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ABSTRACT

GENERALIZED STURM SEQUENCES

By

Ibrahim Jaber Alotaibi

If you have a polynomial f ∈ R[x] and want to know about the number and

values of its real roots, there is no better tool than a Sturm sequence. This is a

sequence of polynomials f0, f1, f2, . . . , fn = f with the property that the values of

these polynomials at real numbers a < b determine the number of real roots of f that

are between a and b. In this thesis we investigate a generalization of the definition of

Sturm sequences. This more flexible definition allows us to make connections between

our definition of Sturm sequences and interlacing of polynomials that have not been

noticed before. New Sturm sequences can be obtained, for example, from families of

orthogonal polynomials and characteristic polynomials of symmetric matrices.
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CHAPTER 1

Introduction

To find the number of real roots of polynomial with real coefficients over a

given interval, there is no better tool than a Sturm sequence. This is a sequence of

polynomials f0, f1, f2, . . . , fn = f with the property that the values of these polynomi-

als at real numbers a < b determine the number of real roots of f that are between a

and b. This very important algebraic problem was solved in a surprisingly simple way

in 1829 by the French mathematician Charles Sturm (1803-1855). The paper con-

taining the famous Sturm’s Theorem appeared in the eleventh volume of the Bulletin

des sciences de Ferussac and bears the title, “Memoire sur la resolution des equations

numeriques”. Sturm’s Theorem gives the number of real roots of a polynomial within

an interval in terms of the number of changes of signs of the values of the Sturm’s

sequence at the bounds of the interval. Applying Sturm’s Theorem to the interval of

all the real numbers gives the total number of real roots of a polynomial [1]. In this

thesis we show that there are many other sequences with the same desired properties.

For instance, if f ∈ R[x] has degree n ∈ N and n real roots (counting multiplicities).

Then the sequence of derivatives of f ,

(
f (n)(x) , f (n−1)(x) , . . . , f ′′(x) , f ′(x) , f(x)

)
is a generalized Sturm sequence. Also, our Sturm sequences have new properties

that are not in the standard Sturm sequence. This flexibility allows us to generalize

the idea of Sturm theorem.
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Definition 1.1. Let S = (a0, a1, . . . , an) be a sequence of nonzero real numbers.

Then the number of variations in S is the number of times the sign changes in

the sequence as one reads from left to right. We write V(S) = V(a0, a1, . . . , an) for

this number.

Example 1.2. Here are some examples:

V(1, 2, 3, 1) = 0 V(1,−1, 5,−1) = 3 V(1) = 0

V(1,−π,−3,−4) = 1 V(−1, 1, 1,−1) = 2 V(5,−2, 5,−3) = 3.

Since only the signs of the terms of the sequence matter, we will say that two sequences

are equivalent if the signs of their terms match up, and we will write

[ a0 , a1 , . . . , an ]

for the equivalence class containing (a0, a1, . . . , an). Thus [ a ] = [ b ] if and only if a

and b have the same sign or are both zero, and

[ a0 , a1 , . . . , an ] = [ b0 , b1 , . . . , bn ]

if [ ai ] = [ bi ] for i = 1, 2, . . . , n. For example, if a, b, c ∈ R, then

[
1 + a2 , b3 , −ec , 5d

]
= [ 1 , b , −1 , d ] ,

and

V
[

1 + a2 , b3 , −ec , 5d
]

= V [ 1 , b , −1 , d ] =

{
2 if d > 0

1 if d ≤ 0.

Notice that the number of variations in this sequence is independent of the

value of b. This happens because the terms before and after b in the sequence have

opposite signs. This property and several others are collected in the next lemma.
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Lemma 1.3. Let S = (a0, a1, . . . , an) be a sequence of nonzero real numbers.

(1) If r ∈ R is nonzero then V(S) = V(ra0, ra1, . . . , ran).

(2) If 0 ≤ m ≤ n, then V(S) = V(a0, a1, . . . , am) + V(am, am+1, . . . , an).

(3) If 0 < m < n, and am−1am+1 < 0, then am can be changed arbitrarily without

changing V(S). That is, the number of variations in S is independent of the

sign of am.

Our first example of a Sturm sequence is artificial in the sense that we construct

it from the roots of the polynomial, rather than using a Sturm sequence to find the

roots. Even so, it shows how the values of the polynomials in a Sturm sequence

determine the location of the roots. Fix x1, x2, x3 ∈ R, and define

f0(x) = 1

f1(x) = (x− x1)

f2(x) = (x− x1)(x− x2)

f3(x) = (x− x1)(x− x2)(x− x3)

(1.1)

For x ∈ R, the number of variations in the sequence

( f0(x) , f1(x) , f2(x) , f3(x) )

is a function of x that we denote as V(x). Note V is not defined on {x1, x2, x3} since

we have defined V only for sequences of nonzero real numbers.

The function V(x) has the remarkable property (see Theorem 2.7) that, so

long as a 6∈ {x1, x2, x3}, V(a) is the number of roots of f3 that are greater than a.

This is illustrated by the diagram below for which x2 < x1 < x3.
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x2 x1 x3
J I

f0(x) +++++++++++++++++++++++++++++++
f1(x) −−−−−−−−−−−−−−− 0+++++++++++++++
f2(x) +++++++ 0−−−−−−−0+++++++++++++++
f3(x) −−−−−−−0+++++++0−−−−−−−0++++++++

V(x) 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0

Figure 1.1: Interlacing that is not strict

For example, the diagram shows that f2(x) = (x− x1)(x− x2) is positive for

all x < x2, negative for x2 < x < x1, and then positive for all x > x1. The value

of V along the bottom of the diagram decreases from 3 to 0. This is, of course, in

agreement with our claim that V(a) is the number of roots of f3 that are greater

than a.

The reader can easily check that this property of V(x) is independent of the

order of the numbers x1, x2 and x3 and even if some of these are equal.

Of course, if a < b are real numbers that are not in {x1, x2, x3}, then the

number of roots of f between a and b is V(a)− V(b).

This property of V(x) is the basis of the definition of a Generalized Sturm

sequence in the following chapter.
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CHAPTER 2

Generalized Sturm Sequences

Definition 2.1. Let f ∈ R[x]. If a < b are real numbers or ±∞, then the number of

real roots of f on the interval (a, b) (counted with multiplicities) is denoted N (f ; a, b).

Note that N (f ; a, b) = N (rf ; a, b) for all r 6= 0. Also,

N (f ; a, b) = N (f ; a,∞)−N (f ; b,∞). (2.1)

Definition 2.2. A Sturm sequence is a sequence of polynomials in R[x],

( f0 , f1 , . . . , fn ) ,

such that, if a < b are real numbers neither of which is a root of any polynomial in

the sequence, then

V(a)− V(b) = N (fn; a, b)−N (f0; a, b).

Here, as above, V(x) is defined by

V(x) = V ( f0(x) , f1(x) , . . . , fn(x) ) .

One might consider this the definition of a “relative” Sturm sequence since

it involves the difference in the number of real roots for two polynomials f0 and fn.

Usually, we are interested in Sturm sequences in which f0 is a constant polynomial

and so V(a)− V(b) = N (fn; a, b).

