ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2008
Chabot, Krebs, Shaheen*
Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Notation: If n is a positive integer, let \mathbb{Z}_{n} denote the integers modulo n. Let \mathbb{Q} denote the rational numbers.

Groups

1. Show that all groups of order 45 are abelian.

Answer: Let G be a group of order 45. By Sylow, n_{3} divides 45 and is congruent to 1 modulo 3. The only such number is $n_{3}=1$, and so G contains a normal subgroup H of order 9 . Similarly, n_{5} divides 45 and is congruent to 1 modulo 5 . The only such number is $n_{5}=1$, and so G contains a normal subgroup K of order 5. As usual, $H \cap K=\{1\}$ so $H \times K \cong H K \leq G$. But $|H \times K|=45=|G|$ and so $H \times K \cong G$. Since all groups of groups of order 5 and 9 are abelian, G is also abelian.
2. Let G be a cyclic group and H a subgroup of G. Prove that H is cyclic.

Answer: [See S13] Suppose that $G=\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$. Let H be a subgroup of G. If $H=\{1\}$ then $H=\langle 1\rangle$ and so H is cyclic. Otherwise, H contains at least one element of the form a^{k} with $k \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be the least natural number such that $a^{n} \in H$. Then $\left\langle a^{n}\right\rangle \leq H$ is automatic. We prove the opposite inclusion: Suppose that $a^{k} \in H$. Since $n \in \mathbb{N}$, there are $q, r \in \mathbb{Z}$ such that $k=q n+r$ and $0 \leq r<n$. Then $a^{r}=a^{k-q n}=a^{k}\left(a^{n}\right)^{-q}$. Because a^{n} and a^{k} are in H, so is a^{r}. But, by the choice of n, this is only possible if $r=0$. Thus $k=q n$ and $a^{k}=\left(a^{n}\right)^{q} \in\left\langle a^{n}\right\rangle$. This shows that $H=\left\langle a^{n}\right\rangle$ and that H is cyclic.
3. Let G be a finite group with $|G|>1$, and let $\operatorname{Inn}(G)$ be the group of inner automorphisms of G. Show that if G is isomorphic to $\operatorname{Inn}(G)$, then $|G|$ has at least two distinct prime factors. (Hint: Do a proof by contradiction.)
Answer: Reminder: For $g \in G$ the function $\phi_{g}: G \rightarrow G$ defined by $\phi_{g}(x)=g x g^{-1}$ for all $x \in G$ is an automorphism of G. ϕ_{g} is called an inner automorphism, the set of inner automorphisms, $\operatorname{Inn}(G)$, is a subgroup of the group of all automorphisms of G. The function $\Phi: G \rightarrow \operatorname{Inn}(G)$ defined by $\Phi(g)=\phi_{g}$ for all $g \in G$ is a surjective group homomorphism. The kernel of Φ is $Z=Z(G)$, the center of G, so $\operatorname{Inn}(G) \cong G / Z$. See Fraleigh, Definition 14.15, p. 141 and Dummit and Foote, Section 4.4, p. 133.
Suppose, to the contrary, that $|G|=p^{n}$ for some prime p and $n \in \mathbb{N}$. Since G is a p-group, the center of G, Z, is nontrivial (Fraleigh, Theorem 37.4, p. 329). From the above discussion, this means that $\Phi: G \rightarrow \operatorname{Inn}(G)$ is not injective, in particular, $|\operatorname{Inn}(G)|=|G| /|Z|<|G|$. Hence $\operatorname{Inn}(G)$ and G cannot be isomorphic.

Rings

1. Let p be a prime number. Let $D: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a function such that $D(a \cdot b)=$ $a \cdot D(b)+b \cdot D(a)$ for all $a, b \in \mathbb{Z}_{p}$. Prove that D is the zero map.
Answer: Lemma: For all $a \in \mathbb{Z}_{p}, D\left(a^{n}\right)=n a^{n-1} D(a)$. Proof: By induction. For $n=1$, the claim is clear. Suppose that the claim is true for some n. Then
$D\left(a^{n+1}\right)=D\left(a \cdot a^{n}\right)=a \cdot D\left(a^{n}\right)+a^{n} \cdot D(a)=a\left(n a^{n-1} D(a)\right)+a^{n} \cdot D(a)=(n+1) a^{n} D(a)$
which proves the claim in the next case.
To finished the question we use the facts that $a^{p}=a$ and $p a=0$ for all $a \in \mathbb{Z}_{p}$:

$$
D(a)=D\left(a^{p}\right)=p a^{p-1} D(a)=0 .
$$

2. Let D be a Euclidean domain and $a, b, c \in D$. Prove:
(a) If a divides $b c$ and $G C D(a, b)=1$, then a divides c.
(b) If a is irreducible, then a is prime.

