ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2009

Brookfield, Chabot, Shaheen*

<u>Directions</u>: Answer 5 questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

<u>Notation</u>: Let \mathbb{Q} denote the rational numbers.

Groups

- (1) Show that all groups of order 275 are solvable.
 - Answer: Let G be a group of order $275 = 5^2 \cdot 11$. By Sylow, n_{11} divides 275 and n_{11} is congruent to 1 modulo 11. The only number satisfying these conditions is $n_{11} = 1$, and so G has a normal subgroup N of order 11. Since N has prime order, N is abelian (cyclic even), and G/N has order 5^2 so is abelian. This means that G is solvable.
- (2) Let a, b and c be elements of a group G with identity element e. For each of the following statements, give either a proof or a concrete counterexample.
 - (a) If a has order 5 and $a^{3}b = ba^{3}$, then ab = ba.
 - (b) If abc = e, then cab = e.
 - (c) If abc = e, then bac = e.

Answer:

- (a) $ab = a^6b = a^3a^3b = a^3ba^3 = ba^3a^3 = ba^6 = ba$.
- (b) $cab = ceab = c(abc)ab = (cab)^2$, so by cancellation, cab = e.
- (c) If both abc = e and bac = e are true, then $ab = ba = c^{-1}$. For a counterexample we need two noncommuting group elements a and b and then we set $c = (ab)^{-1}$. For example, a = (1, 2), b = (1, 3) and c = (1, 2, 3) in S_3 .
- (3) Suppose that $\phi: G \to G'$ is a group homomorphism.
 - (a) Prove that $\ker(\phi)$ is a normal subgroup of G. (Prove both the normality and subgroup claims.)
 - (b) Prove that $G/\ker(\phi)$ is isomorphic to $\phi[G]$, where $\phi[G]$ is the image of G under the map ϕ .

Answer: Fraleigh: Corollary 13.20, p. 132 and Theorem 14.1, p. 137

Rings

(1) Suppose that R is a Principal Ideal Domain and I is a prime ideal of R. Prove that R/I is a Principal Ideal Domain.

Answer: We have two things to prove:

- (a) R/I is a domain: Suppose that $a + I, b + I \in R/I$ for some $a, b \in R$ satisfy (a+I)(b+I) = (0+I). Then ab+I = (a+I)(b+I) = (0+I) = Iand so $ab \in I$. Since I is prime we have $a \in I$ or $b \in I$. If $a \in I$, then (a+I) = (0+I), and, if $b \in I$. then (b+I) = (0+I). Thus R/I is a domain.
- (b) R/I is a PID: Let $\phi : R \to R/I$ be the natural homomorphism. Let K be an ideal of R/I. Then the inverse image of K in R, namely,

$$\phi^{-1}(K) = \{ r \in R \mid \phi(r) \in K \}$$

is an ideal of R. (Easy to check this.). Since R is a PID, $\phi^{-1}(K) = \langle r \rangle$ for some $r \in R$. Then $K = \langle \phi(r) \rangle$ is principal.

- (2) Prove that every Euclidean Domain is a Principal Ideal Domain.
 - Answer: Fraleigh: Theorem 46.4, p. 402. Dummit and Foote, p. 273.
- (3) For this question, all rings are commutative with $1 \neq 0$ and ring homomorphisms map 1 to 1. Let R be a ring. Show that R is a field if and only if every ring homomorphism $\phi : R \to S$ is injective (one-to-one).

Answer: Suppose that R is a field, and $\phi : R \to S$ is a ring homomorphism. We show that ϕ is injective, equivalently, ker $\phi = \{0\}$. Suppose that $\phi(r) = 0$ for some $r \in R$. If $r \neq 0$, then r has an inverse and so

$$1 = \phi(1) = \phi(rr^{-1}) = \phi(r)\phi(r^{-1}) = 0\phi(r^{-1}) = 0.$$

This contradiction means that r must be zero. Hence ker $\phi = \{0\}$ and ϕ is injective.