Each polynomial in a Sturm sequence has only finitely many roots, so the set

of these roots is bounded above, that is, there is B ∈ R such that all the roots of the

polynomials are less than B. Then each polynomial has constant sign on the interval
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(B,∞), and V is a constant function on that same interval. The value of this constant

function is denoted V(∞), since it could be defined by V(∞) = limx→∞ V(x). Then,

V(∞) = V(B). Similarly, we define V(−∞) = limx→−∞ V(x). Then V(−∞)− V(∞)

is the number of real roots of fn minus the number of roots of f0 , counted with

multiplicities, and, for all a ∈ R, V(a)−V(∞) is the number of real roots of fn minus

the number of roots of f0 that are greater than a and V(−∞)− V(a) is the number

of real roots of fn minus the number of roots of f0 that are less than a.

Notice also that V(∞) is simply the number of variations in the sequence of

leading coefficients of the polynomials in the Sturm sequence. For example, if all

polynomials have positive leading coefficients, then V(∞) = 0.

Perhaps an example of a Sturm sequence will help to make the definition

clearer. Set

f0(x) = 1

f1(x) = x

f2(x) = (x+ 2)(x− 2)

f3(x) = (x+ 3)x(x− 3)

f4(x) = (x+ 4)(x+ 1)(x− 1)(x− 4)

Figure 2.1 shows the signs of these functions on the number line and makes it

easy to confirm that (f0, f1, f2, f3, f4) is a Sturm sequence.

Even though it is not part of the definition, in many of our applications we

will have deg fi = i for i = 1, 2, . . . , n.

The bottom line of the diagram shows the number of variations in the sequence

6



−5 −4 −3 −2 −1 0 1 2 3 4 5
J I

f0(x) +++++++++++++++++++++++++++++++
f1(x) −−−−−−−−−−−−−−− 0+++++++++++++++
f2(x) ++++++++++ 0−−−−−−−−−0++++++++++
f3(x) −−−−−−−0+++++++0−−−−−−−0++++++++
f4(x) +++++0−−−−−−−0+ + + +0−−−−−−−0+ + + + +

V(x) 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0

Figure 2.1: An example of a Sturm sequence

( f0(x) , f1(x) , f2(x) , f3(x) , f4(x) ) as a function of x. For example,

V(−2) = V ( f0(−2) , f1(−2) , f2(−2) , f3(−2) , f4(−2) )

= V(1,−2, 0, 10,−36)

= 3

Lemma 2.3. Let S = ( f0 , f1 , . . . , fn ) be a sequence of polynomials in R[x] , then

S is a Sturm sequence if and only if

V(a)− V(∞) = N (fn; a,∞)−N (f0; a,∞).

for all a ∈ R such that a is not a root of any of the polynomials in S. That means

for all a ∈ R, when a is not a root of any one of the polynomials in the sequence,

V(a)−V(∞) is the number of real roots of fn that are greater than a minus the number

of real roots of f0 that are greater than a.

Proof. This follows from (2.1).

Lemma 2.4. Let S = ( f0 , f1 , . . . , fn )∈ R[x] be a sequence of polynomials:

(1) If g(x) ∈ R[x] is nonzero polynomial, then S is a Sturm sequence if and only if

( gf0 , gf1 , . . . , gfn ) is a Sturm sequence.
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(2) If S is the concatenation of subsequences S1 = ( f0 , f1 , . . . , fm ) and S2 =

( fm , fm+1 , . . . , fn ) with 0 < m < n, then if any two of (S, S1, S2) are Sturm

sequences, then so is the remaining sequence.

Proof. This follows directly from Lemma 1.3 (1), (2), and the definition.

Notice that segments of a Sturm sequence are not always Sturm sequences.

That is, in the situation of the previous lemma, if S is a Sturm sequence then S1 and

S2 may not be Sturm sequences.

Lemma 2.5. ( f , g ) is a Sturm sequence if and only if ( g , −f ) is a Sturm sequence.

Proof. Since we have two potential Sturm sequences, we define V(x) = V(f(x), g(x))

and V ′(x) = V(g(x),−f(x)). Note that V(x),V ′(x) ∈ 0, 1 and

V ′(x) =

{
0 if V(x) = 1

1 if V(x) = 0
.

Suppose ( f , g ) is a Sturm sequence. So, V(a)−V(b) = N (g; a, b)−N (f ; a, b) for all

a, b ∈ R that are not roots of f or of g. We need to show that ( g , −f ) is a Sturm

sequence. That is, we need to show

V ′(a)− V ′(b) = N [f ; a, b]−N [g; a, b]

Let us construct the table that shows all possible cases.

V(a) V(b) V ′(a) V ′(b) V(a)− V(b) V ′(a)− V ′(b)
0 0 1 1 0 0
0 1 1 0 −1 1
1 0 0 1 1 −1
1 1 0 0 0 0

Figure 2.2: Table for Lemma 2.5
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From the table we see that, in all cases,

V ′(a)− V ′(b) = −(V(a)− V(b))

Hence

V ′(a)− V ′(b) = −(N [g; a, b]−N [f ; a, b])

= N [f ; a, b]−N [g; a, b]

Therefore, ( g , −f ) is a Sturm sequence.

Conversely, by symmetry, if ( g , −f ) is a Sturm sequence then ( f , g ) is a Sturm

sequence.

Now we can prove that our motivating example of a Sturm sequence in (1.1),

actually is a Sturm sequence.

Lemma 2.6. Let f(x) ∈ R[x] and r ∈ R. Then ( f(x) , (x− r)f(x) ) is a Sturm

sequence.

Proof. If a ∈ R is not a root of (x− r)f(x), then

V(a) = V ( f(a) , (a− r)f(a) ) =

{
0 if a > r

1 if a < r
.

Therefore, if a < b ∈ R are not roots of (x− r)f(x), then V(a)− V(b) will be

0 or 1, and will be 1, if and only if a < r < b, if and only if (x − r)f(x) has exactly

one more root on the interval (a, b) than f(x) does.

9



Theorem 2.7. Let x1, x2, . . . , xn ∈ R, and define

f0(x) = 1

f1(x) = (x− x1)

f2(x) = (x− x1)(x− x2)

...

fn(x) =
n∏

i=1

(x− xi)

(2.2)

Then ( f0 , f1 , . . . , fn ) is a Sturm sequence.

Proof. This is an easy induction using Lemma 2.4(2) and Lemma 2.6.

Theorem 2.8. Suppose f ∈ R[x] has n real roots (counting multiplicities). Then

there is a Sturm sequence ( f0 , f1 , . . . , fn ) with f0 = ±1 and fn = f.

Proof. By assumption f can be written as

f(x) = g(x)(x− x1)(x− x2) · · · (x− xn)

with x1, x2, . . . , xn ∈ R and g ∈ R[x] having no real roots. Define

f0(x) = g(x)

f1(x) = g(x)(x− x1)

f2(x) = g(x)(x− x1)(x− x2)

...

f = fn(x) = g(x)(x− x1)(x− x2) · · · (x− xn)

(2.3)

By Lemma 2.4(1) and Theorem 2.7, ( f0 , f1 , . . . , fn ) is a Sturm sequence. Since g

has a constant sign, f0 can be changed to 1 or −1 without affecting V(x), so, with

this change, ( f0 , f1 , . . . , fn ) is still a Sturm sequence.

10



Note that Theorem 2.8 provides a minimal Sturm sequence in the following

sense: any Sturm sequence that has f at one end and constant at the other end must

have at least n+ 1 polynomials so that V(−∞)− V(∞) = n.
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CHAPTER 3

Interlacing

Definition 3.1. Suppose that all the real roots of f ∈ R[x] are x1 ≤ x2 ≤ · · · ≤ xm

and all the real roots of g ∈ R[x] are y1 ≤ y2 ≤ · · · ≤ yn.

