ALGEBRA COMPREHENSIVE EXAMINATION Spring 2015 Brookfield*, Shaheen, Webster

<u>Directions</u>: Answer 5 questions only. If you answer more than five questions, only the first five will be graded. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work so that your answers are adequately supported.

Groups

(1) Let $\phi : G \to H$ be a nontrivial group homomorphism with |G| = 10 and |H| = 15. Prove that G is abelian. Answer: The image of the homomorphism, im ϕ , is a subgroup of H, so has

Answer: The image of the homomorphism, $\operatorname{Im} \phi$, is a subgroup of H, so has order that divides |H| = 15. But $\operatorname{im} \phi$ is also isomorphic to $G/\ker \phi$, so the order of $\operatorname{im} \phi$ must divide |G| = 10. This means $|\operatorname{im} \phi|$ is 1 or 5. But ϕ is nontrivial, so $|\operatorname{im} \phi| = 5$. Then $K = \ker \phi$ is a normal subgroup of G of order $|G|/|\operatorname{im} \phi| = 2$. By Sylow, G also has a subgroup L of order 5 which must be normal because it has index 2 in G.

We now know that G has normal subgroups K and L of orders 2 and 5. From here one proves $K \cap L = \{1\}$, and then $G \cong K \times L \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \cong \mathbb{Z}_{10}$, so G is cyclic. See, for example, Fraleigh Lemma 37.5, Algebra Exam Fall 2008.

(2) Let p < q be distinct primes numbers and G a group of order pq. Show that G is not simple.

Answer: By the Sylow Theorems, $n_q \equiv 1 \mod q$ and $n_q | pq$. From the second condition we get $n_q \in \{1, p, q, pq\}$. But q and pq are congruent to 0 modulo q. And p cannot be congruent to 1 modulo q because $1 . So this leaves <math>n_q = 1$ and so G has a normal Sylow subgroup of order q. In particular, G is not simple.

- (3) Let G be a group and $g \in G$.
 - (a) Show that $N(g) = \{h \in G : hg = gh\}$ is a subgroup of G.
 - (b) Show that, if G is finite, then |G|/|N(g)| is the number of elements of G that are conjugate to g.

Answer:

(a) N(g) closed under the group operation: Suppose that $h_1, h_2 \in N(g)$. Then $h_1g = gh_1$ and $h_2g = gh_2$, so

$$(h_1h_2)g = h_1(h_2g) = h_1(gh_2) = (h_1g)h_2 = (gh_1)h_2 = g(h_1h_2)$$

and so $h_1h_2 \in N(g)$.

N(g) closed under taking inverses: If $h \in N(g)$, then hg = gh. Multiplying this equation on the left and right by h^{-1} we get $h^{-1}hgh^{-1} = h^{-1}ghh^{-1}$ which implies that $gh^{-1} = h^{-1}g$, that is $h^{-1} \in N(g)$.

(b) Consider the function $\phi : G \to G$ defined by $\phi(h) = hgh^{-1}$. Warning: This function is not a group homomorphism. The image of ϕ is the set of conjugates of g. For $h_1, h_2 \in G$ we have

$$\phi(h_1) = \phi(h_2) \iff h_1 g h_1^{-1} = h_2 g h_2^{-1}$$
$$\iff h_2^{-1} h_1 g = g h_2^{-1} h_1$$
$$\iff h_2^{-1} h_1 \in N(g)$$
$$\iff h_1 N(g) = h_2 N(g)$$

Thus h_1 and h_2 get sent to the same conjugate of g if and only if they are in the same left coset of N(g). This implies that the number of conjugates of g equals the number of left cosets of N(g), which by Lagrange, is |G|/|N(g)|.

OR

Let G act on G by conjugation. That is, let $\phi : G \to S_G$ be defined by $\phi_h(g) = hgh^{-1}$ for all $h, g \in G$. In other notation, let $h \cdot g = hgh^{-1}$ for all $h, g \in G$. Then the orbit of g is the set of conjugates of g, the stabilizer of g is N(g) (called the centralizer of g), and so the number of elements in the orbit is the index of the stabilizer in G which is the number of left cosets (or right cosets) of N(g). See Dummit and Foote, Section 4.3.

Rings

(1) Suppose that R and R' are rings. Let φ : R → R' be a ring homomorphism.
(a) Let I' be an ideal of R'. Prove that

$$\phi^{-1}(I') = \{ x \in R \mid \phi(x) \in I' \}$$

is an ideal of R.

(b) Prove that the kernel of ϕ is an ideal of R.

(2) Let I be an ideal of a commutative ring R with identity and define

 $\operatorname{rad}(I) := \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}.$

Show that rad(I) is an ideal containing I.

Answer: (Algebra Comp S01, F01, S02, S03 and F07) First we notice that if $r \in I$, then $r^1 \in I$ and so $r \in \operatorname{rad} I$. Hence $I \subseteq \operatorname{rad} I$.

It remains to show that rad I is an ideal, that is, rad I is closed under addition and under multiplication by elements of R.

First we notice that, because $RI \subseteq I$, if $a^n \in I$, then all higher powers of a are in I. Now suppose that $a, b \in \operatorname{rad} I$. Then there is an integer $n \in \mathbb{N}$ such that $a^m \in I$ and $b^m \in I$ for all $m \geq n$. Then each term of the binomial expansion of $(a+b)^{2n}$ has a sufficiently high power of a or of b so that the term is in I. (Here we used $RI \subseteq I$.) Since I is closed under addition, $(a+b)^{2n} \in I$ and so $a + b \in \operatorname{rad} I$.

