ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2013

Brookfield*, Krebs, Shaheen, Webster

<u>Directions</u>: Answer 5 questions only. If you answer more than five questions, your exam score will be based on the five lowest scoring questions. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work so that your answers are adequately supported.

Groups

- (1) Show that, if G is a cyclic group, then every subgroup of G is cyclic.
 - Answer: [See also S08] Suppose that $G = \langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. Let H be a subgroup of G. If $H = \{1\}$ then $H = \langle 1 \rangle$ and so H is cyclic. Otherwise, H contains at least one element of the form a^k with $k \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be the least natural number such that $a^n \in H$. Then $\langle a^n \rangle \leq H$ is automatic. We prove the opposite inclusion: Suppose that $a^k \in H$. Since $n \in \mathbb{N}$, there are $q, r \in \mathbb{Z}$ such that k = qn + r and $0 \leq r < n$. Then $a^r = a^{k-qn} = a^k(a^n)^{-q}$. Because a^n and a^k are in H, so is a^r . But, by the choice of n, this is only possible if r = 0. Thus k = qn and $a^k = (a^n)^q \in \langle a^n \rangle$. This shows that $H = \langle a^n \rangle$ and that H is cyclic.

- (2) (a) Let a and b be elements of a group G such that |a| = 3, |b| = 2 and ab = ba. Show that |ab| = 6.
 - (b) Find a group G and elements $a, b \in G$ such that |a| = 3, |b| = 2 and $|ab| \neq 6$.

Answer:

- (a) On one hand $(ab)^6 = a^6b^6 = 1$ and so |ab| divides 6. On the other hand, $\langle ab \rangle$ contains an element of order 2, namely $(ab)^3 = a^3b^3 = b$, and an element of order 3, namely $(ab)^4 = a^4b^4 = a$, and so $|\langle ab \rangle|$ is a multiple of $2 \cdot 3$. Thus $|ab| = \langle ab \rangle = 6$.
- (b) For example, a = (1, 2, 3), and b = (1, 2) in S_3 .

(3) Prove that any nonabelian group G of order 6 contains elements r and s such that |r| = 3, |s| = 2 and |sr| = 2. Do not use the fact that such a group is isomorphic to S_3 . Hint: How many Sylow-3 subgroups are there?

Answer: No element of G can have order 6 because otherwise G is cyclic and abelian. Thus all elements of G have order 1, 2 or 3.

By the Sylow Theorems, the number of Sylow-3 subgroups, n_3 , satisfies $n_3|6$ and $n_3 \equiv 1 \mod 3$. These conditions imply that $n_3 = 1$ and there is a unique normal Sylow-3 subgroup H. This subgroup has order 3, so is cyclic, generated by an element r such that |r| = 3 and $H = \{1, r, r^2\}$. All other nonidentity elements of G must have order 2. Let s be such an element.

To prove |sr| = 2 it suffices to show that sr does not have order 1 or 3, that is, $sr \neq 1$, $sr \neq r$ and $sr \neq r^2$. But if sr = 1, then $s = s(sr) = s^2r = r$ which is impossible because $|s| \neq |r|$. If sr = r, then cancellation gives s = 1 which is impossible because $|s| \neq |1|$. And, if $sr = r^2$, then cancellation gives s = r, which is impossible. Thus |sr| = 2.

Rings

(1) (a) Suppose that f(x) = a₀+a₁x+a₂x²+···+a_nxⁿ ∈ Q[x] is irreducible over the rationals. Show that g(x) = a_n + a_{n-1}x + a_{n-1}x² + ··· + a₀xⁿ ∈ Q[x] is irreducible over the rationals.
Answer: Since g(x) = xⁿf(1/x), if f is reducible then so is g. Specifically,

if f(x) = h(x)k(x), with deg h = a and deg k = b, then a + b = n and $g(x) = (x^a h(1/x))(x^b k(1/x))$ with deg $x^a h(1/x) = a$ and deg $x^b k(1/x) = b$. (b) Prove that the polynomial $2x^5 - 4x^2 - 3$ is irreducible in $\mathbb{Z}[x]$.

- Answer: By Gauss's Lemma and (a), $2x^5 4x^2 3$ is irreducible over \mathbb{Z} iff it is irreducible over \mathbb{Q} iff $-3x^5 4x^3 + 2$ is irreducible over \mathbb{Q} . But $-3x^5 4x^3 + 2$ is irreducible over \mathbb{Q} by Eisenstein with p = 2.
- (2) Let R and S be commutative rings with unity.
 - (a) If A is an ideal of R and B is an ideal of S, show that $A \times B$ is an ideal of $R \times S$.

