
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2017

Akis, Brookfield*, Shaheen

Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and
fields. Indicate CLEARLY which problems you want us to grade—otherwise, we will select which
ones to grade, and they may not be the ones that you want us to grade. Be sure to show enough
work that your answers are adequately supported.

Notation: Q is the set of rational numbers. Zn is set of integers modulo n. N is the set of natural
numbers. R is the set of real numbers.

Groups

(G1) Let G be a nonabelian group of order 10. Show that G contains elements r and s such that
|r| = 5, |s| = 2 and |sr| = 2.
Answer: [Compare S13] Since G is not abelian it contains no elements of order 10. Thus
all nonidentity elements have order 2 or 5. By the Sylow Theorems, the number of Sylow
5-subgroups, n5, satisfies n5 ≡ 1 mod 5 and n5|10. Thus n5 = 1 and G has a unique
normal subgroup N of order 5. Any group of order 5 is cyclic, so N = {1, r, r2, r3, r4} for
some r ∈ G with order 5. Any element of G with order 5 must be in this unique subgroup
of order 5. Elements of G that are not in N must have order 2. Let s be such an element.

It remains to show that |sr| = 2. If, to the contrary, |sr| 6= 2, then sr ∈ N and so sr = rk

for some k ∈ {0, 1, 2, 3, 4}. But then s = rk−1 ∈ N , contradicting our choice of s.
(G2) Let H and K be subgroups of a group G such that

(a) H ∩K = {1}
(b) HK = G
(c) hk = kh for all h ∈ H and k ∈ K.

Prove that G ∼= H ×K. Make clear in your proof where the conditions (a), (b) and (c) are
used.
Answer: Define φ : H ×K → G by φ(h, k) = hk for all (h, k) ∈ H ×K.

Because of (a), φ is injective: If φ(h, k) = 1 for some (h, k) ∈ H ×K, then hk = 1. This
implies that h = k−1 ∈ H ∩ K = {1}, and h = k = 1. Hence kerφ = {(1, 1)} and φ is
injective.

Because of (b), φ is surjective.
Because of (c), φ is a homomorphism: If (h1, k1), (h2, k2) ∈ H ×K, then

φ((h1, k1)(h2, k2)) = φ(h1h2, k1k2) = h1h2k1k2 = (h1k1)(h2k2) = φ(h1, k1)φ(h2, k2)

This makes φ an isomorphism.
(G3) Let H be a subgroup of a group G. The normalizer of H in G is

N(H) = {x ∈ G | xHx−1 = H}.

Prove the following:
(a) N(H) is a subgroup of G.
(b) H is a normal subgroup of N(H).
(c) If K is a subgroup of G, and H is a normal subgroup of K, then K is a subgroup of

N(H).
Answer:

(a) We use the subgroup criteria. Of course, 1 ∈ N(H) since 1H1−1 = H. If x ∈ H, then
xHx−1 = H, so

x−1Hx = x−1(xHx−1)x = (x−1x)H(x−1x) = 1H1 = H,



so x−1 ∈ N(H). If x, y ∈ N(H), then xHx−1 = H and yHy−1 = H so

(xy)H(xy)−1 = x(yHy−1)x−1 = xHx−1 = H

and xy ∈ N(H).
(b) For all x ∈ N(H) we have, by definition, xHx−1 = H. This is one of several equivalent

definitions of H is a normal subgroup of N(H).
(c) If H is a normal subgroup of K, then for all x ∈ K we have xHx−1 = H. This means

that, for all x ∈ K, we have x ∈ N(H). In other words, K ⊆ N(H).

Rings

(R1) Let F be a field. Define addition and multiplication on R = {(a, b) | a, b ∈ F} by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1)(a2, b2) = (a1a2 − b1b2, a1b2 + a2b1).

for all a1, a2, b1, b2 ∈ F . The set R with these operations is a commutative ring with
1 = (1, 0) 6= 0 = (0, 0) (no need to prove this). Prove the following:
(a) R contains a square root of −1.
(b) R is a field if and only if −1 has no square root in F .

Hint: If F = R, then R is the set of complex numbers.
Answer:

(a) From the definition of multiplication (0, 1)2 = (−1, 0) = −1.
(b) Suppose that −1 has no square root in F . Then, for a, b ∈ F , we have a2 + b2 = 0, if

and only if a = b = 0, if and only if (a, b) = (0, 0) = 0. (If, for example, a2 + b2 = 0
and b 6= 0, then a/b ∈ F is a square root of −1.)
If (a, b) 6= 0, then

(a, b)

(
a

a2 + b2
,
−b

a2 + b2

)
= (1, 0) = 1.

This means that every nonzero element of R is a unit and hence R is a field.
Conversely, if i ∈ F is a square root of −1, then the polynomial x2 + 1 ∈ F [x] has four
roots in R namely (i, 0), (−i, 0), (0, 1) and (0,−1). But by Lagrange’s Theorem, if R
is a field, then a quadratic polynomial can have at most 2 roots. So R is not a field.

OR
If i ∈ F is a square root of −1, then (i, 1)(−i, 1) = (0, 0) = 0, so R has zero divisors
and is not a field.

(R2) Consider the quotient ring F = Z3[x]/(x2 + 1). Let α = x+ (x2 + 1).
(a) Show that F is a field.

Answer: Since x2 + 1 ∈ Z3[x] has no roots in Z3, this polynomial is irreducible over
Z3. This means that the ideal (x2 + 1) is maximal and F is a field.

(b) List all elements of F and identify on your list the multiplicative inverse of α+ 1.
Answer: For example, every element of F can be written uniquely in the form a+ bα
with a, b ∈ Z3. Hence F = {0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α}. Plugging in
x = α into the identity x2 + 1 = (x+ 1)(x− 1) + 2 gives 0 = (α+ 1)(α− 1) + 2. This
can be written as 1/(α+ 1) = 2 + α. Reminder: 2 = −1 in Z3.

