
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2013

Brookfield*, Krebs, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, your
exam score will be based on the five lowest scoring questions.You must answer at least
one from each of groups, rings, and fields. Be sure to show enough work so that your
answers are adequately supported.

Groups

(1) Show that, if G is a cyclic group, then every subgroup of G is cyclic.
Answer: [See also S08] Suppose that G = 〈a〉 = {ak | k ∈ Z}. Let H be a
subgroup of G. If H = {1} then H = 〈1〉 and so H is cyclic. Otherwise, H
contains at least one element of the form ak with k ∈ N.

Let n ∈ N be the least natural number such that an ∈ H. Then 〈an〉 ≤ H
is automatic. We prove the opposite inclusion: Suppose that ak ∈ H. Since
n ∈ N, there are q, r ∈ Z such that k = qn + r and 0 ≤ r < n. Then
ar = ak−qn = ak(an)−q. Because an and ak are in H, so is ar. But, by the
choice of n, this is only possible if r = 0. Thus k = qn and ak = (an)q ∈ 〈an〉.
This shows that H = 〈an〉 and that H is cyclic.

(2) (a) Let a and b be elements of a group G such that |a| = 3, |b| = 2 and
ab = ba. Show that |ab| = 6.

(b) Find a group G and elements a, b ∈ G such that |a| = 3, |b| = 2 and
|ab| 6= 6.

Answer:

(a) On one hand (ab)6 = a6b6 = 1 and so |ab| divides 6. On the other hand,
〈ab〉 contains an element of order 2, namely (ab)3 = a3b3 = b, and an
element of order 3, namely (ab)4 = a4b4 = a, and so |〈ab〉| is a multiple
of 2 · 3. Thus |ab| = 〈ab〉 = 6.

(b) For example, a = (1, 2, 3), and b = (1, 2) in S3.
(3) Prove that any nonabelian group G of order 6 contains elements r and s such

that |r| = 3, |s| = 2 and |sr| = 2. Do not use the fact that such a group is
isomorphic to S3. Hint: How many Sylow-3 subgroups are there?
Answer: No element of G can have order 6 because otherwise G is cyclic and
abelian. Thus all elements of G have order 1, 2 or 3.

By the Sylow Theorems, the number of Sylow-3 subgroups, n3, satisfies
n3|6 and n3 ≡ 1 mod 3. These conditions imply that n3 = 1 and there is a
unique normal Sylow-3 subgroup H. This subgroup has order 3, so is cyclic,
generated by an element r such that |r| = 3 and H = {1, r, r2}. All other
nonidentity elements of G must have order 2. Let s be such an element.

To prove |sr| = 2 it suffices to show that sr does not have order 1 or 3, that
is, sr 6= 1, sr 6= r and sr 6= r2. But if sr = 1, then s = s(sr) = s2r = r which
is impossible because |s| 6= |r|. If sr = r, then cancellation gives s = 1 which
is impossible because |s| 6= |1|. And, if sr = r2, then cancellation gives s = r,
which is impossible. Thus |sr| = 2.
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Rings

(1) (a) Suppose that f(x) = a0+a1x+a2x
2+· · ·+anxn ∈ Q[x] is irreducible over

the rationals. Show that g(x) = an + an−1x+ an−1x
2 + · · ·+ a0x

n ∈ Q[x]
is irreducible over the rationals.
Answer: Since g(x) = xnf(1/x), if f is reducible then so is g. Specifically,
if f(x) = h(x)k(x), with deg h = a and deg k = b, then a + b = n and
g(x) = (xah(1/x))(xbk(1/x) with deg xah(1/x) = a and deg xbk(1/x) = b.

(b) Prove that the polynomial 2x5 − 4x2 − 3 is irreducible in Z[x].
Answer: By Gauss’s Lemma and (a), 2x5 − 4x2 − 3 is irreducible over Z
iff it is irreducible over Q iff −3x5 − 4x3 + 2 is irreducible over Q. But
−3x5 − 4x3 + 2 is irreducible over Q by Eisenstein with p = 2.

(2) Let R and S be commutative rings with unity.
(a) If A is an ideal of R and B is an ideal of S, show that A×B is an ideal

of R× S.
Answer:

(i) Let (a1, b1), (a2, b2) ∈ A × B. Since a1 − a2 ∈ A and b1 − b2 ∈ B,
we have (a1, b1)− (a2, b2) = (a1 − a2, b1 − b2) ∈ A×B.

(ii) Let (a, b) ∈ A×B and (r, s) ∈ R×S. Since ra ∈ A and sb ∈ B we
have (r, s)(a, b) = (ra, sb) ∈ A×B.

(iii) Since A×B is nonempty, (i) and (ii) imply that A×B is an ideal.
(b) Show that every ideal I of R× S has the form I = A×B where A is an

ideal of R and B is an ideal of S. Hint: A = {a ∈ R | (a, 0) ∈ I}.
Answer: Given the ideal I, let A = {a ∈ R | (a, 0) ∈ I} and B = {b ∈
S | (0, b) ∈ I}. We need to show that A, B are ideals and I = A×B.

(i) Let a1, a2 ∈ A. Then (a1, 0), (a2, 0) ∈ I and so (a1 − a2, 0) =
(a1, 0)− (a2, 0) ∈ I. This means that a1 − a2 ∈ A.

