ALGEBRA COMPREHENSIVE EXAMINATION

Winter 2002
Bishop Cates* Chabot

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS:

1. Let P be a Sylow p-subgroup of G. Let $N \triangleleft G$. Show:
(a) $P \cap N$ is a Sylow p-subgroup of N.
(b) $P N / N$ is a Sylow p-subgroup of G / N.
2. Let H be a subgroup of G and let $Z=Z(G)$, the center of G, and suppose $G=H Z$. Prove:
(a) $H \cap Z=Z(H)$.
(b) $G / Z=H / Z(H)$.
3. Let G be a group of order $175\left(5^{2} \cdot 7\right)$. Prove that G is abelian.

RINGS:

4. (a) Let F be a field and let $f(x) \in F[x]$ with $\operatorname{deg}(f(x))=n>0$. Prove that $f(x)$ has at most n roots in F.
(b) Let F be a field and let $f(x)$ and $g(x)$ be elements of $F[x]$ with $\operatorname{deg}(f(x))$ and $\operatorname{deg}(g(x))$ each at most n. Suppose there exist $a_{1}, a_{2}, a_{3}, \ldots, a_{n+1} \in F$ such that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for $1 \leq i \leq n+1$. Prove that $f(x)=g(x)$.
5. Prove that the ring $F^{2 \times 2}$ of 2×2 matrices over the field F has no ideals except for $\{0\}$ and $F^{2 \times 2}$ 。
6. Let M be a proper ideal of the commutative ring R. Prove that M is a maximal ideal if and only if $R=M+(a)$, for all $a \notin M$ (here $(a)=$ the principal ideal generated by a).

FIELDS:

7. Let E be an algebraic extension of a field F. Let $\alpha \in E$ and let $p(x) \in \operatorname{Irr}(\alpha, x, F)$, the minimal polynomial of α over F. Prove:
(a) If the degree of $p(x)$ is 3 , then $F\left(\alpha^{2}\right)=F(a)$.
(b) If $\beta \in E$ and $[F(\beta): F]=7$, then $p(x)=\operatorname{Irr}(\alpha, x, F(\beta))$.
8. Let E be the splitting field of $x^{5}-3$ over the rational numbers Q.
(a) Find $[E: Q]$ and explain your answer.
(b) Show that the Galois group $\mathcal{G}(E / Q)$ is not abelian.
9. (a) Show that $f(x)=x^{3}+2 x+1$ is irreducible over the rational numbers Q.
(b) Show that $f(x)$ has at least one real root.
(c) Let α be a root of $f(x)$ in the reals and find rational numbers b_{0}, b_{1}, b_{2} such that $(\alpha+1)^{-1}=$ $b_{0}+b_{1} \alpha+b_{2} \alpha^{2}$.