(1) If m = n + 1 and x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn−1 ≤ yn−1 ≤ xn, we will write

g � f . If all the inequalities are strict, we write g ≺ f. Note that we require

that g to have exactly one less real root than f .

(2) If n = m and x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn, we will write g E f . If

all the inequalities are strict, we write g / f. In this case, we require f to have

exactly the same number of real roots as g.

If g � f or f � g or g E f or f E g, we say that the roots of f and the roots of g

are interlaced. If g ≺ f or f ≺ g or g / f or f / g, we say that the roots of f and

the roots of g are strictly interlaced.

Strict interlacing is easy to characterize.

Lemma 3.2. Let f, g ∈ R[x] then the roots of f and g are strictly interlaced if and

only if

(1) all real roots of f and g are simple,

(2) f and g have no common roots,

(3) between any pair of adjacent roots of f there is a root of g and vice versa.

Proof. This follows directly from the definition.

In contrast to strict interlacing, if the roots of f and g are interlaced but not

strictly, then f and g may have common roots and roots of multiplicity greater than 1.
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For example, suppose that x2 is a simple real root of f . Then x1 < x2 < x3 and there

are three possibilities for the corresponding root of g:

• If y1 < x2 < y2, then x2 is not a root of g.

• If y1 = x2 < y2 or y1 < x2 = y2, then x2 is simple root of g.

• If y1 = x2 = y2, then x2 is double root of g.

Thus x2 is a root of g with multiplicity 0, 1 or 2.

Similarly, suppose that x1 < x2 = x3 = x4 < x5, that is, x2 is a root of f with

multiplicity 3. Then y2 = y3 = x2, so x2 is at least a double root of g. But it is also

possible that x1 < y1 = x2 and/or x4 = y4 < x5, so x2 could have multiplicity 3 or 4

as a root of g.

The general rule is easy to spot (but a little cumbersome to prove):

Lemma 3.3. If f, g ∈ R[x] and the real roots of g and f are interlaced, then a real

root of f with multiplicity m is a root of g with multiplicity m− 1, m or m+ 1.

Lemma 3.4. If g � f (g E f) and h = gcd(f, g), then g/h ≺ f/h (g/h / f/h).

Proof. Suppose g � f (or g E f,) but g ≺ f (or g / f) is not true. Then g and f have

a common root a. By Lemma 3.3 , the multiplicity of a in f and g differ by at most

one. Suppose the roots of f and g are indexed as in Definition 3.1 (1) or (2). Since

a is a common root of f and g there is a segment of this sequence of inequalities in

which the ≤ are replaced by =. We have two cases:

Case I: Suppose that the first root in the segment is a root of f and last root

is a root of g. That is,

yk−1 < xk = yk = · · · = xk+m = yk+m < xk+m+1

13



for some k,m ∈ N

Then at a, the multiplicity in f , g and h is m. So, f/h and g/h have no root at a. In

addition, yk−1 is a root of g/h, xk+m+1 is a root of f/g and there are no other roots of

g/h or f/h between yk−1 and xk+m+1. So the g/h and f/h have the strict interlacing

property on this interval.

Case II: Suppose that the first and last roots in the segment are roots of f .

So,

yk−1 < xk = yk = · · · = xk+m < yk+m.

Then at a, the multiplicity in f is m, and the multiplicity in g is m − 1. So, the

multiplicity in h is m − 1. Thus, the multiplicity in f/h is one and in g/h is zero.

Therefore, at a, f/h has simple root and g/h has no root. In addition, yk−1 <

xk < yk+m are roots of g/h,f/h,g/h, respectively so the strict interlacing property(see

Lemma 3.2) holds on the interval.

Note that there are two other cases with f and g switched. These are proved

similarly. Now we have shown that f/h and g/h have the strict interlacing property

around any common root of f and g. This suffices to prove g/h ≺ f/h (g/h/f/h.)

Example 3.5. An easy example will clarify the proof of Lemma 3.4. Suppose f and

g have three roots as shown in Figure 3.1, so that g E f.

x1 x2 x3
f(x) J I

y1 = y2 y3
g(x) J I

Figure 3.1: g E f interlacing

14



Note that x1 is a simple root of f and a double root of g. Thus, gcd(f, g) =

h = (x− x1) Hence, the roots of f/h and g/h are as in Figure 3.2

x2 x3
f(x)/h(x) J I

y1 y3
g(x)/h(x) J I

Figure 3.2: g/h / f/h interlacing

Now, x1 is not a root of f/h and is a simple root of g/h. Thus, the roots of

f/h and g/h are strictly interlaced, and g/h / f/h.

Lemma 3.6. If g ≺ f or g / f , and f and g have leading coefficients of the same

sign, then

(1) g(xi)f
′(xi) > 0 at all roots xi of f,

(2) f(yi)g
′(yi) < 0 at all roots yi of g.

Proof. Suppose first that g ≺ f have roots as in Figure 3.3 and positive leading

coefficients. Then, since all roots of g are simple, at each root, g changes sign.

Specifically g′(y1) > 0, g′(y2) < 0 and g′(y3) > 0. Because of the interlacing, the sign

of f at roots of g is opposite to g′. Thus, f(yi)g
′(yi) < 0 at all roots yi of g. Similarly,

f ′(xi)g(xi) > 0 at all roots xi of f. The proof of the claim for general f and g is

similar but with cumbersome indexing.

x1 y1 x2 y2 x3 y3 x4
J I

g(x) −−−−−−−0+ + + + + +0−−−−−−0++++++
f(x) + + + + 0−−−−−−0+++++0−−−−−−0 + + +

Figure 3.3: Strict interlacing.
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Theorem 3.7. ( f , g ) is a Sturm sequence if and only if f, g ∈ R[x] have leading

coefficients of the same sign and f � g or f E g , or f, g ∈ R[x] have leading

coefficients of the opposite sign and g � f or g E f .

Proof. Suppose that ( f , g ) is a Sturm sequence and f and g have leading coef-

ficients of the same sign. Because V(∞) = 0, for all a ∈ R[x], we have that

V(a) = V ( g(a) , f(a) ) = N [g; a,∞]−N [f ; a,∞].

Since V ( g(a) , f(a) ) = 0 or 1, the number of roots of g to the right of a is equal to

the number of roots of f to the right of a or is one less. Either way, the roots of f

and g are interlaced. So that g E f or g � f.

When V(−∞) = 0, the number of roots of f is equal to the number of roots of g, and

f E g. When V(−∞) = 1, f has one more root than g, and the interlacing will be in

the form g � f.

Therefore, in all cases, the roots of f and g are interlaced. Hence if ( f , g ) is a Sturm

sequence, then the roots are interlaced.

Conversely, suppose f, g ∈ R[x] have leading coefficients of the same sign and f � g

or f E g. Suppose that the real roots of f and of g are as indexed as described in

Definition 3.1. Factoring these polynomials over R we get

f(x) = (x− x1)(x− x2) · · · (x− xm)F (x)

g(x) = (x− y1)(x− y2) · · · (x− yn)G(x)

where F (x) and G(x) are polynomials without real roots. Since F (x) and G(x) have

no real roots, they have constant signs which coincide with the signs of the leading

terms of f and g. Changing the signs of F and G does not change V ( g(x) , f(x) ),
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so it is harmless to assume that F (x) = G(x) = 1.

If a is not a root of f or of g, then [g(a)] = [(−1)k] where k = N [g; a,∞] is

the number of roots of g greater than a, and [f(a)] = [(−1)l] where l = N [f ; a,∞] is

the number of roots of f greater than a.