Suppose that $a \in \operatorname{rad} I$ and $r \in R$. Then $a^n \in I$ for some $n \in \mathbb{N}$ and so $(ra)^n = a^n r^n \in I$. (Here we used $RI \subseteq I$.) Hence $ra \in \operatorname{rad} I$.

- (3) Let R be a unique factorization domain.
 - (a) Let $p \in R$ be irreducible. Show that Rp = (p) is a prime ideal. Answer: Suppose that $ab \in Rp$ for some $a, b \in R$. Then pr = ab for some $r \in R$. Both sides of this equation can be factored into irreducible

elements. Because of the uniqueness, the irreducible p on the left must be an associate of an irreducible element in the factorization of ab, that is, pis an associate of an irreducible element that divides a or p is an associate of an irreducible element that divides b. Thus p|a or p|b, in other words, $a \in Rp$ or $b \in Rp$.

(b) Show that every nonzero prime ideal of R contains a prime ideal of the form Rp = (p) for some irreducible p ∈ R.
Answer: Let P be a nonzero prime ideal of R and r a nonzero element of P. Then r can be written as product of irreducible elements r = p₁p₂...p_n. Because r ∈ P and P is prime, one of these irreducible elements p_i is in P. Then Rp_i is a prime ideal (by (a)) that is contained in P.

Fields

- (1) Let E be an extension field of a field F. Let $\alpha \in E$ be algebraic over F. Prove that there exists a nonzero polynomial $f \in F[x]$ such that
 - (a) $f(\alpha) = 0$.
 - (b) If $g \in F[x]$ and $g(\alpha) = 0$, then f divides g

Answer: Let $f \in F[x]$ be a nonzero polynomial of smallest degree having α as a root. (Such polynomials exist because α is algebraic over F.) Now suppose that $g \in F[x]$ has α as a root. Write g = qf + r where $q, r \in F[x]$ and r = 0 or deg $r < \deg f$. Plugging in α in this equation gives $r(\alpha) = 0$. This would contradict our choice of f unless r = 0. Hence g = qf, that is f divides g.

(2) Show that $f(x) = x^4 + 1$ and $g(x) = x^4 - 2x^2 + 9$ have the same splitting field over \mathbb{Q} .

Answer: The roots of f are $(\pm 1 \pm i)/\sqrt{2}$. The roots of g are $\pm i \pm \sqrt{2}$. So both splitting fields are in $\mathbb{Q}(i,\sqrt{2})$. In fact, the opposite inclusions also hold: The equations

$$\sqrt{2} = \frac{1+i}{\sqrt{2}} + \frac{1-i}{\sqrt{2}}$$
 $i = \frac{(1+i)/\sqrt{2}}{(1-i)/\sqrt{2}}$

show that $\mathbb{Q}(i,\sqrt{2})$ is contained in the splitting field of f. The equations

$$\sqrt{2} = \frac{1}{2} \left((i + \sqrt{2}) + (-i + \sqrt{2}) \right) \qquad i = \frac{1}{2} \left((i + \sqrt{2}) + (i - \sqrt{2}) \right)$$

show that $\mathbb{Q}(i,\sqrt{2})$ is contained in the splitting field of g. Thus the splitting field of both these polynomials is $\mathbb{Q}(i,\sqrt{2})$.

(3) Let $\sigma = e^{2\pi i/7} \in \mathbb{C}$, a primitive seventh root of unity, and $F = \mathbb{Q}(\sigma)$. F is the splitting field for $x^7 - 1$ over \mathbb{Q} so is a Galois extension of \mathbb{Q} . The minimum polynomial for σ over \mathbb{Q} is the seventh cyclotomic polynomial

$$\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

so you can express elements of F uniquely in the form $\alpha = a + b\sigma + c\sigma^2 + d\sigma^3 + e\sigma^4 + f\sigma^5 \in F$ for suitable $a, b, c, d, e, f \in \mathbb{Q}$. Let $\phi \in \text{Gal}(F, \mathbb{Q})$ be the automorphism such that $\phi(\sigma) = \sigma^4$. Find the fixed field of ϕ .

Answer: Let $\alpha = a + b\sigma + c\sigma^2 + d\sigma^3 + e\sigma^4 + f\sigma^5$ with $a, b, c, d, e \in \mathbb{Q}$. Then $\phi(\alpha) = a + b\sigma^4 + c\sigma + d\sigma^5 + e\sigma^2 + f\sigma^6$ $= (a - f) + (b - f)\sigma^4 + (c - f)\sigma + (d - f)\sigma^5 + (e - f)\sigma^2 - f\sigma^3$

If $\phi(\alpha) = \alpha$, then by the uniqueness of these expressions we get

a = a - f b = c - f c = e - f d = -f e = b - f f = d - fwith solutions

 $d = f = 0 \qquad b = c = e.$

Thus α is in the fixed field of ϕ if and only if

$$\alpha = a + b(\sigma + \sigma^2 + \sigma^4)$$

for some $a, b \in \mathbb{Q}$. Thus the fixed field of ϕ is $\mathbb{Q}(\sigma + \sigma^2 + \sigma^4)$.