
Algebra Comprehensive Exam
Spring 2010

(Brookfield, Krebs∗, Shaheen)

Answer five (5) questions only. You must answer at least one from each of groups, rings,

and fields. Be sure to show enough work that your answers are adequately supported.

Groups

For all groups questions below, Z denotes the group of integers under addition; Zn denotes

the group of integers modulo n under addition; Sn denotes the symmetric group on n letters;

and An denotes the alternating group on n letters.

(A) Let G be a cyclic group. Prove the following:

(a) If G is infinite, then G is isomorphic to Z.

(b) If G is finite, then G is isomorphic to Zn for some n.

Answer: Fraleigh, Theorem 6.10, p. 63.

(B) Suppose G is a nonabelian group with order p3, where p is a prime. Show that

the commutator subgroup of G has order p. You may use the following two facts

without proving them: (i) If G/Z is cyclic, where Z is the center of G, then G is

abelian. (ii) If a group Q has order p2, then Q is abelian.

Answer: [See S04] Let Z = Z(G) be the commutator subgroup of G. The order of

Z must divide p3 so |Z| is 1, p, p2 or p3.

(a) If |Z| = p3, then G = Z is abelian, contrary to hypothesis.

(b) If |Z| = p2, then G/Z is cyclic of order p. By the quoted theorem this implies

that G is abelian and so Z = G—a contradiction.

(c) If |Z| = 1, then this contradicts the theorem that the center of a nontrivial

p-group is nontrivial (Fraleigh, Theorem 37.4, p. 329).

We have eliminated all possibilities for the order of the commutator except |Z| = p.

(C) Suppose that φ is a surjective group homomorphism from Sn to Z2 with kernel G.

Show that G = An. [Hint: the set of all transpositions forms a conjugacy class in

Sn.]

Answer: Let a and b be transpositions. Since the transpositions form a single

conjugacy class, we have a = gbg−1 for some g ∈ Sn. Mapping this equation to the

abelian group Z2 we get

φ(a) = φ(g)φ(b)φ(g)−1 = φ(b).

Thus all transpositions get sent to the same element of Z2.

If φ(a) = 0 for all transpositions a ∈ Sn, then, because every element of Sn is a

product of transpositions, the kernel of φ is Sn, contrary to assumption.

Hence we have φ(a) = 1 for all transpositions a ∈ Sn. Now, if g ∈ Sn is a product

of an even number of transpositions, then φ(g) is the sum of an even number of 1s,

and so φ(g) = 0. And, if g ∈ Sn is a product of an odd number of transpositions,

then φ(g) is the sum of an odd number of 1s, and so φ(g) = 1. In other words, the

kernel of φ is An, and G = An.

Rings

For all rings questions below, Zn denotes the ring of integers modulo n.
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(A) Consider the ring Zn where n ≥ 2. Let I be a subset of Zn. Prove that I is an ideal

of Zn if and only if

I = 〈k〉 = {ak | a ∈ Z}

for some k ∈ Zn.

Answer: Since I = {ak | a ∈ Z} is closed under subtraction and multiplication by

elements of Zn, I is an ideal. (Alternatively, since we are given that I = 〈k〉 which

means that I is, by definition, the smallest ideal containing k, there is nothing to

prove in this direction.)

Conversely, let J be an ideal of Zn. If J = {0}, then setting k = 0, J has the

claimed form. If J 6= {0}, let k be the least nonzero number in J . Then 〈k〉 ⊆ J

is clear. For the opposite inclusion, suppose that a ∈ J . Then a = qk + r for

some integers q, r such that 0 ≤ r < k. Because r = a − qk with a, k ∈ J we have

r ∈ J . By the minimality of k, this is possible only if r = 0. In this circumstance,

a = qk ∈ 〈k〉. This shows that J = 〈k〉 for some k ∈ Zn.

(B) Prove that Z9 is not isomorphic to a direct product of fields. [Hint: Count zero-

divisors.]

