ALGEBRA COMPREHENSIVE EXAMINATION

Winter 2002

Bishop Cates* Chabot

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS:

- **1.** Let P be a Sylow p-subgroup of G. Let $N \triangleleft G$. Show:
 - (a) $P \cap N$ is a Sylow *p*-subgroup of *N*.
 - (b) PN/N is a Sylow *p*-subgroup of G/N.
- **2.** Let *H* be a subgroup of *G* and let Z = Z(G), the center of *G*, and suppose G = HZ. Prove: (a) $H \cap Z = Z(H)$.
 - (b) G/Z = H/Z(H).
- **3.** Let G be a group of order 175 $(5^2 \cdot 7)$. Prove that G is abelian.

RINGS:

- 4. (a) Let F be a field and let $f(x) \in F[x]$ with $\deg(f(x)) = n > 0$. Prove that f(x) has at most n roots in F.
 - (b) Let F be a field and let f(x) and g(x) be elements of F[x] with $\deg(f(x))$ and $\deg(g(x))$ each at most n. Suppose there exist $a_1, a_2, a_3, \ldots, a_{n+1} \in F$ such that $f(a_i) = g(a_i)$ for $1 \le i \le n+1$. Prove that f(x) = g(x).
- 5. Prove that the ring $F^{2\times 2}$ of 2×2 matrices over the field F has no ideals except for $\{0\}$ and $F^{2\times 2}$.
- **6.** Let *M* be a proper ideal of the commutative ring *R*. Prove that *M* is a maximal ideal if and only if R = M + (a), for all $a \notin M$ (here (a) = the principal ideal generated by *a*).

FIELDS:

- 7. Let E be an algebraic extension of a field F. Let $\alpha \in E$ and let $p(x) \in Irr(\alpha, x, F)$, the minimal polynomial of α over F. Prove:
 - (a) If the degree of p(x) is 3, then $F(\alpha^2) = F(a)$.
 - (b) If $\beta \in E$ and $[F(\beta) : F] = 7$, then $p(x) = Irr(\alpha, x, F(\beta))$.
- 8. Let E be the splitting field of $x^5 3$ over the rational numbers Q.
 - (a) Find [E:Q] and explain your answer.
 - (b) Show that the Galois group $\mathcal{G}(E/Q)$ is not abelian.
- **9.** (a) Show that $f(x) = x^3 + 2x + 1$ is irreducible over the rational numbers Q.
 - (b) Show that f(x) has at least one real root.
 - (c) Let α be a root of f(x) in the reals and find rational numbers b_0, b_1, b_2 such that $(\alpha+1)^{-1} = b_0 + b_1 \alpha + b_2 \alpha^2$.