ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2009
Brookfield, Chabot, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Notation: Let \mathbb{Q} denote the rational numbers.

Groups

(1) Show that all groups of order 275 are solvable.

Answer: Let G be a group of order $275=5^{2} \cdot 11$. By Sylow, n_{11} divides 275 and n_{11} is congruent to 1 modulo 11. The only number satisfying these conditions is $n_{11}=1$, and so G has a normal subgroup N of order 11. Since N has prime order, N is abelian (cyclic even), and G / N has order 5^{2} so is abelian. This means that G is solvable.
(2) Let a, b and c be elements of a group G with identity element e. For each of the following statements, give either a proof or a concrete counterexample.
(a) If a has order 5 and $a^{3} b=b a^{3}$, then $a b=b a$.
(b) If $a b c=e$, then $c a b=e$.
(c) If $a b c=e$, then $b a c=e$.

Answer:
(a) $a b=a^{6} b=a^{3} a^{3} b=a^{3} b a^{3}=b a^{3} a^{3}=b a^{6}=b a$.
(b) $c a b=c e a b=c(a b c) a b=(c a b)^{2}$, so by cancellation, $c a b=e$.
(c) If both $a b c=e$ and $b a c=e$ are true, then $a b=b a=c^{-1}$. For a counterexample we need two noncommuting group elements a and b and then we set $c=(a b)^{-1}$. For example, $a=(1,2), b=(1,3)$ and $c=(1,2,3)$ in S_{3}.
(3) Suppose that $\phi: G \rightarrow G^{\prime}$ is a group homomorphism.
(a) Prove that $\operatorname{ker}(\phi)$ is a normal subgroup of G. (Prove both the normality and subgroup claims.)
(b) Prove that $G / \operatorname{ker}(\phi)$ is isomorphic to $\phi[G]$, where $\phi[G]$ is the image of G under the map ϕ.
Answer: Fraleigh: Corollary 13.20, p. 132 and Theorem 14.1, p. 137
Rings
(1) Suppose that R is a Principal Ideal Domain and I is a prime ideal of R. Prove that R / I is a Principal Ideal Domain.
Answer: We have two things to prove:
(a) R / I is a domain: Suppose that $a+I, b+I \in R / I$ for some $a, b \in R$ satisfy $(a+I)(b+I)=(0+I)$. Then $a b+I=(a+I)(b+I)=(0+I)=I$ and so $a b \in I$. Since I is prime we have $a \in I$ or $b \in I$. If $a \in I$, then $(a+I)=(0+I)$, and, if $b \in I$. then $(b+I)=(0+I)$. Thus R / I is a domain.
(b) R / I is a PID: Let $\phi: R \rightarrow R / I$ be the natural homomorphism. Let K be an ideal of R / I. Then the inverse image of K in R, namely,

$$
\phi^{-1}(K)=\{r \in R \mid \phi(r) \in K\}
$$

is an ideal of R. (Easy to check this.). Since R is a PID, $\phi^{-1}(K)=\langle r\rangle$ for some $r \in R$. Then $K=\langle\phi(r)\rangle$ is principal.
(2) Prove that every Euclidean Domain is a Principal Ideal Domain.

Answer: Fraleigh: Theorem 46.4, p. 402. Dummit and Foote, p. 273.
(3) For this question, all rings are commutative with $1 \neq 0$ and ring homomorphisms map 1 to 1 . Let R be a ring. Show that R is a field if and only if every ring homomorphism $\phi: R \rightarrow S$ is injective (one-to-one).
Answer: Suppose that R is a field, and $\phi: R \rightarrow S$ is a ring homomorphism. We show that ϕ is injective, equivalently, $\operatorname{ker} \phi=\{0\}$. Suppose that $\phi(r)=0$ for some $r \in R$. If $r \neq 0$, then r has an inverse and so

$$
1=\phi(1)=\phi\left(r r^{-1}\right)=\phi(r) \phi\left(r^{-1}\right)=0 \phi\left(r^{-1}\right)=0 .
$$

This contradiction means that r must be zero. Hence $\operatorname{ker} \phi=\{0\}$ and ϕ is injective.