Let V(x) = V ( g(x) , f(x) ). Then V(∞) = 0 because the leading coefficients of

f and g have the same sign. Because of the interlacing, for any a ∈ R that is not a root

of f or of g, we have either N [g; a,∞]−N [f ; a,∞] = 0 or N [g; a,∞]−N [f ; a,∞] = 1.

In the first case, f(a) and g(a) have the same sign and so V(a) = 0. In the second

case, f(a) and g(a) have opposite signs and V(a) = 1. In either case we have V(a) =

N [g; a,∞]−N [f ; a,∞].

Thus, by Lemma 2.3, ( f , g ) is a Sturm sequence. We have shown that the

claim holds if f and g have leading coefficients of the same sign.

If f and g have leading coefficients of opposite sign, then the claim follows

from the Lemma 2.5 with f and g switched. Specifically, if f, g ∈ R[x] have leading

coefficients of the opposite sign and g � f or g E f , then ( g , f ) is a Sturm sequence.

Therefore, if the roots of f and g are interlaced in one of the forms f � g, g � f ,

f E g or g E f , then ( g , f ) is a Sturm sequence.

To conclude, ( f , g ) is a Sturm sequence if and only if the roots of f and g are

interlaced in one of the forms g � f ,f � g, f E g or g E f and f, g ∈ R[x].

Theorem 3.8. Let S = ( f0 , f1 , . . . , fn ) be a sequence of polynomials in R[x], and

all having leading coefficients of the same sign, and fi � fi+1 for all i. Then S is a

Sturm sequence.
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Proof. By Theorem 3.7, for each i, (fi, fi +1) is a Sturm sequence. By Lemma 2.4(2),

we have that S is a Sturm Sequence.

Perhaps an example of a Sturm sequence will help to make Theorem 3.8 clearer.

Set

f0(x) = 1

f1(x) = x

f2(x) = (x+ 2)(x− 2)

f3(x) = (x+ 3)x(x− 3)

f4(x) = (x+ 4)(x+ 1)(x− 1)(x− 4)

We have chosen these polynomials so that f0 ≺ f1 ≺ f2 ≺ f3 ≺ f4, as can be

seen in Figure 3.4. The values of V(x) makes it clear that (f0, f1, f2, f3, f4) is a Sturm

sequence.

−5 −4 −3 −2 −1 0 1 2 3 4 5
J I

f0(x) +++++++++++++++++++++++++++++++
f1(x) −−−−−−−−−−−−−−− 0+++++++++++++++
f2(x) ++++++++++ 0−−−−−−−−−0++++++++++
f3(x) −−−−−−−0+++++++0−−−−−−−0++++++++
f4(x) +++++0−−−−−−−0+ + + +0−−−−−−−0+ + + + +

V(x) 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0

Figure 3.4: fi−1 ≺ fi

For more information about interlacing see [4].
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CHAPTER 4

Rolle’s Theorem

Theorem 4.1. (Rolle’s Theorem) [6, Section 4.2] Suppose that a < b are real num-

bers, f : R → R is a continuous function on the closed interval [a, b] that is differ-

entiable on the open interval (a, b), and f(a) = f(b) = 0. Then there exists a real

number c in the open interval (a, b) such that f ′(c) = 0.

Since polynomials in R[x] are continuous and differentiable functions on R,

this theorem says that between any two roots of a polynomial f there is a root of f ′.

Rolle’s Theorem doesn’t say whether there is only one such root of f ′. For

example, the polynomial f(x) = (x2− 1)(3x2 + 1) has two real roots, namely ±1, but

f ′(x) = 4x(3x2 − 1) has three real roots on the interval [−1, 1] as seen in the graph:

f(x)f ′(x)

1−1

1

Figure 4.1: Example of Rolle’s Theorem

Since we need Rolle’s Theorem only for polynomials we provide a simpler proof

in this special case.

Theorem 4.2. (Rolle’s Theorem) Let x1 and x2 be distinct real roots of a polynomial

f ∈ R[x]. Then f ′ has a real root strictly between x1 and x2.
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Proof. It suffices to show this for two adjacent roots of f such that x1 < x2. In this

case, f has the form

f(x) = (x− x1)m1(x− x2)m2g(x)

where m1 and m2 are the multiplicities of the roots at x1 and x2, and g(x) ∈ R[x]

has no roots in the interval [x1, x2]. The condition on g means that the sign of g is

constant on [x1, x2], so, in particular, g(x1) and g(x2) are nonzero and have the same

sign.

Now we calculate the derivative of f using the product and chain rules:

f ′(x) = m1(x− x1)m1−1(x− x2)m2 g(x) +m2(x− x1)m1(x− x2)m2−1 g(x)

+ (x− x1)m1(x− x2)m2 g′(x)

= (x− x1)m1−1(x− x2)m2−1 F (x)

(4.1)

where F (x) = m1(x − x2) g(x) + m2(x − x1) g(x) + (x − x1)(x − x2) g
′(x) ∈ R[x].

Evaluating F at x1 and x2 we find

F (x1) = m1(x1 − x2) g(x1) and F (x2) = m2(x2 − x1) g(x2).

Hence F (x1) and F (x2) are nonzero and have opposite signs. By the Intermediate

Value Theorem, F (c) = 0 for some c ∈ R such that x1 < c < x2. By (4.1), c is also a

root of f ′.

Lemma 4.3. Let f ∈ R[x]. If a is a root of f with multiplicity m, then a is a root

of f ′ with multiplicity m− 1.

Proof. Suppose f has root a of multiplicity m. That is,

f(x) = (x− a)mg(x)
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for some g ∈ R[x] such that g(a) 6= 0. Then,

f ′(x) = m(x− a)m−1g(x) + (x− a)mg′(x)

= (x− a)m−1(mg(x) + (x− a)g′(x))

= (x− a)m−1G(x),

where

G(x) = mg(x) + (x− a)g′(x)

Since G(a) = mg(a) 6= 0, a is a root of f ′ with multiplicity m− 1.

Two immediate consequences of Lemma 4.3 are worth mentioning.

Lemma 4.4. Let f ∈ R[x]

(1) f has a multiple root if and only if f and f ′ have a common root.

(2) a ∈ R is a simple root of f if and only if f(a) = 0 and f ′(a) 6= 0.

Lemma 4.5. Suppose that f ∈ R[x] has n real roots (counting multiplicities). Then

f ′ has at least n − 1 real roots (counting multiplicities) between the smallest and

greatest of the real roots of f . Specifically, if x1 ≤ x2 ≤ · · · ≤ xn are the real roots of

f , then f ′ has real roots x′1, x
′
2, . . . , x

′
n−1 such that

x1 ≤ x′1 ≤ x2 ≤ x′2 ≤ · · · ≤ xn−1 ≤ x′n−1 ≤ xn. (4.2)

Proof. Let x1 < x2 < · · · < xk be the distinct real roots of f with multiplicities

m1,m2, . . . ,mk respectively. Then m1 + m2 + · · · + mk = n. By Lemma 4.3, for

i = 1, 2, . . . , k, xi is a root of f ′ with multiplicity mi − 1. Moreover, by Theorem 4.2,

there is a real root of f ′ between each pair of real roots of f , giving an additional

k − 1 roots of f ′.
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Thus f ′ has at least

(m1 − 1) + (m2 − 1) + · · ·+ (mk − 1) + (k − 1) = n− 1

real roots of these two types.

