better Understanding of the Contiguous Rain Area
(CRA) Method for Spatial Forecast Verification.” Weather and Forecasting 24: 1401–1415.
doi:10.1175/2009WAF2222252.1.

Ebert, E. E., J. E. Janowiak, and C. Kidd. 2007. “Comparison of Near-Realtime Precipitation
Estimates from Satellite Observations and Numerical Models.” Bulletin of the American
Meteorological Society 88: 47–64. doi:10.1175/BAMS-88-1-47.

Ebert, E. E., and J. L. McBride. 2000. “Verification of Precipitation in Weather Systems:
Determination of Systematic Errors.” Journal of Hydrology 239: 179–202. doi:10.1016/
S0022-1694(00)00343-7.

International Journal of Remote Sensing 527

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 

http://dx.doi.org/10.1029/2010JD014741
http://dx.doi.org/10.1002/wrcr.20498
http://dx.doi.org/10.1029/2012GL051592
http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.1175/2009WAF2222298.1
http://dx.doi.org/10.1175/1520-0477(1994)075%3C0401:TGPCPF%3E2.0.CO;2
http://dx.doi.org/10.1175/WAF933.1
http://dx.doi.org/10.1002/met.52
http://dx.doi.org/10.1175/1520-0434(2003)18%3C458:MVOTMP%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2003)18%3C458:MVOTMP%3E2.0.CO;2
http://dx.doi.org/10.1175/MWR3145.1
http://dx.doi.org/10.1175/MWR3146.1
http://dx.doi.org/10.1175/2009WAF2222241.1
http://dx.doi.org/10.1029/2010JD015157
http://dx.doi.org/10.1175/BAMS-84-4-481
http://dx.doi.org/10.1175/2009WAF2222252.1
http://dx.doi.org/10.1175/BAMS-88-1-47
http://dx.doi.org/10.1016/S0022-1694(00)00343-7
http://dx.doi.org/10.1016/S0022-1694(00)00343-7


Faurès, J.-M., D. C. Goodrich, D. A. Woolhiser, and S. Sorooshian. 1995. “Impact of Small-Scale
Spatial Rainfall Variability on Runoff Modeling.” Journal of Hydrology 173: 309–326.
doi:10.1016/0022-1694(95)02704-S.

Foufoula-Georgiou, E., and V. Vuruputur. 2001. “Patterns and Organization in Precipitation.” In
Spatial Patterns in Catchment Hydrology: Observations and Modeling, edited by R. Grayson
and G. Blöschl, 82–104. Cambridge: Cambridge University Press.

Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert. 2009. “Intercomparison of
Spatial Forecast Verification Methods.” Weather and Forecasting 24: 1416–1430. doi:10.1175/
2009WAF2222269.1.

Gilleland, E., D. Ahijevych, B. G. Brown, and E. E. Ebert. 2010. “Verifying Forecasts Spatially.”
Bulletin of the American Meteorological Society 91: 1365–1373. doi:10.1175/
2010BAMS2819.1.

Goodrich, D., J. Faures, D. Woolhiser, L. Lane, and S. Sorooshian. 1995. “Measurement and
Analysis of Small-Scale Convective Storm Rainfall Variability.” Journal of Hydrology 173:
283–308. doi:10.1016/0022-1694(95)02703-R.

Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta. 1997. “Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks.” Journal of Applied Meteorology 36:
1176–1190. doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

Lack, S., G. L. Limpert, and N. I. Fox. 2010. “An Object-Oriented Multiscale Verification Scheme.”
Weather and Forecasting 25: 79–92. doi:10.1175/2009WAF2222245.1.

Lakshmanan, V., K. Hondl, and R. Rabin. 2009. “An Efficient, General-Purpose Technique for
Identifying Storm Cells in Geospatial Images.” Journal of Atmospheric and Oceanic
Technology 26: 523–537. doi:10.1175/2008JTECHA1153.1.