Answer:

(a) Suppose that $G C D(a, b)=1$. This means that that if d is a common divisor of a and b, then d divides 1 , that is d is a unit of D (Fraleigh p. 395). Since Euclideans domains are PIDs, there is some $e \in D$ such that $D a+D b=D e$. Then $a \in D e$ and $b \in D e$ which means that e is a common divisor of a and b. By assumption e is a unit and so $D a+D b=D e=D$. In particular, there are $x, y \in D$ such that $a x+b y=1$ (See also Dummit and Foote, Theorem 4, p. 275). Hence, if a divides $b c$, then a divides $b c y+a c x=c$.
(b) Suppose that a is irreducible. This means that a is not a unit, but, if $a=b c$, then either b is a unit or c is a unit. To show that a is prime we need to show that if a divides $b c$, then either a divides b or a divides c.
Suppose that a divides bc. If a divides b we are done. Otherwise, a does not divide b. Let d be a common divisor of a and b. Then $a=d e$ for some $e \in D$. Since a is irreducible, either e or d is a unit. But if e is a unit, then a divides d $\left(a e^{-1}=d e e^{-1}=d\right)$ which implies that a divides b contrary to assumption. This means that d is a unit. Since the only common divisors of a and b are units, $G C D(a, b)=1$, then, by (1), a divides c.
3. Let R be a commutative ring with identity 1 . Prove that an ideal M is maximal if and only if R / M is a field.
Answer: Fraleigh, Theorem 27.9, p. 247. Dummit and Foote, Proposition 12, p. 254.

Fields

1. Let \mathbb{Q} be the field of rationals and let $p(x)=x^{3}-4 x+5$. Assume α is a root of $p(x)$.
(a) Prove that $p(x)$ is irreducible over \mathbb{Q}.
(b) Find $a, b, c \in \mathbb{Q}$ such that $(\alpha+1)^{-1}=a+b \alpha+c \alpha^{2}$.

Answer:
(a) By the Rational Zeros Theorem (or Fraleigh, Corollary 23.12, p. 215), the only possible rational zeros of p are ± 5 and ± 1. It is easy to check that these integers are not, in fact, zeros of p and so p has no rational zeros and is irreducible over \mathbb{Q}.
(b) Dividing p by $x+1$ using long division we get $p(x)=\left(x^{2}-x-3\right)(x+1)+8$. Setting $x=\alpha$ in this and using $p(\alpha)=0$, we get $0=\left(\alpha^{2}-\alpha-3\right)(\alpha+1)+8$. This can be written as

$$
\frac{1}{\alpha+1}=-\frac{1}{8}\left(\alpha^{2}-\alpha-3\right)
$$

2. Let F be a field. Let G be a finite subgroup of the group of units of F. Prove that G is cyclic. (Hint: Do a proof by contraction. First show that G is a finite abelian group. To get a contradiction, find a positive integer n such that the polynomial $x^{n}-1$ has more than n zeroes. You will need to use a major theorem about finite abelian groups.)
Answer: Dummit and Foote, Proposition 18, p. 314. Since multiplication in F is commutative, G is an abelian group. By the Classification Theorem for Finite Abelian Groups, G is isomorphic to a direct product of cyclic groups:

$$
G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \cdots \times \mathbb{Z}_{p_{k}^{a_{k}}}
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are prime and $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}$. If there is only one prime, or if all the primes are distinct, then G is cyclic. If G is not cyclic, then at least two of the primes are equal. WLOG, suppose that $p_{1}=p_{2}=p$. Since $\mathbb{Z}_{p^{a_{1}}}$ and $\mathbb{Z}_{p^{a_{2}}}$ each have subgroups isomorphic to \mathbb{Z}_{p}, G has a subgroup H isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. The order of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is p^{2} and each element $x \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ satisfies $p x=0$. So H has order p^{2} and each element $h \in H$ satisfies $h^{p}=1$. But this implies that $x^{p}-1$ has at least p^{2} zeros in F, contrary to Lagrange's Theorem.
3. Let $\xi=e^{2 \pi i / n}$ be a primitive n-th root of unity. Prove that $\operatorname{Gal}(\mathbb{Q}(\xi) / \mathbb{Q}) \cong \mathbb{Z}_{n}^{\times}$. Note: \mathbb{Z}_{n}^{\times}is the group of units under multiplication in \mathbb{Z}_{n}.
Answer: Dummit and Foote, Theorem 26, p. 596.