(R3) Let R be a principal ideal domain. Prove, from the definitions, that every nonzero prime
ideal of R is maximal.
Answer: Let I be a nonzero prime ideal of R. Then I 6= R, I 6= {0} and, for all a, b ∈ R,
ab ∈ I implies a ∈ I or b ∈ I.

Let J be an ideal such that I ⊆ J ⊆ R. We show that J = I or J = R.
Since R is a PID, I = (i) and J = (j) for some i, j ∈ R. Because I 6= {0} we have i 6= 0.

If j ∈ I then J = I and we are done. Otherwise j 6∈ I and J is strictly bigger than I. Then,
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because I ⊆ J , we have i = jk for some k ∈ R. Since I is prime and jk ∈ I but j 6∈ I, we
have k ∈ I and so k = mi for some m ∈ R. Combining these equations we get i = jmi, or
equivalently (1− jm)i = 0. Since i 6= 0, this implies that jm = 1, in particular, j is a unit
of R and J = (j) = R.

We have shown that I 6= R has the property that, if J is an ideal such that I ⊆ J ⊆ R,
then J = I or J = R. This means that I is maximal.

Fields

(F1) Consider the polynomial f(x) = x3 + 3x2 + 3x+ 2 ∈ Z5[x]. Let K be the splitting field of
f(x) over Z5. Construct K. How many elements does K have? Factor f(x) completely in
K[x].
Answer: (See F08, F09) f(x) has the root 3 ∈ Z5, so f(x) factors as f(x) = (x − 3)(x2 +
x + 1) in Z5[x]. The quotient x2 + x + 1 has no roots in Z5 so is irreducible over Z5.
So K = Z5[x]/(x2 + x + 1) is a field that contains Z5 and two roots of f , namely 3 and
α = x+(x2+x+1) ∈ K. Dividing x2+x+1 by x−α gives x2+x+1 = (x−α)(x−(−1−α))
so the remaining root of f is −1 − α ∈ K. This makes K the splitting field for f . Each
element of K can be written uniquely in the form a + bα with a, b ∈ Z5, so K has 25
elements. Moreover, f factors completely over K as f(x) = (x− 3)(x− α)(x− (−1− α)).

(F2) Let E be a finite extension of a field F . Show that every element of E is algebraic over F .
Answer: Suppose that [E : F ] = n ∈ N and α ∈ E. Since E is an n-dimensional vector
space over F , the set {1, α, α2, . . . , αn} is linearly dependent over F . In other words, there
are a0, a1, a2, . . . , an ∈ F , not all zero, such that

a0 + a1α+ a2α
2 + · · ·+ anα

n = 0.

Hence α is a root of the nonzero polynomial f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ F [x]
and α is algebraic over F .

(F3) Let E be the splitting field of f(x) = x3 − 5 over Q. Is Gal(E,Q) abelian? Find a familiar
group (like Zn, Sn, Dn, . . .) that is isomorphic to Gal(E,Q).

Answer: [See F10] The roots of x3 − 5 are 3
√

5, ω 3
√

5 and ω2 3
√

5 where ω = e2πi/3. So
E = Q( 3

√
5, ω 3
√

5, ω2 3
√

5). Since ω = (ω 3
√

5)/ 3
√

5 ∈ E, it follows that E = Q(ω, 3
√

5).
Consider

Q ⊆ Q( 3
√

5) ⊆ Q(ω, 3
√

5) = E

3 2

6

By Eisenstein, x3 − 5 is irreducible over Q, so [Q( 3
√

3) : Q] = 3. Because, ω is a root of
x2 + x + 1 ∈ Q( 3

√
5)[x], the degree of ω over Q( 3

√
5) is at most 2. But Q( 3

√
5) ⊆ R and

ω 6∈ R, so ω has degree 2 over Q( 3
√

5). This implies [E : Q( 3
√

5)] = 2 and [E : Q] = 6.
Since E is a splitting field, Gal(E,Q) is a group of order 6 and is isomorphic to Z6 or S3.

Each automorphism in Gal(E,Q) sends 3
√

5 to one of its three conjugates 3
√

5, ω 3
√

5, ω2 3
√

5,
and sends ω to one of its two conjugates ω, ω2. Moreover, since 3

√
5 and ω generate E over Q,

each automorphism is determined by where it sends these generators. Hence Gal(E,Q) =
{φ0, φ1, φ2, φ3, φ4, φ5} where

x 3
√

5 ω 3
√

5 ω 3
√

5 ω2 3
√

5

φ0(x) 3
√

5 ω 3
√

5 ω 3
√

5 ω2 3
√

5

φ1(x) ω 3
√

5 ω ω 3
√

5 ω2 3
√

5 3
√

5

φ2(x) ω2 3
√

5 ω ω2 3
√

5 3
√

5 ω 3
√

5

φ3(x) 3
√

5 ω2 3
√

5 ω2 3
√

5 ω 3
√

5

φ4(x) ω 3
√

5 ω2 ω 3
√

5 3
√

5 ω2 3
√

5

φ5(x) ω2 3
√

5 ω2 ω2 3
√

5 ω 3
√

5 3
√

5
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This group is isomorphic to S3, for example, because it is not abelian: φ1(φ3(
3
√

5)) =
φ1(

3
√

5) = ω 3
√

5, whereas, φ3(φ1(
3
√

5) = φ3(ω
3
√

5)) = ω2 3
√

5. In addition, from the table we
see that the Galois group acts as the set of all permutations of { 3

√
5, ω 3
√

5, ω2 3
√

5}, which
shows explicitly that Gal(E,Q) ∼= S3.
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