
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2008

Chabot, Krebs, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Be sure to show enough work that your answers are adequately supported.

Notation: If n is a positive integer, let Zn denote the integers modulo n. Let Q denote the
rational numbers.

Groups

1. Show that all groups of order 45 are abelian.

Answer: Let G be a group of order 45. By Sylow, n3 divides 45 and is congruent to
1 modulo 3. The only such number is n3 = 1, and so G contains a normal subgroup
H of order 9. Similarly, n5 divides 45 and is congruent to 1 modulo 5. The only such
number is n5 = 1, and so G contains a normal subgroup K of order 5. As usual,
H ∩K = {1} so H ×K ∼= HK ≤ G. But |H ×K| = 45 = |G| and so H ×K ∼= G.
Since all groups of groups of order 5 and 9 are abelian, G is also abelian.

2. Let G be a cyclic group and H a subgroup of G. Prove that H is cyclic.

Answer: [See S13] Suppose that G = 〈a〉 = {ak | k ∈ Z}. Let H be a subgroup of G. If
H = {1} then H = 〈1〉 and so H is cyclic. Otherwise, H contains at least one element
of the form ak with k ∈ N.

Let n ∈ N be the least natural number such that an ∈ H. Then 〈an〉 ≤ H is automatic.
We prove the opposite inclusion: Suppose that ak ∈ H. Since n ∈ N, there are q, r ∈ Z
such that k = qn+ r and 0 ≤ r < n. Then ar = ak−qn = ak(an)−q. Because an and ak

are in H, so is ar. But, by the choice of n, this is only possible if r = 0. Thus k = qn
and ak = (an)q ∈ 〈an〉. This shows that H = 〈an〉 and that H is cyclic.

3. Let G be a finite group with |G| > 1, and let Inn(G) be the group of inner automor-
phisms of G. Show that if G is isomorphic to Inn(G), then |G| has at least two distinct
prime factors. (Hint: Do a proof by contradiction.)

Answer: Reminder: For g ∈ G the function φg : G→ G defined by φg(x) = gxg−1 for
all x ∈ G is an automorphism of G. φg is called an inner automorphism, the set of
inner automorphisms, Inn(G), is a subgroup of the group of all automorphisms of G.
The function Φ : G→ Inn(G) defined by Φ(g) = φg for all g ∈ G is a surjective group
homomorphism. The kernel of Φ is Z = Z(G), the center of G, so Inn(G) ∼= G/Z. See
Fraleigh, Definition 14.15, p. 141 and Dummit and Foote, Section 4.4, p. 133.

Suppose, to the contrary, that |G| = pn for some prime p and n ∈ N. Since G is
a p-group, the center of G, Z, is nontrivial (Fraleigh, Theorem 37.4, p. 329). From
the above discussion, this means that Φ : G → Inn(G) is not injective, in particular,
|Inn(G)| = |G|/|Z| < |G|. Hence Inn(G) and G cannot be isomorphic.



Rings

1. Let p be a prime number. Let D : Zp → Zp be a function such that D(a · b) =
a ·D(b) + b ·D(a) for all a, b ∈ Zp. Prove that D is the zero map.

Answer: Lemma: For all a ∈ Zp, D(an) = nan−1D(a). Proof: By induction. For
n = 1, the claim is clear. Suppose that the claim is true for some n. Then

D(an+1) = D(a ·an) = a ·D(an)+an ·D(a) = a(nan−1D(a))+an ·D(a) = (n+1)anD(a)

which proves the claim in the next case.

To finished the question we use the facts that ap = a and pa = 0 for all a ∈ Zp:

D(a) = D(ap) = pap−1D(a) = 0.

2. Let D be a Euclidean domain and a, b, c ∈ D. Prove:

(a) If a divides bc and GCD(a, b) = 1, then a divides c.

(b) If a is irreducible, then a is prime.

Answer:

(a) Suppose that GCD(a, b) = 1. This means that that if d is a common divisor of a
and b, then d divides 1, that is d is a unit of D (Fraleigh p. 395). Since Euclideans
domains are PIDs, there is some e ∈ D such that Da + Db = De. Then a ∈ De
and b ∈ De which means that e is a common divisor of a and b. By assumption e
is a unit and so Da + Db = De = D. In particular, there are x, y ∈ D such that
ax+ by = 1 (See also Dummit and Foote, Theorem 4, p. 275). Hence, if a divides
bc, then a divides bcy + acx = c.

(b) Suppose that a is irreducible. This means that a is not a unit, but, if a = bc, then
either b is a unit or c is a unit. To show that a is prime we need to show that if
a divides bc, then either a divides b or a divides c.

Suppose that a divides bc. If a divides b we are done. Otherwise, a does not
divide b. Let d be a common divisor of a and b. Then a = de for some e ∈ D.
Since a is irreducible, either e or d is a unit. But if e is a unit, then a divides d
(ae−1 = dee−1 = d) which implies that a divides b contrary to assumption. This
means that d is a unit. Since the only common divisors of a and b are units,
GCD(a, b) = 1, then, by (1), a divides c.

3. Let R be a commutative ring with identity 1. Prove that an ideal M is maximal if and
only if R/M is a field.

Answer: Fraleigh, Theorem 27.9, p. 247. Dummit and Foote, Proposition 12, p. 254.
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Fields

1. Let Q be the field of rationals and let p(x) = x3 − 4x+ 5. Assume α is a root of p(x).

(a) Prove that p(x) is irreducible over Q.

(b) Find a, b, c ∈ Q such that (α + 1)−1 = a+ bα + cα2.

Answer:

(a) By the Rational Zeros Theorem (or Fraleigh, Corollary 23.12, p. 215), the only
possible rational zeros of p are ±5 and ±1. It is easy to check that these integers
are not, in fact, zeros of p and so p has no rational zeros and is irreducible over Q.

(b) Dividing p by x + 1 using long division we get p(x) = (x2 − x − 3)(x + 1) + 8.
Setting x = α in this and using p(α) = 0, we get 0 = (α2 − α − 3)(α + 1) + 8.
This can be written as

1

α + 1
= −1

8
(α2 − α− 3).

2. Let F be a field. Let G be a finite subgroup of the group of units of F . Prove that
G is cyclic. (Hint: Do a proof by contraction. First show that G is a finite abelian
group. To get a contradiction, find a positive integer n such that the polynomial xn−1
has more than n zeroes. You will need to use a major theorem about finite abelian
groups.)

Answer: Dummit and Foote, Proposition 18, p. 314. Since multiplication in F is
commutative, G is an abelian group. By the Classification Theorem for Finite Abelian
Groups, G is isomorphic to a direct product of cyclic groups:

G ∼= Zpa11 × Zpa22 × · · · × Zpakk

where p1, p2, . . . , pk are prime and a1, a2, . . . , ak ∈ N. If there is only one prime, or if
all the primes are distinct, then G is cyclic. If G is not cyclic, then at least two of the
primes are equal. WLOG, suppose that p1 = p2 = p. Since Zpa1 and Zpa2 each have
subgroups isomorphic to Zp, G has a subgroup H isomorphic to Zp × Zp. The order
of Zp ×Zp is p2 and each element x ∈ Zp ×Zp satisfies px = 0. So H has order p2 and
each element h ∈ H satisfies hp = 1. But this implies that xp − 1 has at least p2 zeros
in F , contrary to Lagrange’s Theorem.

3. Let ξ = e2πi/n be a primitive n-th root of unity. Prove that Gal(Q(ξ)/Q) ∼= Z×
n . Note:

Z×
n is the group of units under multiplication in Zn.

Answer: Dummit and Foote, Theorem 26, p. 596.

3