Lemma 4.6. If f ∈ R[x] has degree n ∈ N and n real roots (counting multiplicities)

then:

(1) f ′ has degree n− 1 and n− 1 real roots.

(2) f ′ � f .

(3) (f ′(x), f(x)) is a Sturm sequence.

Proof. (1) Suppose f has a degree n and n real roots. By Lemma 4.5, f ′ has at least

n − 1 real roots (counting multiplicities). Since f ′ has degree n − 1, f ′ has at most

n− 1 real roots.

(2) Since f ′ has exactly n− 1 real roots, x′1 ≤ x′2 ≤ · · · ≤ x′n−1, equation (4.2)

of Lemma 4.5 implies that f ′ � f .

( 3) Since f ′ � f, Lemma 3.7 implies that (f ′(x), f(x)) is a Sturm sequence.

Theorem 4.7. Suppose that f ∈ R[x] has degree n ∈ N and n real roots (counting

multiplicities). Then the sequence of derivatives of f ,

(
f (n)(x) , f (n−1)(x) , . . . , f ′′(x) , f ′(x) , f(x)

)
is a Sturm sequence.

Proof. Suppose f has degree n and n real roots (counting multiplicities). Then

f ′ has degree (n − 1) and (n − 1) real roots by Lemma 4.6. So, (f ′(x), f(x)) is

a Sturm sequence. Similarly, (f ′′(x), f ′(x)) is a Sturm sequence. Repeating this
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process, (f ′′′(x), f ′′(x)),(f ′′′′(x), f ′′′(x)),......, (f (n)(x), f (n−1)(x)) are also Sturm se-

quences. Hence, by Lemma 2.4,

(
f (n)(x) , f (n−1)(x) , . . . , f ′′(x) , f ′(x) , f(x)

)
is a Sturm sequence.

Lemma 4.8. If f has n real roots, then there exists a Sturm sequence (f0, f1, . . . , fn =

f) with f0 having no real roots.

Proof. Suppose f(x) has n real roots. Then f(x) = g(x)h(x) where g has the same

roots as f and h has no real roots. Note that deg g = n. By Theorem 4.7, we can

choose g so that it’s leading coefficients has the same sign as the leading coefficients

as f . So (
g(n)(x) , g(n−1)(x) , . . . , g′′(x) , g′(x) , g(x)

)
is a Sturm sequence. Therefore,

(
g(n)(x) , g(n−1)(x) , . . . , g′′(x) , g′(x) , f(x)

)
is a Sturm sequence.

Example 4.9. Consider

f(x) = (x2 − 1)n.

Then, f(x) has degree 2n and has two real roots each of multiplicity n. Therefore,

the sequence of its derivatives is a Sturm sequence. Of particularly interest, is the nth

derivative of f(x) which, except for multiplicative constant, is a Legendre polynomial.

Specifically, for n = 0, 1, 2, . . .,

Pn(x) =
1

n! 2n

dn

dxn
(x2 − 1)n
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is called the nth Legendre polynomial. The first few of these are

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

(4.3)

Their graphs on the interval [−1, 1] suggest many interesting properties of

these polynomials (see Figure 4.2). For example, Pn(1) = 1 and Pn(−1) = (−1)n for

all n ∈ N.

The property of interest here is that Pn has exactly n distinct real roots strictly

between −1 and 1. Let us see why this holds.

The polynomial (x2 − 1)n has degree 2n and two real roots 1 and −1, both

with multiplicity n. By Lemma 4.3 and Theorem 4.2,
d

dx
(x2 − 1)n has real roots 1

and −1 with multiplicity n − 1 as well as one real root strictly between −1 and 1.

Comparing the degree of the polynomial with the number of real roots, we see that

the root in the middle must be simple.

Similarly,
d2

dx2
(x2 − 1)n has real roots 1 and −1 with multiplicity n − 2 and

two distinct simple real roots strictly between −1 and 1.

Repeating this argument n times we find that
dn

dxn
(x2−1)n no longer has roots

−1 and 1, but has n distinct simple real roots strictly between −1 and 1.

Example 4.10. Let f(x) = x3 − 3x2. Note that f has three real roots, namely
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P3(x)
P2(x)

1−1

Figure 4.2: Legendre polynomials P2 and P3

(0, 0, 3). Hence, we can construct a Sturm sequence from its derivatives.

f0(x) = 6

f1(x) = 6(x− 1)

f2(x) = 3(x2 − 2x)

f(x) = f3(x) = x3 − 3x2

So, our Sturm sequence is S(x) = (6, 6x− 6, 3x2 − 6x, x3 − 3x2).
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CHAPTER 5

The Wronskian

Definition 5.1. Let f and g be polynomials in R[x]. The Wronskian of f and g is

defined by W (f, g) = f g′ − g f ′.

Lemma 5.2. Let f, g, h ∈ R[x], a ∈ R. Then,

(1) W (f, g) = −W (g, f)

(2) W (af, g) = aW (f, g)

(3) W (hf, hg) = h2W (f, g)

(4) W (f, g) = f 2 d

dx

(
g

f

)
Proof. All these properties follow directly from the definition of Wronskian.

Note that we write f ≤ 0 if and only if f(x) ≤ 0 for all x ∈ R. Similarly, we

say f < 0 if and only if f < 0 for all x ∈ R.

Lemma 5.3. Let f be a polynomial in R[x]. If f has same number of real roots as

its degree, then W (f, f ′) ≤ 0.

Proof. For convenience, we will prove the claim assuming f has three roots. The

general case is similar, but requires some cumbersome notation. Without loss of

generality, suppose f(x) = (x− x1)(x− x2)(x− x3). Then,

f ′(x) = (x− x1)(x− x2) + (x− x2)(x− x3) + (x− x1)(x− x3),

and so

f ′(x)

f(x)
=

1

(x− x1)
+

1

(x− x2)
+

1

(x− x3)
.
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Taking the derivative we get

d

dx

(
f ′

f

)
= − 1

(x− x1)2
− 1

(x− x2)2
− 1

(x− x3)2
,

and, with Lemma 5.2(4),

W (f, f ′) = f 2 d

dx

(
f ′

f

)
= −(x− x2)2(x− x3)2 − (x− x1)2(x− x3)2 − (x− x1)2(x− x2)2 ≤ 0.

Note that if all the roots of f are simple, then W (f, f ′) < 0.

For the proof of Lemma 5.4, it is convenient to introduce some new notation.

If f has degree n and n real roots x1, x2, . . . , xn, we write fi(x) =
f(x)

x− xi
∈ R[x] for

i = 1, 2, . . . , n. Then,

fi(xj) =

{
0 if i 6= j

f ′(xi) if i = j
(5.1)

Lemma 5.4. Let f and g be polynomials in R[x]. If f and g have same number of

roots as their degrees and g ≺ f , then W (f, g) < 0 or W (f, g) > 0.

Proof. Because of Lemma 5.2(1,2), it is harmless to assume that f and g are monic.

By Lemma 3.2, all roots of f are simple and we can write

f(x) = (x− x1)(x− x2) . . . (x− xn)

for some x1, x2, . . . , xn ∈ R. Because deg g < deg f, we can write the partial fraction

expansion of
g

f
as

g

f
=
∑
i

bi
x− xi

for some constants b1, b2, . . . , bn ∈ R. Multiplying by f we get g(x) =
∑

i bifi(x). We

show that bi > 0 for all i. Plugging in xj into g(x) =
∑

i bifi(x) and using (5.1), we
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get g(xj) =
∑

i bifi(xj) = bjf
′(xj). Because of Lemma 3.6(1), bi is positive, and so,

with Lemma 5.2(4),

W (f, g)

f 2
=

d

dx

(
g

f

)
=

d

dx

(∑
i

bi
x− xi

)
= −

∑
i

bi
(x− xi)2

.

