
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2015

Brookfield*, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, only the
first five will be graded. You must answer at least one from each of groups, rings, and
fields. Be sure to show enough work so that your answers are adequately supported.

Groups

(1) Let φ : G → H be a nontrivial group homomorphism with |G| = 10 and
|H| = 15. Prove that G is abelian.
Answer: The image of the homomorphism, imφ, is a subgroup of H, so has
order that divides |H| = 15. But imφ is also isomorphic to G/ kerφ, so the
order of imφ must divide |G| = 10. This means | imφ| is 1 or 5. But φ is
nontrivial, so | imφ| = 5. Then K = kerφ is a normal subgroup of G of order
|G|/| imφ| = 2. By Sylow, G also has a subgroup L of order 5 which must be
normal because it has index 2 in G.

We now know that G has normal subgroups K and L of orders 2 and 5.
From here one proves K ∩L = {1}, and then G ∼= K ×L ∼= Z2×Z5

∼= Z10, so
G is cyclic. See, for example, Fraleigh Lemma 37.5, Algebra Exam Fall 2008.

(2) Let p < q be distinct primes numbers and G a group of order pq. Show that
G is not simple.
Answer: By the Sylow Theorems, nq ≡ 1 mod q and nq|pq. From the second
condition we get nq ∈ {1, p, q, pq}. But q and pq are congruent to 0 modulo q.
And p cannot be congruent to 1 modulo q because 1 < p < q. So this leaves
nq = 1 and so G has a normal Sylow subgroup of order q. In particular, G is
not simple.

(3) Let G be a group and g ∈ G.
(a) Show that N(g) = {h ∈ G : hg = gh} is a subgroup of G.
(b) Show that, if G is finite, then |G|/|N(g)| is the number of elements of G

that are conjugate to g.
Answer:

(a) N(g) closed under the group operation: Suppose that h1, h2 ∈ N(g).
Then h1g = gh1 and h2g = gh2, so

(h1h2)g = h1(h2g) = h1(gh2) = (h1g)h2 = (gh1)h2 = g(h1h2)

and so h1h2 ∈ N(g).
N(g) closed under taking inverses: If h ∈ N(g), then hg = gh. Mul-
tiplying this equation on the left and right by h−1 we get h−1hgh−1 =
h−1ghh−1 which implies that gh−1 = h−1g, that is h−1 ∈ N(g).

(b) Consider the function φ : G → G defined by φ(h) = hgh−1. Warning:
This function is not a group homomorphism. The image of φ is the set
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of conjugates of g. For h1, h2 ∈ G we have

φ(h1) = φ(h2) ⇐⇒ h1gh
−1
1 = h2gh

−1
2

⇐⇒ h−12 h1g = gh−12 h1

⇐⇒ h−12 h1 ∈ N(g)

⇐⇒ h1N(g) = h2N(g)

Thus h1 and h2 get sent to the same conjugate of g if and only if they are in
the same left coset of N(g). This implies that the number of conjugates
of g equals the number of left cosets of N(g), which by Lagrange, is
|G|/|N(g)|.

OR

Let G act on G by conjugation. That is, let φ : G → SG be defined by
φh(g) = hgh−1 for all h, g ∈ G. In other notation, let h · g = hgh−1 for all
h, g ∈ G. Then the orbit of g is the set of conjugates of g, the stabilizer of
g is N(g) (called the centralizer of g), and so the number of elements in the
orbit is the index of the stabilizer in G which is the number of left cosets (or
right cosets) of N(g). See Dummit and Foote, Section 4.3.

Rings

(1) Suppose that R and R′ are rings. Let φ : R→ R′ be a ring homomorphism.
(a) Let I ′ be an ideal of R′. Prove that

φ−1(I ′) = {x ∈ R | φ(x) ∈ I ′}
is an ideal of R.

(b) Prove that the kernel of φ is an ideal of R.
(2) Let I be an ideal of a commutative ring R with identity and define

rad(I) := {r ∈ R | rn ∈ I for some n ∈ Z+}.
Show that rad(I) is an ideal containing I.
Answer: (Algebra Comp S01, F01, S02, S03 and F07) First we notice that if
r ∈ I, then r1 ∈ I and so r ∈ rad I. Hence I ⊆ rad I.

It remains to show that rad I is an ideal, that is, rad I is closed under
addition and under multiplication by elements of R.