Now suppose that every ring homomorphism $\phi : R \to S$ is injective. Suppose that $r \in R$ is not zero. Consider the natural homomorphism $\pi : R \to R/(r)$ with ker $\pi = (r)$. Since r is a nonzero element of ker π , π is not injective, and, by hypothesis, π must be the zero homomorphism. Hence ker $\pi = (r) = R$. In particular, since $1 \in R$, there is some element $s \in R$ such that rs = 1 and so r is a unit.

We have proved that all nonzero elements of R are units, and so R is a field.

OR

Since every ideal of R is the kernel of a homomorphism, there are exactly two ideals: The kernel of the zero homomorphism, namely R, and the kernel of any injective homomorphism, namely $\{0\}$. Since R has only two ideals, it is a field.

Fields

- (1) Let *E* be the splitting field of $p(x) = x^8 2$ over \mathbb{Q} , and assume $p(\alpha) = 0$. Let $\omega = e^{2\pi i/8}$ be a primitive 8th root of unity. FACT: $[\mathbb{Q}(\omega) : \mathbb{Q}] = 4$.
 - (a) Explain why $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 8$.
 - (b) Prove that $[E:\mathbb{Q}] = 16$.

Answer:

- (a) p is irreducible over \mathbb{Q} by Eisenstein with prime 2. So $[\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg(\alpha, \mathbb{Q}) = \deg p = 8$.
- (b) By (I hope) a familiar argument, $E = \mathbb{Q}(\sqrt[8]{2}, \omega)$ and

$$[E:\mathbb{Q}] = [\mathbb{Q}(\sqrt[8]{2},\omega):\mathbb{Q}(\sqrt[8]{2})] [\mathbb{Q}(\sqrt[8]{2}):\mathbb{Q}].$$

By (a), $[\mathbb{Q}(\sqrt[8]{2}):\mathbb{Q}] = 8$. Since $\mathbb{Q}(\sqrt[8]{2})$ is contained in the reals and ω is not real, $[\mathbb{Q}(\sqrt[8]{2}, \omega):\mathbb{Q}(\sqrt[8]{2})] > 1$.

Since ω is a primitive 8th root of unity, it is a root of $x^4 + 1$ (the 8th cyclotomic polynomial), or $\omega = e^{2\pi i k/8}$ for some $k \in \{1, 3, 5, 7\}$, or $\omega = (\pm 1 \pm i)/\sqrt{2}$. From any of these descriptions of ω its is possible to show that $(\omega^2 + 1)^2 = 2\omega^2$. Thus $\omega^2 \pm \sqrt{2}\omega + 1 = 0$ for some choice of sign. In particular, ω is a root of a degree 2 polynomial, $x^2 \pm \sqrt{2}x + 1$, with coefficients in $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[8]{2})$. This implies $[\mathbb{Q}(\sqrt[8]{2}, \omega) : \mathbb{Q}(\sqrt[8]{2})] \leq 2$.

Combining the inequalities we get $[\mathbb{Q}(\sqrt[8]{2},\omega):\mathbb{Q}(\sqrt[8]{2})]=2$ and $[E:\mathbb{Q}]=[\mathbb{Q}(\sqrt[8]{2},\omega):\mathbb{Q}(\sqrt[8]{2}):\mathbb{Q}]=2\cdot 8=16.$

- (2) Let $E = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}).$
 - (a) Show that $[E:\mathbb{Q}] = 6$.
 - (b) If K is a field with $\mathbb{Q} \subseteq K \subseteq E$, show that K is one of \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt[3]{2})$), or E.
 - (c) Prove that $E = \mathbb{Q}(\sqrt{2} + \sqrt[3]{2})).$

Answer:

- (a) By Eisenstein's criterion, the polynomials x² 2 and x³ 2 are irreducible over Q, and so [Q(√2) : Q] = 2 and [Q(³√2) : Q] = 3. In particular, since E contains Q(√2) and Q(³√2) and since 2 and 3 are relatively prime, it follows that [E : Q] is divisible by 2 ⋅ 3 = 6. On the other hand, E = Q(³√2)(√2), so [E : Q(³√2)] ≤ 2 and hence [E : Q] = [E : Q(³√2)][Q(³√2) : Q] ≤ 6. Thus [E : Q] = 6.
- (b) If $\mathbb{Q} \subseteq K \subseteq E$, then $[K : \mathbb{Q}]$ divides $[E : \mathbb{Q}] = 6$ and thus $[K : \mathbb{Q}] = 1, 2, 3$ or 6. If $[K : \mathbb{Q}] = 1$, then $K = \mathbb{Q}$ and if $[K : \mathbb{Q}] = 6$, then K = E.