Answer: The only direct product of fields that has 9 elements is Z3 × Z3. Since Z9

has two zero divisors, namely, {3, 6}, whereas Z3×Z3 has four zero divisors, namely

{(1, 0), (2, 0), (0, 1), (0, 2)}, these rings cannot be isomorphic.

(C) Let R be a ring with identity 1 and a, b ∈ R such that ab = 1. Let

X = {x ∈ R | ax = 1}.

Show the following.

(a) If x ∈ X, then b+ 1− xa ∈ X.

(b) If φ : X → X is defined by φ(x) = b + 1 − xa for x ∈ X, then φ is injective

(one-to-one).

(c) X contains either exactly one element or infinitely many elements. [Hint: Con-

sider two cases, depending on whether ba = 1 or ba 6= 1. In the case where

ba 6= 1, show that b is not in the image of φ.]

Answer: [See S07] Note: We are not assuming that R is commutative. The published

exam has a typo that has been corrected here.

(a) If x ∈ X, then ax = 1. Consequently,

a(b+ 1− xa) = ab+ a− axa = 1 + a− 1a = 1,

and so b+ 1− xa ∈ X.

(b) Suppose that x1, x2 ∈ X satisfy φ(x1) = φ(x2). Then b+ 1−x1a = b+ 1−x2a.

Canceling b+ 1 from this equation gives x1a = x2a. Then multiplying by b on

the right and using ab = 1 gives x1 = x2. Thus φ is injective.

(c) Note first that, since ab = 1, we have b ∈ X. If X is infinite, we are done.

Otherwise, suppose that X is finite. Since φ : X → X is injective, this implies

that φ is surjective, and so there is some xb ∈ X such that φ(xb) = b, that is,

b + 1 − xba = b. Canceling from this we get xba = 1. Multiplying this on the

right by b and using ab = 1 gives xb = b. So we have φ(b) = b, and ba = 1.

Now we show that b is the only element of X. If x ∈ X, then ax = 1. Multi-

plying on the right by b and using ba = 1 gives x = b. Thus X = {b}.
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Notice that what we have proved is that if a ∈ R has an inverse b on one side, then

either b is a two-sided inverse of a (i.e. ab = ba = 1), or a has infinitely many

one-sided inverses.

Fields

For all fields questions below, Zn denotes the ring of integers modulo n; Q denotes the ring

of rational numbers; and C denotes the ring of complex numbers.

(A) Let p be a prime and n ≥ 1. Prove that there exists a field of size pn. [Hint:

Consider the polynomial xp
n − x over Zp.]

Answer: [See S14 and S09] Fraleigh Lemma 33.10, p. 303.

(B) Let σ = e2πi/7 ∈ C, a primitive seventh root of unity, and F = Q(σ). Describe the

Galois group of F over Q. Explain what theorems you are using.

Answer: The minimum polynomial for σ over Q is the seventh cyclotomic polyno-

mial Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1. The other zeros of this polynomial

are σk with k = 2, 3, 4, 5, 6, and these zeros are all in F . This means that F is the

splitting field for Φ7, and that F is Galois over Q.

Each automorphism of F over Q sends σ to one of its conjugates and is uniquely

determined by this conjugate. Thus there six automorphisms. Let φ be the auto-

morphism of F over Q that sends σ to σ3. Then φ2(σ) = φ(σ3) = σ2, φ3(σ) = σ6,

φ4(σ) = σ4, φ5(σ) = σ5 and φ6(σ) = σ. Thus each of the six automorphisms is a

power of φ. In other words, the Galois group is cyclic of order 6 with φ as generator.

(C) Find the minimal polynomial of
3
√

2 +
√

2 over Q, and prove it is the minimal

polynomial.

Answer: Set α =
3
√

2 +
√

2. Then α3 = 2 +
√

2 and (α3 − 2)2 = 2. Thus α is a

root of the polynomial f(x) = (x3 − 2)2 − 2 = x6 − 4x3 + 2. This polynomial is

irreducible over Q by Eisenstein with p = 2 and so f is the minimal polynomial for

α over Q.


