
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2009

Brookfield, Chabot, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Be sure to show enough work that your answers are ade-
quately supported.

Notation: Let Q denote the rational numbers.

Groups

(1) Show that all groups of order 275 are solvable.
Answer: Let G be a group of order 275 = 52 · 11. By Sylow, n11 divides
275 and n11 is congruent to 1 modulo 11. The only number satisfying these
conditions is n11 = 1, and so G has a normal subgroup N of order 11. Since
N has prime order, N is abelian (cyclic even), and G/N has order 52 so is
abelian. This means that G is solvable.

(2) Let a, b and c be elements of a group G with identity element e. For each of
the following statements, give either a proof or a concrete counterexample.
(a) If a has order 5 and a3b = ba3, then ab = ba.
(b) If abc = e, then cab = e.
(c) If abc = e, then bac = e.
Answer:

(a) ab = a6b = a3a3b = a3ba3 = ba3a3 = ba6 = ba.
(b) cab = ceab = c(abc)ab = (cab)2, so by cancellation, cab = e.
(c) If both abc = e and bac = e are true, then ab = ba = c−1. For a

counterexample we need two noncommuting group elements a and b and
then we set c = (ab)−1. For example, a = (1, 2), b = (1, 3) and c = (1, 2, 3)
in S3.

(3) Suppose that φ : G→ G′ is a group homomorphism.
(a) Prove that ker(φ) is a normal subgroup of G. (Prove both the normality

and subgroup claims.)
(b) Prove that G/ ker(φ) is isomorphic to φ[G], where φ[G] is the image of G

under the map φ.
Answer: Fraleigh: Corollary 13.20, p. 132 and Theorem 14.1, p. 137

Rings

(1) Suppose that R is a Principal Ideal Domain and I is a prime ideal of R. Prove
that R/I is a Principal Ideal Domain.
Answer: We have two things to prove:
(a) R/I is a domain: Suppose that a + I, b + I ∈ R/I for some a, b ∈ R

satisfy (a+I)(b+I) = (0+I). Then ab+I = (a+I)(b+I) = (0+I) = I
and so ab ∈ I. Since I is prime we have a ∈ I or b ∈ I. If a ∈ I, then
(a + I) = (0 + I), and, if b ∈ I. then (b + I) = (0 + I). Thus R/I is a
domain.

(b) R/I is a PID: Let φ : R → R/I be the natural homomorphism. Let K
be an ideal of R/I. Then the inverse image of K in R, namely,

φ−1(K) = {r ∈ R | φ(r) ∈ K}
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is an ideal of R. (Easy to check this.). Since R is a PID, φ−1(K) = 〈r〉
for some r ∈ R. Then K = 〈φ(r)〉 is principal.

(2) Prove that every Euclidean Domain is a Principal Ideal Domain.
Answer: Fraleigh: Theorem 46.4, p. 402. Dummit and Foote, p. 273.

(3) For this question, all rings are commutative with 1 6= 0 and ring homomor-
phisms map 1 to 1. Let R be a ring. Show that R is a field if and only if every
ring homomorphism φ : R→ S is injective (one-to-one).
Answer: Suppose that R is a field, and φ : R → S is a ring homomorphism.
We show that φ is injective, equivalently, kerφ = {0}. Suppose that φ(r) = 0
for some r ∈ R. If r 6= 0, then r has an inverse and so

1 = φ(1) = φ(rr−1) = φ(r)φ(r−1) = 0φ(r−1) = 0.

This contradiction means that r must be zero. Hence kerφ = {0} and φ is
injective.

Now suppose that every ring homomorphism φ : R → S is injective. Sup-
pose that r ∈ R is not zero. Consider the natural homomorphism π : R →
R/(r) with kerπ = (r). Since r is a nonzero element of kerπ, π is not
injective, and, by hypothesis, π must be the zero homomorphism. Hence
kerπ = (r) = R. In particular, since 1 ∈ R, there is some element s ∈ R such
that rs = 1 and so r is a unit.

We have proved that all nonzero elements of R are units, and so R is a field.

OR

Since every ideal of R is the kernel of a homomorphism, there are exactly two
ideals: The kernel of the zero homomorphism, namely R, and the kernel of
any injective homomorphism, namely {0}. Since R has only two ideals, it is
a field.

Fields

(1) Let E be the splitting field of p(x) = x8 − 2 over Q, and assume p(α) = 0.
Let ω = e2πi/8 be a primitive 8th root of unity. FACT: [Q(ω) : Q] = 4.
(a) Explain why [Q(α) : Q] = 8.
(b) Prove that [E : Q] = 16.
Answer:

(a) p is irreducible over Q by Eisenstein with prime 2. So [Q(α) : Q] =
deg(α,Q) = deg p = 8.

(b) By (I hope) a familiar argument, E = Q( 8
√

2, ω) and

[E : Q] = [Q(
8
√

2, ω) : Q(
8
√

2)] [Q(
8
√

2) : Q].

