# ALGEBRA COMPREHENSIVE EXAMINATION 

Spring 2015<br>Brookfield*, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, only the first five will be graded. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work so that your answers are adequately supported.

## Groups

(1) Let $\phi: G \rightarrow H$ be a nontrivial group homomorphism with $|G|=10$ and $|H|=15$. Prove that $G$ is abelian.
Answer: The image of the homomorphism, $\operatorname{im} \phi$, is a subgroup of $H$, so has order that divides $|H|=15$. But $\operatorname{im} \phi$ is also isomorphic to $G / \operatorname{ker} \phi$, so the order of $\operatorname{im} \phi$ must divide $|G|=10$. This means $|\operatorname{im} \phi|$ is 1 or 5 . But $\phi$ is nontrivial, so $|\operatorname{im} \phi|=5$. Then $K=\operatorname{ker} \phi$ is a normal subgroup of $G$ of order $|G| /|\operatorname{im} \phi|=2$. By Sylow, $G$ also has a subgroup $L$ of order 5 which must be normal because it has index 2 in $G$.

We now know that $G$ has normal subgroups $K$ and $L$ of orders 2 and 5. From here one proves $K \cap L=\{1\}$, and then $G \cong K \times L \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{10}$, so $G$ is cyclic. See, for example, Fraleigh Lemma 37.5, Algebra Exam Fall 2008.
(2) Let $p<q$ be distinct primes numbers and $G$ a group of order $p q$. Show that $G$ is not simple.
Answer: By the Sylow Theorems, $n_{q} \equiv 1 \bmod q$ and $n_{q} \mid p q$. From the second condition we get $n_{q} \in\{1, p, q, p q\}$. But $q$ and $p q$ are congruent to 0 modulo $q$. And $p$ cannot be congruent to 1 modulo $q$ because $1<p<q$. So this leaves $n_{q}=1$ and so $G$ has a normal Sylow subgroup of order $q$. In particular, $G$ is not simple.
(3) Let $G$ be a group and $g \in G$.
(a) Show that $N(g)=\{h \in G: h g=g h\}$ is a subgroup of $G$.
(b) Show that, if $G$ is finite, then $|G| /|N(g)|$ is the number of elements of $G$ that are conjugate to $g$.

## Answer:

(a) $N(g)$ closed under the group operation: Suppose that $h_{1}, h_{2} \in N(g)$. Then $h_{1} g=g h_{1}$ and $h_{2} g=g h_{2}$, so

$$
\left(h_{1} h_{2}\right) g=h_{1}\left(h_{2} g\right)=h_{1}\left(g h_{2}\right)=\left(h_{1} g\right) h_{2}=\left(g h_{1}\right) h_{2}=g\left(h_{1} h_{2}\right)
$$

and so $h_{1} h_{2} \in N(g)$.
$N(g)$ closed under taking inverses: If $h \in N(g)$, then $h g=g h$. Multiplying this equation on the left and right by $h^{-1}$ we get $h^{-1} h g h^{-1}=$ $h^{-1} g h h^{-1}$ which implies that $g h^{-1}=h^{-1} g$, that is $h^{-1} \in N(g)$.
(b) Consider the function $\phi: G \rightarrow G$ defined by $\phi(h)=h g h^{-1}$. Warning: This function is not a group homomorphism. The image of $\phi$ is the set
of conjugates of $g$. For $h_{1}, h_{2} \in G$ we have

$$
\begin{aligned}
\phi\left(h_{1}\right)=\phi\left(h_{2}\right) & \Longleftrightarrow h_{1} g h_{1}^{-1}=h_{2} g h_{2}^{-1} \\
& \Longleftrightarrow h_{2}^{-1} h_{1} g=g h_{2}^{-1} h_{1} \\
& \Longleftrightarrow h_{2}^{-1} h_{1} \in N(g) \\
& \Longleftrightarrow h_{1} N(g)=h_{2} N(g)
\end{aligned}
$$

Thus $h_{1}$ and $h_{2}$ get sent to the same conjugate of $g$ if and only if they are in the same left coset of $N(\mathrm{~g})$. This implies that the number of conjugates of $g$ equals the number of left cosets of $N(g)$, which by Lagrange, is $|G| /|N(g)|$.