Lin, Y., and K. E. Mitchell. 2005. “The NCEP Stage II/IV Hourly Precipitation Analyses:
Development and Applications.” In 19th Conference on Hydrology. San Diego, CA:
American Meteor Society 1.2. Preprints.

Marzban, C., and S. Sandgathe. 2006. “Cluster Analysis for Verification of Precipitation Fields.”
Weather and Forecasting 21: 824–838. doi:10.1175/WAF948.1.

Marzban, C., and S. Sandgathe. 2008. “Cluster Analysis for Object-Oriented Verification of Fields:
A Variation.” Monthly Weather Review 136: 1013–1025. doi:10.1175/2007MWR1994.1.

Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle. 2002. “Does Increasing Horizontal Resolution
Produce More Skillful Forecasts?” Bulletin of the American Meteorological Society 83:
407–430. doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

McBride, J. L., and E. E. Ebert. 2000. “Verification of Quantitative Precipitation Forecasts from
Operational Numerical Weather Prediction Models over Australia.” Weather and Forecasting
15: 103–121. doi:10.1175/1520-0434(2000)015<0103:VOQPFF>2.0.CO;2.

Mehran, A., and A. AghaKouchak. 2014. “Capabilities of Satellite Precipitation datasets to Estimate
Heavy Precipitation Rates at Different Temporal Accumulations.” Hydrological Processes 28:
2262–2270. doi:10.1002/hyp.9779.

Meyer, F. 1994. “Topographic Distance and Watershed Lines.” Signal Processing 38: 113–125.
doi:10.1016/0165-1684(94)90060-4.

Meyer, F., and S. Beucher. 1990. “Morphological Segmentation.” Journal of Visual Communication
and Image representation 1: 21–46. doi:10.1016/1047-3203(90)90014-M.

Micheas, A. C., N. I. Fox, S. A. Lack, and C. K. Wikle. 2007. “Cell Identification and Verification
of QPF Ensembles Using Shape Analysis Techniques.” Journal of Hydrology 343: 105–116.
doi:10.1016/j.jhydrol.2007.05.036.

Olson, D. A., N. W. Junker, and B. Korty. 1995. “Evaluation of 33 Years of Quantitative
Precipitation Forecasting at the NMC.” Weather and Forecasting 10: 498–511. doi:10.1175/
1520-0434(1995)010<0498:EOYOQP>2.0.CO;2.

Roerdink, J. B. T. M., and A. Meijster. 2000. “The Watershed Transform: Definitions, Algorithms
and Parallelization Strategies.” Fundamenta Informaticae 41: 187–228.

Sapiano, M. R. P., and P. A. Arkin. 2009. “An Intercomparison and Validation of High-Resolution
Satellite Precipitation Estimates with 3-Hourly Gauge Data.” Journal of Hydrometeorology 10:
149–166. doi:10.1175/2008JHM1052.1.

Skok, G., J. Tribbia, J. Rakovec, and B. Brown. 2009. “Object-Based Analysis of Satellite-Derived
Precipitation Systems over the Low- and Midlatitude Pacific Ocean.” Monthly Weather Review
137: 3196–3218. doi:10.1175/2009MWR2900.1.

528 J. Li et al.

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 

http://dx.doi.org/10.1016/0022-1694(95)02704-S
http://dx.doi.org/10.1175/2009WAF2222269.1
http://dx.doi.org/10.1175/2009WAF2222269.1
http://dx.doi.org/10.1175/2010BAMS2819.1
http://dx.doi.org/10.1175/2010BAMS2819.1
http://dx.doi.org/10.1016/0022-1694(95)02703-R
http://dx.doi.org/10.1175/1520-0450(1997)036%3C1176:PEFRSI%3E2.0.CO;2
http://dx.doi.org/10.1175/2009WAF2222245.1
http://dx.doi.org/10.1175/2008JTECHA1153.1
http://dx.doi.org/10.1175/WAF948.1
http://dx.doi.org/10.1175/2007MWR1994.1
http://dx.doi.org/10.1175/1520-0477(2002)083%3C0407:DIHRPM%3E2.3.CO;2
http://dx.doi.org/10.1175/1520-0434(2000)015%3C0103:VOQPFF%3E2.0.CO;2
http://dx.doi.org/10.1002/hyp.9779
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1016/1047-3203(90)90014-M
http://dx.doi.org/10.1016/j.jhydrol.2007.05.036
http://dx.doi.org/10.1175/1520-0434(1995)010%3C0498:EOYOQP%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1995)010%3C0498:EOYOQP%3E2.0.CO;2
http://dx.doi.org/10.1175/2008JHM1052.1
http://dx.doi.org/10.1175/2009MWR2900.1