Now suppose that every ring homomorphism $\phi: R \rightarrow S$ is injective. Suppose that $r \in R$ is not zero. Consider the natural homomorphism $\pi: R \rightarrow$ $R /(r)$ with $\operatorname{ker} \pi=(r)$. Since r is a nonzero element of $\operatorname{ker} \pi$, π is not injective, and, by hypothesis, π must be the zero homomorphism. Hence $\operatorname{ker} \pi=(r)=R$. In particular, since $1 \in R$, there is some element $s \in R$ such that $r s=1$ and so r is a unit.

We have proved that all nonzero elements of R are units, and so R is a field.

OR

Since every ideal of R is the kernel of a homomorphism, there are exactly two ideals: The kernel of the zero homomorphism, namely R, and the kernel of any injective homomorphism, namely $\{0\}$. Since R has only two ideals, it is a field.

Fields

(1) Let E be the splitting field of $p(x)=x^{8}-2$ over \mathbb{Q}, and assume $p(\alpha)=0$. Let $\omega=e^{2 \pi i / 8}$ be a primitive 8th root of unity. $\operatorname{FACT}:[\mathbb{Q}(\omega): \mathbb{Q}]=4$.
(a) Explain why $[\mathbb{Q}(\alpha): \mathbb{Q}]=8$.
(b) Prove that $[E: \mathbb{Q}]=16$.

Answer:
(a) p is irreducible over \mathbb{Q} by Eisenstein with prime 2. So $[\mathbb{Q}(\alpha): \mathbb{Q}]=$ $\operatorname{deg}(\alpha, \mathbb{Q})=\operatorname{deg} p=8$.
(b) By (I hope) a familiar argument, $E=\mathbb{Q}(\sqrt[8]{2}, \omega)$ and

$$
[E: \mathbb{Q}]=[\mathbb{Q}(\sqrt[8]{2}, \omega): \mathbb{Q}(\sqrt[8]{2})][\mathbb{Q}(\sqrt[8]{2}): \mathbb{Q}]
$$

By (a), $[\mathbb{Q}(\sqrt[8]{2}): \mathbb{Q}]=8$. Since $\mathbb{Q}(\sqrt[8]{2})$ is contained in the reals and ω is not real, $[\mathbb{Q}(\sqrt[8]{2}, \omega): \mathbb{Q}(\sqrt[8]{2})]>1$.
Since ω is a primitive 8 th root of unity, it is a root of $x^{4}+1$ (the 8 th cyclotomic polynomial), or $\omega=e^{2 \pi i k / 8}$ for some $k \in\{1,3,5,7\}$, or $\omega=$ $(\pm 1 \pm i) / \sqrt{2}$. From any of these descriptions of ω its is possible to show that $\left(\omega^{2}+1\right)^{2}=2 \omega^{2}$. Thus $\omega^{2} \pm \sqrt{2} \omega+1=0$ for some choice of sign. In particular, ω is a root of a degree 2 polynomial, $x^{2} \pm \sqrt{2} x+1$, with coefficients in $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[8]{2})$. This implies $[\mathbb{Q}(\sqrt[8]{2}, \omega): \mathbb{Q}(\sqrt[8]{2})] \leq 2$.

Combining the inequalities we get $[\mathbb{Q}(\sqrt[8]{2}, \omega): \mathbb{Q}(\sqrt[8]{2})]=2$ and $[E: \mathbb{Q}]=$ $[\mathbb{Q}(\sqrt[8]{2}, \omega): \mathbb{Q}(\sqrt[8]{2})][\mathbb{Q}(\sqrt[8]{2}): \mathbb{Q}]=2 \cdot 8=16$.
(2) Let $E=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
(a) Show that $[E: \mathbb{Q}]=6$.
(b) If K is a field with $\mathbb{Q} \subseteq K \subseteq E$, show that K is one of $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt[3]{2}))$, or E.
(c) Prove that $E=\mathbb{Q}(\sqrt{2}+\sqrt[3]{2}))$.

Answer:
(a) By Eisenstein's criterion, the polynomials $x^{2}-2$ and $x^{3}-2$ are irreducible over \mathbb{Q}, and so $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ and $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$. In particular, since E contains $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt[3]{2})$ and since 2 and 3 are relatively prime, it follows that $[E: \mathbb{Q}]$ is divisible by $2 \cdot 3=6$. On the other hand, $E=\mathbb{Q}(\sqrt[3]{2})(\sqrt{2})$, so $[E: \mathbb{Q}(\sqrt[3]{2})] \leq 2$ and hence $[E: \mathbb{Q}]=[E:$ $\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}] \leq 6$. Thus $[E: \mathbb{Q}]=6$.
(b) If $\mathbb{Q} \subseteq K \subseteq E$, then $[K: \mathbb{Q}]$ divides $[E: \mathbb{Q}]=6$ and thus $[K: \mathbb{Q}]=1,2,3$ or 6 . If $[K: \mathbb{Q}]=1$, then $K=\mathbb{Q}$ and if $[K: \mathbb{Q}]=6$, then $K=E$.