## OR

Let $G$ act on $G$ by conjugation. That is, let $\phi: G \rightarrow S_{G}$ be defined by $\phi_{h}(g)=h g h^{-1}$ for all $h, g \in G$. In other notation, let $h \cdot g=h g h^{-1}$ for all $h, g \in G$. Then the orbit of $g$ is the set of conjugates of $g$, the stabilizer of $g$ is $N(g)$ (called the centralizer of $g$ ), and so the number of elements in the orbit is the index of the stabilizer in $G$ which is the number of left cosets (or right cosets) of $N(g)$. See Dummit and Foote, Section 4.3.

## Rings

(1) Suppose that $R$ and $R^{\prime}$ are rings. Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism.
(a) Let $I^{\prime}$ be an ideal of $R^{\prime}$. Prove that

$$
\phi^{-1}\left(I^{\prime}\right)=\left\{x \in R \mid \phi(x) \in I^{\prime}\right\}
$$

is an ideal of $R$.
(b) Prove that the kernel of $\phi$ is an ideal of $R$.
(2) Let $I$ be an ideal of a commutative ring $R$ with identity and define

$$
\operatorname{rad}(I):=\left\{r \in R \mid r^{n} \in I \text { for some } n \in \mathbb{Z}^{+}\right\} .
$$

Show that $\operatorname{rad}(I)$ is an ideal containing $I$.
Answer: (Algebra Comp S01, F01, S02, S03 and F07) First we notice that if $r \in I$, then $r^{1} \in I$ and so $r \in \operatorname{rad} I$. Hence $I \subseteq \operatorname{rad} I$.

It remains to show that $\operatorname{rad} I$ is an ideal, that is, $\operatorname{rad} I$ is closed under addition and under multiplication by elements of $R$.

First we notice that, because $R I \subseteq I$, if $a^{n} \in I$, then all higher powers of $a$ are in $I$. Now suppose that $a, b \in \operatorname{rad} I$. Then there is an integer $n \in \mathbb{N}$ such that $a^{m} \in I$ and $b^{m} \in I$ for all $m \geq n$. Then each term of the binomial expansion of $(a+b)^{2 n}$ has a sufficiently high power of $a$ or of $b$ so that the term is in $I$. (Here we used $R I \subseteq I$.) Since $I$ is closed under addition, $(a+b)^{2 n} \in I$ and so $a+b \in \operatorname{rad} I$.

Suppose that $a \in \operatorname{rad} I$ and $r \in R$. Then $a^{n} \in I$ for some $n \in \mathbb{N}$ and so $(r a)^{n}=a^{n} r^{n} \in I$. (Here we used $R I \subseteq I$.) Hence $r a \in \operatorname{rad} I$.
(3) Let $R$ be a unique factorization domain.
(a) Let $p \in R$ be irreducible. Show that $R p=(p)$ is a prime ideal.

Answer: Suppose that $a b \in R p$ for some $a, b \in R$. Then $p r=a b$ for some $r \in R$. Both sides of this equation can be factored into irreducible
elements. Because of the uniqueness, the irreducible $p$ on the left must be an associate of an irreducible element in the factorization of ab, that is, $p$ is an associate of an irreducible element that divides $a$ or $p$ is an associate of an irreducible element that divides $b$. Thus $p \mid a$ or $p \mid b$, in other words, $a \in R p$ or $b \in R p$.
(b) Show that every nonzero prime ideal of $R$ contains a prime ideal of the form $R p=(p)$ for some irreducible $p \in R$.
Answer: Let $P$ be a nonzero prime ideal of $R$ and $r$ a nonzero element of $P$. Then $r$ can be written as product of irreducible elements $r=$ $p_{1} p_{2} \cdots p_{n}$. Because $r \in P$ and $P$ is prime, one of these irreducible elements $p_{i}$ is in $P$. Then $R p_{i}$ is a prime ideal (by (a)) that is contained in $P$.

