Algebra Comprehensive Exam Spring 2010

(Brookfield, Krebs*, Shaheen)

Answer five (5) questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

For all groups questions below, \mathbb{Z} denotes the group of integers under addition; \mathbb{Z}_n denotes the group of integers modulo n under addition; S_n denotes the symmetric group on n letters; and A_n denotes the alternating group on n letters.

- (A) Let G be a cyclic group. Prove the following:
 - (a) If G is infinite, then G is isomorphic to \mathbb{Z} .
 - (b) If G is finite, then G is isomorphic to \mathbb{Z}_n for some n. Answer: Fraleigh, Theorem 6.10, p. 63.
- (B) Suppose G is a nonabelian group with order p^3 , where p is a prime. Show that the commutator subgroup of G has order p. You may use the following two facts without proving them: (i) If G/Z is cyclic, where Z is the center of G, then G is abelian. (ii) If a group Q has order p^2 , then Q is abelian.

Answer: [See S04] Let Z = Z(G) be the commutator subgroup of G. The order of Z must divide p^3 so |Z| is 1, p, p^2 or p^3 .

- (a) If $|Z| = p^3$, then G = Z is abelian, contrary to hypothesis.
- (b) If $|Z| = p^2$, then G/Z is cyclic of order p. By the quoted theorem this implies that G is abelian and so Z = G—a contradiction.
- (c) If |Z| = 1, then this contradicts the theorem that the center of a nontrivial *p*-group is nontrivial (Fraleigh, Theorem 37.4, p. 329).

We have eliminated all possibilities for the order of the commutator except |Z| = p.

(C) Suppose that ϕ is a surjective group homomorphism from S_n to \mathbb{Z}_2 with kernel G. Show that $G = A_n$. [Hint: the set of all transpositions forms a conjugacy class in S_n .]

Answer: Let a and b be transpositions. Since the transpositions form a single conjugacy class, we have $a = gbg^{-1}$ for some $g \in S_n$. Mapping this equation to the abelian group \mathbb{Z}_2 we get

$$\phi(a) = \phi(g)\phi(b)\phi(g)^{-1} = \phi(b).$$

Thus all transpositions get sent to the same element of \mathbb{Z}_2 .

If $\phi(a) = 0$ for all transpositions $a \in S_n$, then, because every element of S_n is a product of transpositions, the kernel of ϕ is S_n , contrary to assumption.

Hence we have $\phi(a) = 1$ for all transpositions $a \in S_n$. Now, if $g \in S_n$ is a product of an even number of transpositions, then $\phi(g)$ is the sum of an even number of 1s, and so $\phi(g) = 0$. And, if $g \in S_n$ is a product of an odd number of transpositions, then $\phi(g)$ is the sum of an odd number of 1s, and so $\phi(g) = 1$. In other words, the kernel of ϕ is A_n , and $G = A_n$.

Rings

For all rings questions below, \mathbb{Z}_n denotes the ring of integers modulo n.

(A) Consider the ring \mathbb{Z}_n where $n \geq 2$. Let *I* be a subset of \mathbb{Z}_n . Prove that *I* is an ideal of \mathbb{Z}_n if and only if

$$I = \langle k \rangle = \{ak \mid a \in \mathbb{Z}\}$$

for some $k \in \mathbb{Z}_n$.

Answer: Since $I = \{ak \mid a \in \mathbb{Z}\}$ is closed under subtraction and multiplication by elements of \mathbb{Z}_n , I is an ideal. (Alternatively, since we are given that $I = \langle k \rangle$ which means that I is, by definition, the smallest **ideal** containing k, there is nothing to prove in this direction.)

Conversely, let J be an ideal of \mathbb{Z}_n . If $J = \{0\}$, then setting k = 0, J has the claimed form. If $J \neq \{0\}$, let k be the least nonzero number in J. Then $\langle k \rangle \subseteq J$ is clear. For the opposite inclusion, suppose that $a \in J$. Then a = qk + r for some integers q, r such that $0 \leq r < k$. Because r = a - qk with $a, k \in J$ we have $r \in J$. By the minimality of k, this is possible only if r = 0. In this circumstance, $a = qk \in \langle k \rangle$. This shows that $J = \langle k \rangle$ for some $k \in \mathbb{Z}_n$.