Suppose $[K: \mathbb{Q}]=2$. Then $\mathbb{Q} \subseteq K \subseteq K(\sqrt{2}) \subseteq E$ as in the diagram:

Since $\sqrt{2}$ is a root of $x^{2}-2 \in K[x]$, we have $[K(\sqrt{2}): K] \leq 2$. But $[K(\sqrt{2}): K]$ also divides $[E: K]=3$. Hence $[K(\sqrt{2}): K]=1, K(\sqrt{2})=$ K and $\sqrt{2} \in K$ and $K \subseteq \mathbb{Q}(\sqrt{2})$. In particular, since $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=[K$: $\mathbb{Q}]=2$ we have $K=\mathbb{Q}(\sqrt{2})$.

Finally, suppose that $[K: \mathbb{Q}]=3$. Then $\mathbb{Q} \subseteq K \subseteq K(\sqrt[3]{2}) \subseteq E$ as in the diagram:

$$
\begin{aligned}
& \mathbb{Q} \subseteq K \subseteq K(\sqrt[3]{2}) \subseteq E \\
& \left\llcorner_{3} 1-?-\quad ?\right. \\
& \left\llcorner_{3}+\quad-\right.
\end{aligned}
$$

Then $[E: K]=2$, and because $\sqrt[3]{2} \in E$, the degree of $\sqrt[3]{2}$ is 1 or 2 over K. This means that the polynomial $x^{3}-2 \in K[x]$ is reducible over K which in turn means that this polynomial has a root in K. But $K \subseteq E \subseteq \mathbb{R}$, and the only real root of $x^{3}-2$ is $\sqrt[3]{2}$, so we must have $\sqrt[3]{2} \in K$. This means that $\mathbb{Q}(\sqrt[3]{2}) \subseteq K$, and since $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=[K: \mathbb{Q}]=3$, we conclude that $K=\mathbb{Q}(\sqrt[3]{2})$.
Aside: This claim can also be proved by applying Galois theory to the splitting field of $x^{6}-2$, a field that contains E.
(c) Let $L=\mathbb{Q}(\sqrt{2}+\sqrt[3]{2})$ so that $\mathbb{Q} \subseteq L \subseteq E$ and note that there are only four possibilities for L. If $L=\mathbb{Q}(\sqrt{2})$, then $\sqrt{2}$ and $\sqrt{2}+\sqrt[3]{2}$ are in $\mathbb{Q}(\sqrt{2})$, so $\mathbb{Q}(\sqrt{2}) \supseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})=E$, a contradiction. Similarly, L cannot be contained in $\mathbb{Q}(\sqrt[3]{2})$. Thus, by (b), $L=E$.

OR

Let $\alpha=\sqrt{2}+\sqrt[3]{2}$. Then cubing both sides of $\alpha-\sqrt{2}=\sqrt[3]{2}$ and solving for $\sqrt{2}$ we get $\sqrt{2}=\left(\alpha^{3}+6 \alpha-2\right) /\left(3 \alpha^{2}+2\right) \in \mathbb{Q}(\alpha)$. Note that $3 \alpha^{2}+2 \neq 0$ because $\alpha \in \mathbb{R}$. Since $\sqrt{2} \in \mathbb{Q}(\alpha)$, we have $\sqrt[3]{2}=\alpha-\sqrt{2}$ is in $\mathbb{Q}(\alpha)$ too. This implies $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) \subseteq \mathbb{Q}(\sqrt{2}+\sqrt[3]{2})$. The opposite inclusion is clear so we have proven that $E=\mathbb{Q}(\sqrt{2}+\sqrt[3]{2})$.
(3) Let p be a prime and $n \geq 1$. Prove that there exists a finite field of size p^{n}. Answer: [See S14 and S10] Fraleigh Lemma 33.10, p. 303.