Multiplying both sides by f 2 gives W (f, g) = −
∑

i

bif
2

(x− ai)2
= −

∑
i bif

2
i (x) < 0.

Example 5.5. From Example 4.9, the Legendre polynomials P2 and P3, given in

(4.3), and graphed in Figure 4.2, have Wronskian

W (P3, P2) = −3

4
(5x4 − 2x2 + 1).

The graph of W (P3, P2) in Figure 5.1 shows that W (P3, P2) < 0 as claimed in

Lemma 5.4.

Figure 5.1: The Wronskian of P3(x) and P2(x)

Lemma 5.6. Let f and g be polynomials in R[x]. If W (f, g) < 0 or W (f, g) > 0,

then the roots of f and g are strictly interlaced.

Proof. Without loss of generality, suppose W (f, g) < 0. Let x1 and x2 be adjacent
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roots of f. Then, directly from Definition 5.1,

W (f, g)(x1) = −f ′(x1)g(x1) < 0

W (f, g)(x2) = −f ′(x2)g(x2) < 0.

and so f ′(x1) 6= 0, f ′(x2) 6= 0 and x1 and x2 are simple roots. Since x1 and x2

are adjacent simple roots, f ′(x1)f
′(x2) < 0. Because f ′(x1)g(x1)f

′(x2)g(x2) > 0, this

implies that g(x1)g(x2) < 0. Hence there is a root y1 of g between x1 and x2. Similarly,

all roots of g are simple and between each pair of adjacent roots of g there is a root

of f . Finally, we notice that f and g cannot have any common roots since W (f, g)

would be zero at any common root. Hence by Lemma 3.2, the roots of f and g are

strictly interlaced.

Example 5.7. Let f(x) = x3 − 9x and g(x) = x4 − 17x2 + 16. We want to know if

the roots of f and g are interlaced or not. The Wronskian of f and g is

W (f, g) = −x6 + 10x4 − 105x2 − 144

= −x2(x2 − 5)2 − 144− 80x2

Note that no matter which x you pick, the Wronskian is negative. Therefore, the

roots of f and g are interlaced (see Figure 5.20.

−5 −4 −3 −2 −1 0 1 2 3 4 5
J I

f(x) −−−−−0 + + + + 0−−−− 0++++++
g(x) + + + 0−−−− 0+++0−−−− 0++++

Figure 5.2: The Roots of f(x) = x3 − 9x and g(x) = x4 − 17x2 + 16
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Theorem 5.8. Let f and g be polynomials in R[x]. If deg f = deg g + 1, g has as

many real roots as its degree and W (f, g) < 0, then f has as many real roots as its

degree and g ≺ f, and g and f have leading coefficients of the same sign.

Proof. Because of Lemmas 3.2 and 5.6, f and g have simple roots and no common

roots. Let deg g = m. Suppose f and g have leading terms f0x
m+1 and g0x

m, then

the leading term of W (f, g) is

(f0x
m+1)(mg0x

m−1)− (g0x
m)(m+ 1)(f0x

m) = −f0g0x2m

Because W (f, g) < 0, we must have f0 g0 > 0. So f and g have leading coefficients of

same sign. Without loss of generality, suppose f0 and g0 are positive. Let y1 < y2 <

· · · < ym be all the roots of g.

Claim : f has a root on (ym,∞).

Since limx→∞ g(x) = ∞, g′(ym) > 0. Since W (f, g)(ym) = f(ym)g′(ym) < 0, we have

f(ym) < 0. Because limx→∞ f(x) =∞, f has a root on (ym,∞).

Claim: f has a root on (−∞, y1).

(1) If m is odd, limx→−∞ g(x) = −∞ and g′(y1) > 0. Since

W (f, g)(y1) = f(y1)g
′(y1) < 0,

we have f(y1) < 0. Because deg f is even, limx→−∞ f(x) =∞. So f has a root

on (−∞, y1).

(2) If m is even, limx→−∞ g(x) =∞ and g′(y1) < 0. Since

W (f, g)(y1) = f(y1)g
′(y1) < 0,
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we have that f(y1) > 0. Because deg f is odd, limx→−∞ f(x) = −∞. So f has

a root on (−∞, y1.)

We now know that f has m − 1 roots, one between each pair of adjacent root of g,

and also a root on (ym,∞) and another on (−∞, y1). Thus f has at least distinct

m+ 1 roots. Since degree f is m+ 1, these are all roots of f . Moreover, the roots of

g and f are interlaced so that g ≺ f .

Note that this theorem makes it easy to determine that the roots of f and g

are interlaced without knowing what the roots are.

Theorem 5.9. Let S = ( f0 , f1 , f2 , . . . , fn ) be a sequence of polynomials in R[x]

such that

(1) f0 has as many real roots as its degree

(2) deg fi+1 = deg fi + 1 for all i

(3) W (fi+1, fi) < 0 for all i

Then S is a Sturm sequence. In particular, each fi has as many real roots as its

degree.

Proof. By induction from Theorem 5.8, fi ≺ fi+1 for all i, each fi has as many real

root as its degree and all the polynomials have leading coefficients of the same sign.

By Theorem 3.8, S is a Sturm sequence.

As an aside, we prove that, if W (f, g) = 0, then f, g are linearly dependent.

Suppose that W (f, g) = 0 with f 6= 0. We show g is a constant multiple of f . Since

f is nonzero and has at most finitely many roots, there is an open interval I of the

real line on which f is never zero. Then g/f is a real differentiable function on I.
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The derivative of g/f on I is (Lemma 5.2(4))

d

dx

(
g

f

)
=
f g′ − g f ′

f 2
=
W (f, g)

f 2
= 0.

This implies that g/f is constant on I, or, equivalently, there is a constant c such

that cf(x) − g(x) = 0 for all x ∈ I. This means that every number in I is a root of

the polynomial cf − g. This is only possible if cf − g is the zero polynomial. Hence

g = cf and {g, f} is linearly dependent.

Example 5.10. Consider the polynomials

f0(x) = 1

f1(x) = x

f2(x) = x2 − 4

f3(x) = x3 − 9x

f4(x) = x4 − 17x2 + 16

The Wronskians

W (f4, f3) = −x2(x2 − 5)2 − 144− 80x2

W (f3, f2) = −(x2 − 3

2
)2 − 135

4

W (f2, f1) = −4− x2

W (f1, f0) = −1

are all negative. Therefore, (f0, f1, f2, f3, f4) is a Sturm sequence.
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CHAPTER 6

Orthogonal Polynomials

Conveniently, many important sequences of polynomials are defined as Sturm

sequences. Orthogonal polynomials have been studied for many years, since they

appear in the solutions of many mathematical and physical problems. Examples

of sequences of orthogonal polynomial are the Hermite polynomials, the Chebyshev

polynomials, and the Legendre polynomials. A Russian mathematician called Pafnuty

Lvovich Chebyshev developed the orthogonal polynomials concept in the late 19th

century. Let us define the inner product of two polynomials f and g by

〈f, g〉 =

∫ b

a

f(x)g(x)h(x)dx

where a, b ∈ R or ±∞ and the weight function h(x) ≥ 0 on the interval (a, b) or

(when a and b are finite) on [a, b].