(ii) Let a ∈ A and r ∈ R. Then (a, 0) ∈ I and (r, 0) ∈ R × S and so
(ra, 0) = (r, 0)(a, 0) ∈ I. This implies that ra ∈ A.

(iii) Since A is non empty, (i) and (ii) imply that A is an ideal of R.
Similarly, B is an ideal of S.

(iv) Suppose that (a, b) ∈ I. Because (1, 0) ∈ R × S and I is an ideal,
(a, 0) = (1, 0)(a, b) is in I. This means a ∈ A. Similarly, b ∈ B and
consequently (a, b) ∈ A×B. This shows that I ⊆ A×B.

(v) Suppose that (a, b) ∈ A× B. Then (a, 0), (0, b) ∈ I and so (a, b) =
(a, 0) + (0, b) ∈ I. This shows that A×B ⊆ I.

(vi) (iv) and (v) imply that I = A×B.

(3) Let p be a prime and let R be the ring of all 2×2 matrices of the form

[
a b
pb a

]
,

where a, b ∈ Z. Prove that R is isomorphic to Z(
√
p).

Answer: Note: The claim is true for any p that is not a square in Z. If we
can assume without proof that every element of Z(

√
p) has the form a+ b

√
p

for uniquely determined a, b ∈ Z, then the function φ : R → Z(
√
p) defined

by φ

([
a b
pb a

])
= a+ b

√
p is a bijection. It remains to show only that φ is a
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homomorphism. And this is just confirmation of the equations

φ

([
a1 b1
pb1 a1

]
+

[
a2 b2
pb2 a2

])
= (a1 + b1

√
p) + (a2 + b2

√
p)

φ

([
a1 b1
pb1 a1

] [
a2 b2
pb2 a2

])
= (a1 + b1

√
p)(a2 + b2

√
p)

for all a1, a2, b1, b2 ∈ Z.

Fields

(1) Here’s a fact from trigonometry that you may use without proof in this prob-
lem: Let n be a positive integer. Then there exists a polynomial f ∈ Z[x]
such that cosnx = f(cosx). [For example, when n = 2, the polynomial is
f(x) = 2x2 − 1; this is the double-angle formula cos 2x = 2 cos2 x− 1.]

Prove that if q is a rational number, then tan qπ is algebraic over Q.
Answer: First we prove that cos qπ is algebraic over Q. Let q = m/n with
m ∈ Z and n ∈ N. Then there is a polynomial f ∈ Z[x] such that f(cos qπ) =
cos(nqπ) = cosmπ. Since cosmπ is an integer, cos qπ is a root of the polyno-
mial f(x)− cosmπ ∈ Z[x] and so cos qπ is algebraic over Q.

Now we prove the same for the sine function: sin qπ = cos(π/2 − qπ) =
cos((1/2− q)π), and so, because 1/2− q ∈ Q, sin qπ is also algebraic over Q.

Finally, because, the set of algebraic numbers is a field, tan qπ = (sin qx)/(cos qx)
is algebraic over Q.

(2) Let α =
√

3 +
√

5. Show that Q(α) = Q(
√

2,
√

5). Hint: (x2 − 3)2 − 5 =
(x2 + 2)2 − 10x2.
Answer:

√
5 = α2 − 3 and so

√
5 ∈ Q(α). Using the hint we get

0 = (α2 − 3)2 − 5 = (α2 + 2)2 − 10α2

and so α2 + 2 = ±
√

10α. This implies that
√

10 = ±(α2 + 2)/α ∈ Q(α). Also√
2 =
√

10/
√

5 is in Q(α). This implies Q(
√

2,
√

5) ⊆ Q(α).
For the opposite inclusion, a bit of playing around yields (1 +

√
5)2 =

6 + 2
√

5 = 2α2 and so

α2 =

(
1 +
√

5√
2

)2

.

Consequently, α = ±(1 +
√

5)/
√

2 ∈ Q(
√

2,
√

5) and Q(α) ⊆ Q(
√

2,
√

5).
(3) Let E be the splitting field of f(x) = x4 − 2x2 − 3 over Q.

(a) Calculate [E : Q].
Answer: The roots of f are ±i and ±

√
3. So E = Q(i,

√
3). Since

[Q(
√

3) : Q] = 2 and [E : Q(
√

3)] = 2, we have [E : Q] = 4.
(b) Classify the Galois group G of E over Q.

Answer: Since E is a Galois extension of Q, the order of G is [E : Q] = 4.
Each automorphism in G sends

√
3 to a conjugate of

√
3 over Q, and sends

i to a conjugate of i over Q. Moreover, the automorphism is determined
by where it sends

√
3 and i. Thus G = {φ0, φ1, φ2, φ3} is given by the

table:
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x
√

3 i

φ0(x)
√

3 i

φ1(x) −
√

3 i

φ2(x)
√

3 −i
φ3(x) −

√
3 −i

φ0 is the identity function. The other elements of G have order 2, so G
is isomorphic to the Klein group V = Z2 × Z2.

(c) Find all intermediate fields. That is, find all fields F with Q ⊆ F ⊆ E.
Answer: Each intermediate field is the fixed field of a subgroup of G. The
subgroups and corresponding fields are as below:

Group Field
{φ0} E
{φ0, φ1} Q(i)

{φ0, φ2} Q(
√

3)

{φ0, φ3} Q(i
√

3)
G Q

For example, the fixed field of {φ0, φ1} ≤ G has degree 2 over Q and
contains i. Hence the fixed field is Q(i).