Answer:

- (i) Let $(a_1, b_1), (a_2, b_2) \in A \times B$. Since $a_1 a_2 \in A$ and $b_1 b_2 \in B$, we have $(a_1, b_1) - (a_2, b_2) = (a_1 - a_2, b_1 - b_2) \in A \times B$.
- (ii) Let $(a, b) \in A \times B$ and $(r, s) \in R \times S$. Since $ra \in A$ and $sb \in B$ we have $(r, s)(a, b) = (ra, sb) \in A \times B$.
- (iii) Since $A \times B$ is nonempty, (i) and (ii) imply that $A \times B$ is an ideal.
- (b) Show that every ideal I of R × S has the form I = A × B where A is an ideal of R and B is an ideal of S. Hint: A = {a ∈ R | (a, 0) ∈ I}.
 Answer: Given the ideal I, let A = {a ∈ R | (a, 0) ∈ I} and B = {b ∈ S | (0, b) ∈ I}. We need to show that A, B are ideals and I = A × B.
 - (i) Let $a_1, a_2 \in A$. Then $(a_1, 0), (a_2, 0) \in I$ and so $(a_1 a_2, 0) = (a_1, 0) (a_2, 0) \in I$. This means that $a_1 a_2 \in A$.
 - (ii) Let $a \in A$ and $r \in R$. Then $(a, 0) \in I$ and $(r, 0) \in R \times S$ and so $(ra, 0) = (r, 0)(a, 0) \in I$. This implies that $ra \in A$.
 - (iii) Since A is non empty, (i) and (ii) imply that A is an ideal of R. Similarly, B is an ideal of S.
 - (iv) Suppose that $(a, b) \in I$. Because $(1, 0) \in R \times S$ and I is an ideal, (a, 0) = (1, 0)(a, b) is in I. This means $a \in A$. Similarly, $b \in B$ and consequently $(a, b) \in A \times B$. This shows that $I \subseteq A \times B$.
 - (v) Suppose that $(a,b) \in A \times B$. Then $(a,0), (0,b) \in I$ and so $(a,b) = (a,0) + (0,b) \in I$. This shows that $A \times B \subseteq I$.
 - (vi) (iv) and (v) imply that $I = A \times B$.

(3) Let p be a prime and let R be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ pb & a \end{bmatrix}$, where $a, b \in \mathbb{Z}$. Prove that R is isomorphic to $\mathbb{Z}(\sqrt{p})$.

Answer: Note: The claim is true for any p that is not a square in \mathbb{Z} . If we can assume without proof that every element of $\mathbb{Z}(\sqrt{p})$ has the form $a + b\sqrt{p}$ for uniquely determined $a, b \in \mathbb{Z}$, then the function $\phi : R \to \mathbb{Z}(\sqrt{p})$ defined by $\phi\left(\begin{bmatrix}a & b\\pb & a\end{bmatrix}\right) = a + b\sqrt{p}$ is a bijection. It remains to show only that ϕ is a

homomorphism. And this is just confirmation of the equations

$$\phi\left(\begin{bmatrix}a_{1} & b_{1}\\ pb_{1} & a_{1}\end{bmatrix} + \begin{bmatrix}a_{2} & b_{2}\\ pb_{2} & a_{2}\end{bmatrix}\right) = (a_{1} + b_{1}\sqrt{p}) + (a_{2} + b_{2}\sqrt{p})$$
$$\phi\left(\begin{bmatrix}a_{1} & b_{1}\\ pb_{1} & a_{1}\end{bmatrix}\begin{bmatrix}a_{2} & b_{2}\\ pb_{2} & a_{2}\end{bmatrix}\right) = (a_{1} + b_{1}\sqrt{p})(a_{2} + b_{2}\sqrt{p})$$
for all $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$.

Fields

(1) Here's a fact from trigonometry that you may use without proof in this problem: Let n be a positive integer. Then there exists a polynomial $f \in \mathbb{Z}[x]$ such that $\cos nx = f(\cos x)$. [For example, when n = 2, the polynomial is $f(x) = 2x^2 - 1$; this is the double-angle formula $\cos 2x = 2\cos^2 x - 1$.]