## Fields

(1) Let $E$ be an extension field of a field $F$. Let $\alpha \in E$ be algebraic over $F$. Prove that there exists a nonzero polynomial $f \in F[x]$ such that
(a) $f(\alpha)=0$.
(b) If $g \in F[x]$ and $g(\alpha)=0$, then $f$ divides $g$

Answer: Let $f \in F[x]$ be a nonzero polynomial of smallest degree having $\alpha$ as a root. (Such polynomials exist because $\alpha$ is algebraic over $F$.) Now suppose that $g \in F[x]$ has $\alpha$ as a root. Write $g=q f+r$ where $q, r \in F[x]$ and $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$. Plugging in $\alpha$ in this equation gives $r(\alpha)=0$. This would contradict our choice of $f$ unless $r=0$. Hence $g=q f$, that is $f$ divides $g$.
(2) Show that $f(x)=x^{4}+1$ and $g(x)=x^{4}-2 x^{2}+9$ have the same splitting field over $\mathbb{Q}$.
Answer: The roots of $f$ are $( \pm 1 \pm i) / \sqrt{2}$. The roots of $g$ are $\pm i \pm \sqrt{2}$. So both splitting fields are in $\mathbb{Q}(i, \sqrt{2})$. In fact, the opposite inclusions also hold: The equations

$$
\sqrt{2}=\frac{1+i}{\sqrt{2}}+\frac{1-i}{\sqrt{2}} \quad i=\frac{(1+i) / \sqrt{2}}{(1-i) / \sqrt{2}}
$$

show that $\mathbb{Q}(i, \sqrt{2})$ is contained in the splitting field of $f$. The equations

$$
\sqrt{2}=\frac{1}{2}((i+\sqrt{2})+(-i+\sqrt{2})) \quad i=\frac{1}{2}((i+\sqrt{2})+(i-\sqrt{2}))
$$

show that $\mathbb{Q}(i, \sqrt{2})$ is contained in the splitting field of $g$. Thus the splitting field of both these polynomials is $\mathbb{Q}(i, \sqrt{2})$.
(3) Let $\sigma=e^{2 \pi i / 7} \in \mathbb{C}$, a primitive seventh root of unity, and $F=\mathbb{Q}(\sigma) . F$ is the splitting field for $x^{7}-1$ over $\mathbb{Q}$ so is a Galois extension of $\mathbb{Q}$. The minimum polynomial for $\sigma$ over $\mathbb{Q}$ is the seventh cyclotomic polynomial

$$
\Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

so you can express elements of $F$ uniquely in the form $\alpha=a+b \sigma+c \sigma^{2}+$ $d \sigma^{3}+e \sigma^{4}+f \sigma^{5} \in F$ for suitable $a, b, c, d, e, f \in \mathbb{Q}$. Let $\phi \in \operatorname{Gal}(F, \mathbb{Q})$ be the automorphism such that $\phi(\sigma)=\sigma^{4}$. Find the fixed field of $\phi$.

Answer: Let $\alpha=a+b \sigma+c \sigma^{2}+d \sigma^{3}+e \sigma^{4}+f \sigma^{5}$ with $a, b, c, d, e \in \mathbb{Q}$. Then $\phi(\alpha)=a+b \sigma^{4}+c \sigma+d \sigma^{5}+e \sigma^{2}+f \sigma^{6}$

$$
=(a-f)+(b-f) \sigma^{4}+(c-f) \sigma+(d-f) \sigma^{5}+(e-f) \sigma^{2}-f \sigma^{3}
$$

If $\phi(\alpha)=\alpha$, then by the uniqueness of these expressions we get

$$
a=a-f \quad b=c-f \quad c=e-f \quad d=-f \quad e=b-f \quad f=d-f
$$

with solutions

$$
d=f=0 \quad b=c=e .
$$

Thus $\alpha$ is in the fixed field of $\phi$ if and only if

$$
\alpha=a+b\left(\sigma+\sigma^{2}+\sigma^{4}\right)
$$

for some $a, b \in \mathbb{Q}$. Thus the fixed field of $\phi$ is $\mathbb{Q}\left(\sigma+\sigma^{2}+\sigma^{4}\right)$.