Suppose $[K : \mathbb{Q}] = 2$. Then $\mathbb{Q} \subseteq K \subseteq K(\sqrt{2}) \subseteq E$ as in the diagram:

Since $\sqrt{2}$ is a root of $x^2 - 2 \in K[x]$, we have $[K(\sqrt{2}) : K] \leq 2$. But $[K(\sqrt{2}) : K]$ also divides [E : K] = 3. Hence $[K(\sqrt{2}) : K] = 1$, $K(\sqrt{2}) = K$ and $\sqrt{2} \in K$ and $K \subseteq \mathbb{Q}(\sqrt{2})$. In particular, since $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = [K : \mathbb{Q}] = 2$ we have $K = \mathbb{Q}(\sqrt{2})$.

Finally, suppose that $[K : \mathbb{Q}] = 3$. Then $\mathbb{Q} \subseteq K \subseteq K(\sqrt[3]{2}) \subseteq E$ as in the diagram:

$$\mathbb{Q} \subseteq K \subseteq K(\sqrt[3]{2}) \subseteq E$$

$$[3] = 2 = 2$$

Then [E:K] = 2, and because $\sqrt[3]{2} \in E$, the degree of $\sqrt[3]{2}$ is 1 or 2 over K. This means that the polynomial $x^3 - 2 \in K[x]$ is reducible over K which in turn means that this polynomial has a root in K. But $K \subseteq E \subseteq \mathbb{R}$, and the only real root of $x^3 - 2$ is $\sqrt[3]{2}$, so we must have $\sqrt[3]{2} \in K$. This means that $\mathbb{Q}(\sqrt[3]{2}) \subseteq K$, and since $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = [K : \mathbb{Q}] = 3$, we conclude that $K = \mathbb{Q}(\sqrt[3]{2})$.

Aside: This claim can also be proved by applying Galois theory to the splitting field of $x^6 - 2$, a field that contains E.

(c) Let $L = \mathbb{Q}(\sqrt{2} + \sqrt[3]{2})$ so that $\mathbb{Q} \subseteq L \subseteq E$ and note that there are only four possibilities for L. If $L = \mathbb{Q}(\sqrt{2})$, then $\sqrt{2}$ and $\sqrt{2} + \sqrt[3]{2}$ are in $\mathbb{Q}(\sqrt{2})$, so $\mathbb{Q}(\sqrt{2}) \supseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = E$, a contradiction. Similarly, L cannot be contained in $\mathbb{Q}(\sqrt[3]{2})$. Thus, by (b), L = E.

OR

Let $\alpha = \sqrt{2} + \sqrt[3]{2}$. Then cubing both sides of $\alpha - \sqrt{2} = \sqrt[3]{2}$ and solving for $\sqrt{2}$ we get $\sqrt{2} = (\alpha^3 + 6\alpha - 2)/(3\alpha^2 + 2) \in \mathbb{Q}(\alpha)$. Note that $3\alpha^2 + 2 \neq 0$ because $\alpha \in \mathbb{R}$. Since $\sqrt{2} \in \mathbb{Q}(\alpha)$, we have $\sqrt[3]{2} = \alpha - \sqrt{2}$ is in $\mathbb{Q}(\alpha)$ too. This implies $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt[3]{2})$. The opposite inclusion is clear so we have proven that $E = \mathbb{Q}(\sqrt{2} + \sqrt[3]{2})$.

(3) Let p be a prime and $n \ge 1$. Prove that there exists a finite field of size p^n . Answer: [See S14 and S10] Fraleigh Lemma 33.10, p. 303.