First we notice that, because RI ⊆ I, if an ∈ I, then all higher powers of
a are in I. Now suppose that a, b ∈ rad I. Then there is an integer n ∈ N
such that am ∈ I and bm ∈ I for all m ≥ n. Then each term of the binomial
expansion of (a+b)2n has a sufficiently high power of a or of b so that the term
is in I. (Here we used RI ⊆ I.) Since I is closed under addition, (a+ b)2n ∈ I
and so a+ b ∈ rad I.

Suppose that a ∈ rad I and r ∈ R. Then an ∈ I for some n ∈ N and so
(ra)n = anrn ∈ I. (Here we used RI ⊆ I.) Hence ra ∈ rad I.

(3) Let R be a unique factorization domain.
(a) Let p ∈ R be irreducible. Show that Rp = (p) is a prime ideal.

Answer: Suppose that ab ∈ Rp for some a, b ∈ R. Then pr = ab for
some r ∈ R. Both sides of this equation can be factored into irreducible
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elements. Because of the uniqueness, the irreducible p on the left must be
an associate of an irreducible element in the factorization of ab, that is, p
is an associate of an irreducible element that divides a or p is an associate
of an irreducible element that divides b. Thus p|a or p|b, in other words,
a ∈ Rp or b ∈ Rp.

(b) Show that every nonzero prime ideal of R contains a prime ideal of the
form Rp = (p) for some irreducible p ∈ R.
Answer: Let P be a nonzero prime ideal of R and r a nonzero element
of P . Then r can be written as product of irreducible elements r =
p1p2 · · · pn. Because r ∈ P and P is prime, one of these irreducible
elements pi is in P . Then Rpi is a prime ideal (by (a)) that is contained
in P .

Fields

(1) Let E be an extension field of a field F . Let α ∈ E be algebraic over F . Prove
that there exists a nonzero polynomial f ∈ F [x] such that
(a) f(α) = 0.
(b) If g ∈ F [x] and g(α) = 0, then f divides g
Answer: Let f ∈ F [x] be a nonzero polynomial of smallest degree having
α as a root. (Such polynomials exist because α is algebraic over F .) Now
suppose that g ∈ F [x] has α as a root. Write g = qf + r where q, r ∈ F [x]
and r = 0 or deg r < deg f . Plugging in α in this equation gives r(α) = 0.
This would contradict our choice of f unless r = 0. Hence g = qf , that is f
divides g.

(2) Show that f(x) = x4 + 1 and g(x) = x4− 2x2 + 9 have the same splitting field
over Q.
Answer: The roots of f are (±1± i)/

√
2. The roots of g are ±i±

√
2. So both

splitting fields are in Q(i,
√

2). In fact, the opposite inclusions also hold: The
equations

√
2 =

1 + i√
2

+
1− i√

2
i =

(1 + i)/
√

2

(1− i)/
√

2

show that Q(i,
√

2) is contained in the splitting field of f . The equations

√
2 =

1

2

(
(i+
√

2) + (−i+
√

2)
)

i =
1

2

(
(i+
√

2) + (i−
√

2)
)

show that Q(i,
√

2) is contained in the splitting field of g. Thus the splitting
field of both these polynomials is Q(i,

√
2).

(3) Let σ = e2πi/7 ∈ C, a primitive seventh root of unity, and F = Q(σ). F is the
splitting field for x7 − 1 over Q so is a Galois extension of Q. The minimum
polynomial for σ over Q is the seventh cyclotomic polynomial

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

so you can express elements of F uniquely in the form α = a + bσ + cσ2 +
dσ3 + eσ4 + fσ5 ∈ F for suitable a, b, c, d, e, f ∈ Q. Let φ ∈ Gal(F,Q) be the
automorphism such that φ(σ) = σ4. Find the fixed field of φ.
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Answer: Let α = a+ bσ + cσ2 + dσ3 + eσ4 + fσ5 with a, b, c, d, e ∈ Q. Then

φ(α) = a+ bσ4 + cσ + dσ5 + eσ2 + fσ6

= (a− f) + (b− f)σ4 + (c− f)σ + (d− f)σ5 + (e− f)σ2 − fσ3

If φ(α) = α, then by the uniqueness of these expressions we get

a = a− f b = c− f c = e− f d = −f e = b− f f = d− f
with solutions

d = f = 0 b = c = e.

Thus α is in the fixed field of φ if and only if

α = a+ b(σ + σ2 + σ4)

for some a, b ∈ Q. Thus the fixed field of φ is Q(σ + σ2 + σ4).