Prove that if q is a rational number, then $\tan q\pi$ is algebraic over \mathbb{Q} . Answer: First we prove that $\cos q\pi$ is algebraic over \mathbb{Q} . Let q = m/n with $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then there is a polynomial $f \in \mathbb{Z}[x]$ such that $f(\cos q\pi) = \cos(nq\pi) = \cos m\pi$. Since $\cos m\pi$ is an integer, $\cos q\pi$ is a root of the polynomial $f(x) - \cos m\pi \in \mathbb{Z}[x]$ and so $\cos q\pi$ is algebraic over \mathbb{Q} .

Now we prove the same for the sine function: $\sin q\pi = \cos(\pi/2 - q\pi) = \cos((1/2 - q)\pi)$, and so, because $1/2 - q \in \mathbb{Q}$, $\sin q\pi$ is also algebraic over \mathbb{Q} .

Finally, because, the set of algebraic numbers is a field, $\tan q\pi = (\sin qx)/(\cos qx)$ is algebraic over \mathbb{Q} .

(2) Let $\alpha = \sqrt{3 + \sqrt{5}}$. Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$. Hint: $(x^2 - 3)^2 - 5 = (x^2 + 2)^2 - 10x^2$.

Answer: $\sqrt{5} = \alpha^2 - 3$ and so $\sqrt{5} \in \mathbb{Q}(\alpha)$. Using the hint we get

$$0 = (\alpha^2 - 3)^2 - 5 = (\alpha^2 + 2)^2 - 10\alpha^2$$

and so $\alpha^2 + 2 = \pm \sqrt{10}\alpha$. This implies that $\sqrt{10} = \pm (\alpha^2 + 2)/\alpha \in \mathbb{Q}(\alpha)$. Also $\sqrt{2} = \sqrt{10}/\sqrt{5}$ is in $\mathbb{Q}(\alpha)$. This implies $\mathbb{Q}(\sqrt{2},\sqrt{5}) \subseteq \mathbb{Q}(\alpha)$.

For the opposite inclusion, a bit of playing around yields $(1 + \sqrt{5})^2 = 6 + 2\sqrt{5} = 2\alpha^2$ and so

$$\alpha^2 = \left(\frac{1+\sqrt{5}}{\sqrt{2}}\right)^2.$$

Consequently, $\alpha = \pm (1 + \sqrt{5})/\sqrt{2} \in \mathbb{Q}(\sqrt{2}, \sqrt{5})$ and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{5})$. (3) Let *E* be the splitting field of $f(x) = x^4 - 2x^2 - 3$ over \mathbb{Q} .

- (a) Calculate $[E : \mathbb{Q}]$. Answer: The roots of f are $\pm i$ and $\pm \sqrt{3}$. So $E = \mathbb{Q}(i, \sqrt{3})$. Since $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$ and $[E : \mathbb{Q}(\sqrt{3})] = 2$, we have $[E : \mathbb{Q}] = 4$.
- (b) Classify the Galois group G of E over Q.
 Answer: Since E is a Galois extension of Q, the order of G is [E : Q] = 4. Each automorphism in G sends √3 to a conjugate of √3 over Q, and sends i to a conjugate of i over Q. Moreover, the automorphism is determined by where it sends √3 and i. Thus G = {φ₀, φ₁, φ₂, φ₃} is given by the table:

$$\begin{array}{c|cccc} x & \sqrt{3} & i \\ \phi_0(x) & \sqrt{3} & i \\ \phi_1(x) & -\sqrt{3} & i \\ \phi_2(x) & \sqrt{3} & -i \\ \phi_3(x) & -\sqrt{3} & -i \end{array}$$

 ϕ_0 is the identity function. The other elements of G have order 2, so G is isomorphic to the Klein group $V = \mathbb{Z}_2 \times \mathbb{Z}_2$.

(c) Find all intermediate fields. That is, find all fields F with $\mathbb{Q} \subseteq F \subseteq E$. Answer: Each intermediate field is the fixed field of a subgroup of G. The subgroups and corresponding fields are as below:

Group	Field
$\{\phi_0\}$	E
$\{\phi_0,\phi_1\}$	$\mathbb{Q}(i)$
$\{\phi_0,\phi_2\}$	$\mathbb{Q}(\sqrt{3})$
$\{\phi_0,\phi_3\}$	$\mathbb{Q}(i\sqrt{3})$
G	\mathbb{Q}

For example, the fixed field of $\{\phi_0, \phi_1\} \leq G$ has degree 2 over \mathbb{Q} and contains *i*. Hence the fixed field is $\mathbb{Q}(i)$.