For any such inner product we can construct a sequence (P0, P1, P2, . . . ) of

polynomials satisfying the conditions:

degPn = n, 〈Pn, Pm〉 = 0 for n 6= m. (P0, P1, P2, . . . ) is called a sequence of

orthogonal polynomials with respect to the weight function h(x). It is harmless to

assume all the polynomials in the sequence have leading coefficients of the same sign.

In that circumstance, any three consecutive polynomials of a sequence of orthogonal

polynomials are related by a recurrence formula

CiPi−1(x) + Pi+1(x) = (Aix+Bi)Pi(x).

where Ci, Ai, Bi > 0, with i ∈ Z+ [7].
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Example 6.1. Suppose h(x) = 1 and a = −1 and b = 1. Then you get Legendre

polynomials:

P0(x) = 1 P1(x) = x P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x) P4(x) =

1

8
(35x4 − 30x2 + 3)

These polynomials satisfy the recurrence relation

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x).

This information can be found in [2].

Example 6.2. Suppose h(x) =
1√

1− x2
and a = −1 and b = 1. Then you get the

Chebyshev polynomials:

T0(x) = 1 T1(x) = x T2(x) = 2x2−1 T3(x) = 4x3−3x T4(x) = 8x4−8x2+1.

These polynomials satisfy the recurrence relation

Ti+1(x) = 2xTi(x)− Ti−1(x) (6.1)

for i = 1, 2, 3, . . .. This information can be found in [2].

Lemma 6.3. Let f, g, h ∈ R satisfy af + bg = qh where a, b ∈ R are positive and

q ∈ R[x] satisfies q′ > 0. If W (h, g) < 0, then W (f, h) < 0.

Proof. Using af ′ + bg′ = q′h+ qh′, we get

aW (f, h) = afh′ − af ′h

= (qh− bg)h′ − (q′h+ qh′ − bq′)h

= bW (h, g)− q′h2.

since a, b > 0, q′ > 0 and W (h, q) < 0, we get W (f, g) < 0.
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Theorem 6.4. Let S = ( f0 , f1 , f2 , . . . , fn ) be a sequence of polynomials in R[x]

such that

(1) f0 has as many real roots as its degree

(2) W (f1, f0) < 0 and deg f1 = deg f0 + 1

(3) aifi+1 + bifi−1 = qifi for all i where ai, bi > 0 and qi is a degree one polynomial

with positive leading coefficient

Then S is a Sturm sequence and for each i, fi has as many real roots as its degree.

Proof. By induction from Lemma 6.3, W (fi+1, fi) < 0 for all i. Because of (3),

deg f2 = deg q1f1 = deg f1 + 1. And by induction, deg fi+1 = deg fi + 1 for all i. By

Theorem 5.9, S is a Sturm sequence.

Lemma 6.5. Any sequence of orthogonal polynomials is a Sturm Sequence.

Proof. First, note that P0 is constant. So, it has as many roots as its degree. There-

fore, the first condition is satisfied. Now, P1 is a degree one polynomial with positive

leading coefficients. Thus, W (P1, 0) < 0. By [3], the sequence of orthogonal polyno-

mials satisfies the following recurrence relation

CiPi−1(x) + Pi+1(x) = (Aix+Bi)Pi(x).

where Ci, Ai, Bi > 0, i ∈ Z+. Let fi = CiPi(x). Therefore, by Theorem 6.4, the

sequence of orthogonal polynomials is a Sturm sequence.

Consequently, note that the sequence of orthogonal polynomials satisfies all

Sturm sequence properties. For example, the nth Pn has degree n and n real roots

and the roots of Pn and Pn−1 are interlaced.
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CHAPTER 7

Standard Sturm Sequence

In this chapter, we discuss Sturm sequence that appeared in Sturm’s original

research we call it standard Sturm sequence. After we define this Sturm sequence,

we will prove it is a Sturm sequence according to our “more” generalized definition.

For more information about this standard Sturm sequence see [5].

Definition 7.1. Let f ∈ R[x]. The standard Sturm sequence for f is defined as

follows:

First set f0 = f and f1 = f ′. For i = 1, 2, 3, . . . define

fi+1(x) = qi(x)fi(x)− fi−1(x) (7.1)

where qi is the quotient when fi−1 is divided by fi. Thus fi+1 is the negative of the

remainder when fi−1 is divided by fi. This sequence ends for some k ∈ N when

fk = gcd(f, f ′). Then S= (fk = gcd(f, f ′), fk−1, . . . , f1 = f ′, f0 = f) is the standard

Sturm sequence for f . Note the reversal of the order of the indexing from previous

Sturm sequences.

Theorem 7.2. Let ( f0 , f1 , f2 , . . . , fn ) be a sequence of polynomials in R[x] with

the following properties:

(1) f0 has no real roots.

(2) If fi(r) = 0 for some r ∈ R and i = 1, 2, . . . , n− 1, then fi−1(r)fi+1(r) < 0,

(3) fn−1 ≺ fn and these polynomials have leading coefficients of the same sign.

Then ( f0 , f1 , f2 , . . . , fn ) is a Sturm sequence.

Proof. To prove the claim, it suffices to show that
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(1) V(x) does not change at any root of fi with 0 < i < n

(2) V(x) decreases by one at any root of fn

Case 1: If fi(r) = 0 for some r ∈ R, 0 < i < n, then one of the intermediate polyno-

mials has a root at r. Then, because fi−1(r)fi+1(r) < 0 , fi−1 and fi+1 have opposite

signs. Since fi−1 and fi+1 cannot have a zero in a sufficiently small neighborhood I

containing r, they cannot change sign on I. Thus, the sign of fi(x) on I does not effect

V(x). Hence, V(x) is constant on I. For example, consider the function diagrammed

in Figure 2.1. we have that f2(−2) = 0 and f1(x) < 0 in the interval (-3,-1) and

f3(x) > 0 in the same interval.

Case 2: Suppose fn(r) = 0 for some r ∈ R. Since fn−1 ≺ fn, r is a simple

root of fn and by 3.6, f ′n(r)fn−1(r) > 0. Let I be an interval containing r and no

other roots of fn or fn−1. Since fn(r) = 0, fn−1 has constant sign on I. If fn−1 is

positive on I, then f ′n(r) > 0. So fn(r) is positive to the right of r and negative to

the left. That is fn and fn−1 have opposite signs to the left and same sign to the

right of r. Thus V(x) decreases by one from the left of r to the right.

Lemma 7.3. Let (f0, f1, f2, . . . , fn) be a sequence of polynomials in R[x] such that

(1) f0 is a nonzero constant polynomial,

(2) there are polynomials q1, q2, . . . , qn−1 ∈ R[x] such that

fi−1(x) + fi+1(x) = qi(x)fi(x) (7.2)

for i = 1, 2, . . . , n− 1.

(3) fn−1 ≺ fn and have leading coefficients of same sign.
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Then (f0, f1, f2, . . . , fn) is a Sturm sequence. In addition, gcd(fi−1, fi) = 1 for

all i = 1, 2, . . . , n.

Proof. We prove the last claim first. From Theorem 7.2 we get

gcd(fi+1, fi) = gcd(qifi − fi−1, fi) = gcd(fi−1, fi)

So, by induction, Using (7.2) repeatedly we get

gcd(fi, fi−1) = gcd(fi−1, fi−2) = gcd(fi−1, fi−2) = · · · = gcd(f1, f0) = 1.