Smith, E. A., J. E. Lamm, R. Adler, J. Alishouse, K. Aonashi, E. Barrett, P. Bauer, W. Berg, A.
Chang, R. Ferraro, J. Ferriday, S. Goodman, N. Grody, C. Kidd, K. Kniveton, C. Kummerow,
G. Liu, F. Marzano, A. Mugnai, W. Olsen, G. Petty, A. Shibata, R. Spencer, F. Wentz, T.
Wilheit, and E. Zipser. 1998. “Results of WetNet PIP-2 Project.” Journal of the Atmospheric
Sciences 55: 1483–1536. doi:10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2.

Soille, P. 1999. Morphological Image Analysis: Principles and Applications, 170–171. New York:
Springer-Verlag.

Sorooshian, S., A. AghaKouchak, P. Arkin, J. Eylander, E. Foufoula-Georgiou, R. Harmon,
J. Hendrickx, B. Imam, R. Kuligowski, B. Skahill, and G. Skofronick-Jackson. 2011.
“Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales.” Bulletin of the
American Meteorological Society 92: 1353–1357. doi:10.1175/2011BAMS3158.1.

Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite. 2000. “Evaluation of
PERSIANN System Satellite-Based Estimates of Tropical Rainfall.” Bulletin of the American
Meteorological Society 81: 2035–2046. doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.
CO;2.

Tian, Y., C. D. Peters-Lidard, J. B. Eylander, R. J. Joyce, G. J. Huffman, R. F. Adler, K. Hsu, F. J.
Turk, M. Garcia, and J. Zeng 2009. “Component Analysis of Errors in Satellite-Based
Precipitation Estimates.” Journal of Geophysical Research 114. doi:10.1029/2009JD011949.

Wernli, H., C. Hofmann, and M. Zimmer. 2009. “Spatial Forecast Verification Methods
Intercomparison Project: Application of the SAL Technique.” Weather and Forecasting 24:
1472–1484. doi:10.1175/2009WAF2222271.1.

Wernli, H., M. Paulat, M. Hagen, and C. Frei. 2008. “SAL—A Novel Quality Measure for the
Verification of Quantitative Precipitation Forecasts.” Monthly Weather Review 136: 4470–4487.
doi:10.1175/2008MWR2415.1.

Wilks, D. S. 2011. Statistical Methods in the Atmospheric Sciences. Amsterdam: Academic.

International Journal of Remote Sensing 529

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 L
 A

],
 [

Ji
ng

jin
g 

L
i]

 a
t 1

0:
23

 2
1 

Ja
nu

ar
y 

20
15

 

http://dx.doi.org/10.1175/1520-0469(1998)055%3C1483:ROWPP%3E2.0.CO;2
http://dx.doi.org/10.1175/2011BAMS3158.1
http://dx.doi.org/10.1175/1520-0477(2000)081%3C2035:EOPSSE%3E2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081%3C2035:EOPSSE%3E2.3.CO;2
http://dx.doi.org/10.1029/2009JD011949
http://dx.doi.org/10.1175/2009WAF2222271.1
http://dx.doi.org/10.1175/2008MWR2415.1

	Abstract
	1.  Introduction
	2.  Methodology
	2.1.  Precipitation object identification
	2.2.  Precipitation object evaluation

	3.  Case study
	3.1.  Data
	3.2.  Precipitation object identification
	3.3.  Precipitation object evaluation

	4.  Summary and conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References