- (B) Prove that Z₉ is not isomorphic to a direct product of fields. [Hint: Count zero-divisors.]
 Answer: The only direct product of fields that has 9 elements is Z₃ × Z₃. Since Z₉ has two zero divisors, namely, {3,6}, whereas Z₃ × Z₃ has four zero divisors, namely {(1,0), (2,0), (0,1), (0,2)}, these rings cannot be isomorphic.
- (C) Let R be a ring with identity 1 and $a, b \in R$ such that ab = 1. Let

$$X = \{ x \in R \mid ax = 1 \}.$$

Show the following.

- (a) If $x \in X$, then $b + 1 xa \in X$.
- (b) If $\phi : X \to X$ is defined by $\phi(x) = b + 1 xa$ for $x \in X$, then ϕ is injective (one-to-one).
- (c) X contains either exactly one element or infinitely many elements. [Hint: Consider two cases, depending on whether ba = 1 or $ba \neq 1$. In the case where $ba \neq 1$, show that b is not in the image of ϕ .]

Answer: [See S07] Note: We are not assuming that R is commutative. The published exam has a typo that has been corrected here.

(a) If $x \in X$, then ax = 1. Consequently,

$$a(b+1-xa) = ab + a - axa = 1 + a - 1a = 1,$$

and so $b + 1 - xa \in X$.

- (b) Suppose that x₁, x₂ ∈ X satisfy φ(x₁) = φ(x₂). Then b+1-x₁a = b+1-x₂a. Canceling b+1 from this equation gives x₁a = x₂a. Then multiplying by b on the right and using ab = 1 gives x₁ = x₂. Thus φ is injective.
- (c) Note first that, since ab = 1, we have $b \in X$. If X is infinite, we are done. Otherwise, suppose that X is finite. Since $\phi : X \to X$ is injective, this implies that ϕ is surjective, and so there is some $x_b \in X$ such that $\phi(x_b) = b$, that is, $b+1-x_ba = b$. Canceling from this we get $x_ba = 1$. Multiplying this on the right by b and using ab = 1 gives $x_b = b$. So we have $\phi(b) = b$, and ba = 1. Now we show that b is the only element of X. If $x \in X$, then ax = 1. Multiplying on the right by b and using ba = 1 gives x = b. Thus $X = \{b\}$.

Notice that what we have proved is that if $a \in R$ has an inverse b on one side, then either b is a two-sided inverse of a (i.e. ab = ba = 1), or a has infinitely many one-sided inverses.

Fields

For all fields questions below, \mathbb{Z}_n denotes the ring of integers modulo n; \mathbb{Q} denotes the ring of rational numbers; and \mathbb{C} denotes the ring of complex numbers.

(A) Let p be a prime and $n \ge 1$. Prove that there exists a field of size p^n . [Hint: Consider the polynomial $x^{p^n} - x$ over \mathbb{Z}_p .]

Answer: [See S14 and S09] Fraleigh Lemma 33.10, p. 303.

(B) Let $\sigma = e^{2\pi i/7} \in \mathbb{C}$, a primitive seventh root of unity, and $F = \mathbb{Q}(\sigma)$. Describe the Galois group of F over \mathbb{Q} . Explain what theorems you are using.

Answer: The minimum polynomial for σ over \mathbb{Q} is the seventh cyclotomic polynomial $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. The other zeros of this polynomial are σ^k with k = 2, 3, 4, 5, 6, and these zeros are all in F. This means that F is the splitting field for Φ_7 , and that F is Galois over \mathbb{Q} .

Each automorphism of F over \mathbb{Q} sends σ to one of its conjugates and is uniquely determined by this conjugate. Thus there six automorphisms. Let ϕ be the automorphism of F over \mathbb{Q} that sends σ to σ^3 . Then $\phi^2(\sigma) = \phi(\sigma^3) = \sigma^2$, $\phi^3(\sigma) = \sigma^6$, $\phi^4(\sigma) = \sigma^4$, $\phi^5(\sigma) = \sigma^5$ and $\phi^6(\sigma) = \sigma$. Thus each of the six automorphisms is a power of ϕ . In other words, the Galois group is cyclic of order 6 with ϕ as generator.

(C) Find the minimal polynomial of $\sqrt[3]{2+\sqrt{2}}$ over \mathbb{Q} , and prove it is the minimal polynomial.

Answer: Set $\alpha = \sqrt[3]{2 + \sqrt{2}}$. Then $\alpha^3 = 2 + \sqrt{2}$ and $(\alpha^3 - 2)^2 = 2$. Thus α is a root of the polynomial $f(x) = (x^3 - 2)^2 - 2 = x^6 - 4x^3 + 2$. This polynomial is irreducible over \mathbb{Q} by Eisenstein with p = 2 and so f is the minimal polynomial for α over \mathbb{Q} .