By (a), [Q( 8
√

2) : Q] = 8. Since Q( 8
√

2) is contained in the reals and ω is
not real, [Q( 8

√
2, ω) : Q( 8

√
2)] > 1.

Since ω is a primitive 8th root of unity, it is a root of x4 + 1 (the 8th
cyclotomic polynomial), or ω = e2πik/8 for some k ∈ {1, 3, 5, 7}, or ω =
(±1± i)/

√
2. From any of these descriptions of ω its is possible to show

that (ω2 + 1)2 = 2ω2. Thus ω2 ±
√

2ω + 1 = 0 for some choice of sign.
In particular, ω is a root of a degree 2 polynomial, x2 ±

√
2x + 1, with

coefficients in Q(
√

2) ⊆ Q( 8
√

2). This implies [Q( 8
√

2, ω) : Q( 8
√

2)] ≤ 2.
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Combining the inequalities we get [Q( 8
√

2, ω) : Q( 8
√

2)] = 2 and [E : Q] =
[Q( 8
√

2, ω) : Q( 8
√

2)] [Q( 8
√

2) : Q] = 2 · 8 = 16.
(2) Let E = Q(

√
2, 3
√

2).
(a) Show that [E : Q] = 6.
(b) If K is a field with Q ⊆ K ⊆ E, show that K is one of Q, Q(

√
2), Q( 3

√
2)),

or E.
(c) Prove that E = Q(

√
2 + 3
√

2)).
Answer:

(a) By Eisenstein’s criterion, the polynomials x2−2 and x3−2 are irreducible
over Q, and so [Q(

√
2) : Q] = 2 and [Q( 3

√
2) : Q] = 3. In particular,

since E contains Q(
√

2) and Q( 3
√

2) and since 2 and 3 are relatively
prime, it follows that [E : Q] is divisible by 2 · 3 = 6. On the other
hand, E = Q( 3

√
2)(
√

2), so [E : Q( 3
√

2)] ≤ 2 and hence [E : Q] = [E :
Q( 3
√

2)][Q( 3
√

2) : Q] ≤ 6. Thus [E : Q] = 6.

(b) If Q ⊆ K ⊆ E, then [K : Q] divides [E : Q] = 6 and thus [K : Q] = 1, 2, 3
or 6. If [K : Q] = 1, then K = Q and if [K : Q] = 6, then K = E.

Suppose [K : Q] = 2. Then Q ⊆ K ⊆ K(
√

2) ⊆ E as in the diagram:

Q ⊆ K ⊆ K(
√

2) ⊆ E

2 ? ?

2 3

Since
√

2 is a root of x2 − 2 ∈ K[x], we have [K(
√

2) : K] ≤ 2. But
[K(
√

2) : K] also divides [E : K] = 3. Hence [K(
√

2) : K] = 1, K(
√

2) =
K and

√
2 ∈ K and K ⊆ Q(

√
2). In particular, since [Q(

√
2) : Q] = [K :

Q] = 2 we have K = Q(
√

2).

Finally, suppose that [K : Q] = 3. Then Q ⊆ K ⊆ K( 3
√

2) ⊆ E as in the
diagram:

Q ⊆ K ⊆ K( 3
√

2) ⊆ E

3 ? ?

3 2

Then [E : K] = 2, and because 3
√

2 ∈ E, the degree of 3
√

2 is 1 or 2 over K.
This means that the polynomial x3− 2 ∈ K[x] is reducible over K which
in turn means that this polynomial has a root in K. But K ⊆ E ⊆ R,
and the only real root of x3 − 2 is 3

√
2, so we must have 3

√
2 ∈ K. This

means that Q( 3
√

2) ⊆ K, and since [Q( 3
√

2) : Q] = [K : Q] = 3, we
conclude that K = Q( 3

√
2).

Aside: This claim can also be proved by applying Galois theory to the
splitting field of x6 − 2, a field that contains E.

(c) Let L = Q(
√

2+ 3
√

2) so that Q ⊆ L ⊆ E and note that there are only four
possibilities for L. If L = Q(

√
2) , then

√
2 and

√
2 + 3
√

2 are in Q(
√

2),
so Q(

√
2) ⊇ Q(

√
2, 3
√

2) = E, a contradiction. Similarly, L cannot be
contained in Q( 3

√
2). Thus, by (b), L = E.
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OR
Let α =

√
2+ 3
√

2. Then cubing both sides of α−
√

2 = 3
√

2 and solving for√
2 we get

√
2 = (α3 + 6α− 2)/(3α2 + 2) ∈ Q(α). Note that 3α2 + 2 6= 0

because α ∈ R. Since
√

2 ∈ Q(α), we have 3
√

2 = α−
√

2 is in Q(α) too.
This implies Q(

√
2, 3
√

2) ⊆ Q(
√

2 + 3
√

2). The opposite inclusion is clear
so we have proven that E = Q(

√
2 + 3
√

2).
(3) Let p be a prime and n ≥ 1. Prove that there exists a finite field of size pn.

Answer: [See S14 and S10] Fraleigh Lemma 33.10, p. 303.