For the last of these equalities we have used the fact that f0 is a nonzero constant

polynomial.

Now suppose that fi(r) = 0 for some r ∈ R. Since gcd(fi−1, fi) = 1, r cannot

be a root of fi−1 (otherwise x − r would be a common factor of fi and fi−1). Thus

fi−1(r) 6= 0. In this circumstance, (7.2) becomes fi−1(r) + fi+1(r) = 0 and so fi+1(r)

is also nonzero and has opposite sign to fi−1(r). In particular, fi−1(r)fi+1(r) < 0. By

Theorem 7.2, (f0, f1, f2, . . . , fn) is a Sturm sequence.

Theorem 7.4. The standard Sturm sequence for f ∈ R[x] is a Sturm sequence.

Proof. Suppose h = gcd(f, f ′). Then by Theorem 7.2, h divides every polynomial

in the standard Sturm sequence for f . Here we have f = f0 = hg0, f
′ = f1 = hg1,

f2 = hg2, . . .. fk = hgk for some polynomials g0, g1, . . . , gk. By Lemma 4.6, f1 � f0.

So by Lemma 3.4 g1 ≺ g0. Moreover, we can cancel h from the recurrence (7.1) to

get

gi+1(x) = qi(x)gi(x)− gi−1(x)

for all i. Finally, fk = gcd(f, f ′) = h. So gk = 1 has no real roots. By Lemma 7.3,
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(gk, gk−1, . . . , g0) is a Sturm sequence. Then, by Lemma 2.4, (fk, fk−1, . . . , f0)=

(hgk, hgk−1, . . . , hg0) is a Sturm sequence.

Example 7.5. Let us see how Theorem 7.4 applies to a simple case, the quadratic

polynomial f(x) = x2 + bx+ c.

To form the Sturm sequence we start with f0(x) = f(x) and f1(x) = f ′0(x) =

2x+b. The remainder on dividing f0 by f1 is −(b2−4c)/4, so we set f3(x) = b2−4c =

∆(f), a constant polynomial. If b2 − 4c 6= 0 the standard Sturm sequence is

S(x) = [ f0 , f1 , f2 ] =
[
x2 + bx+ c , 2x+ b , b2 − 4c

]
.

Evaluating this at ±∞ we get

S(−∞) =
[

1 , −1 , b2 − 4c
]

S(∞) =
[

1 , 1 , b2 − 4c
]
.

If b2 − 4c > 0, then V(−∞) = 2, V(∞) = 0, and so the number of real roots of f is

V(−∞)−V(∞) = 2. If b2− 4c < 0, then V(−∞) = 1, V(∞) = 1, and so the number

of real roots of f is V(−∞)− V(∞) = 0.

Evaluating the Sturm sequence at x = 0 gives

S(0) =
[
c , b , b2 − 4c

]
.

We suppose c 6= 0 so that V(0) is defined. If b2− 4c < 0, then c must be positive and

so V(0) = 1, independent of the sign of b. In this case the number of positive real

roots of f is V(0) − V(∞) = 1 − 1 = 0. This is no surprise since there are no real

roots, positive or negative, if b2 − 4c < 0.

If b2 − 4c > 0, then, since V(∞) = 0, the number of positive real roots of f
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is V(0):

V(0) =


1 if c < 0

0 if c > 0 and b > 0

2 if c > 0 and b < 0.

Note that when b = 0, we can ignore the zero. Also if c = 0, that means we

are calculating at a zero of the polynomial which is not allowed.

Example 7.6. Let us use Theorem 7.4 to determine the number of real, positive and

negative roots of g(x) = x3 + p x + q with p, q ∈ R. We also assume, for simplicity,

that q 6= 0 so that 0 is not a root.

We set g0(x) = g(x) and g1(x) = g′0(x) = 3x2 + p. The remainder on dividing

g0 by g1 is (2p x + 3q)/3 so we set g2(x) = −2p x− 3q. If p = 0, then we don’t need

to go further since g2 is a constant polynomial. This special case is left to the reader,

and we suppose here that p 6= 0.

The remainder on dividing g1 by g2 is (4p3 + 27q2)/4p2 and so we choose

g3(x) = −(4p3 + 27q2) = ∆(g), a constant polynomial. Thus if ∆(g) 6= 0, the

standard Sturm sequence is

S(x) = [ g0(x) , g1(x) , g2(x) , g3(x) ] =
[
x3 + p x+ q , 3x2 + p , −2p x− 3q , ∆(g)

]
.

Evaluating the Sturm sequence at −∞ we get

S(−∞) = [−1 , 1 , p , ∆(g) ] .

If ∆(g) > 0 then p < 0, and consequently S(−∞) = [−1 , 1 , −1 , 1 ] with 3 sign

variations. If ∆(g) < 0, then S(−∞) = [−1 , 1 , p , −1 ] with 2 sign variations,

independent of the sign of p. Thus

V(−∞) =

{
3 if ∆(g) > 0

2 if ∆(g) < 0.
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Similarly, evaluating the Sturm sequence at ∞ we get

S(∞) = [ 1 , 1 , −p , ∆(g) ]

and

V(∞) =

{
0 if ∆(g) > 0

1 if ∆(g) < 0.

Therefore the number of real roots of g is

V(−∞)− V(∞) =

{
3 if ∆(g) > 0

1 if ∆(g) < 0.
. (7.3)

To find the number of positive real roots we evaluate the Sturm sequence at

x = 0:

S(0) = [ q , p , −q , ∆(g) ] .

Note that, independent of the value of p, the sequence [ q , p , −q ] has exactly one

sign change. So

V(0) =

{
2 if q∆(g) > 0

1 if q∆(g) < 0.

Thus the number of positive real roots of g is

V(0)− V(∞) =


2 if q > 0 and ∆(g) > 0

0 if q > 0 and ∆(g) < 0

1 if q < 0.

(7.4)

If ∆(g) > 0, then, by (7.3), g has three real roots. This means that we can

form another Sturm sequence from the derivatives of g, by Theorem 4.7,

S(x) = [ g(x) , g′(x) , g′′(x) , g′′′(x) ] =
[
x3 + p x+ q , 3x2 + p , 6x , 6

]
.

Evaluating this at 0 and ∞, keeping in mind that p < 0 because ∆(g) > 0, we get

S(0) = [ q , −1 , 0 , 1 ] and S(∞) = [ 1 , 1 , 1 , 1 ] ,
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implying that the number of positive roots of g is

V(0)− V(∞) =

{
2 if q > 0

1 if q < 0,

in agreement with (7.4).

Example 7.7. Here is an example of standard Sturm sequence of the polynomial

f = x3 + 3x+ 2.

f3 = x3 + 3x+ 2

f2 = 3(1 + x2)

f1 = −2(1 + x)

f0 = −6

So, standard Sturm sequence S(x) is

S(x) = (−6,−2(1 + x), 3(1 + x2), 2 + 3x+ x3)

Evaluating this sequence at -2, 0 and 10 gives

S(−2) = (−6, 2, 15,−12)

S(0) = (−6,−2, 3, 2)

S(10) = (−6,−22, 303, 1032)

V(−2) = 2

V(0) = 1

V(10) = 1
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Hence, there is one real root between−2 and 0 and no real roots between 0 and 10.

In fact the graph of f(x) = x3 + 3x+ 2 shows that there is only one real roots of the

polynomial at approximately −0.5

-2 -1 1 2

-10

-5

5

10

15

Figure 7.1: The graph of f(x) = x3 + 3x+ 2
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