# Algebra Comprehensive Exam Spring 2007 

Brookfield, Krebs*, Shaheen
Answer five (5) questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

## Groups

(1) Show that any group of order 441 has a normal subgroup of order 49.
(2) Let $\phi: G \rightarrow H$ be a group homomorphism, where $G$ and $H$ are finite groups such that the order of $G$ and the order of $H$ are relatively prime. Show that $\phi$ is trivial. (That is, show that $\phi(g)=e_{H}$ for all $g \in G$, where $e_{H}$ is the identity element of $H$.)
(3) Suppose that $G$ is a group of order $p^{n}$, where $p$ is a prime number and $n$ is a positive integer. Prove that if the center of $G$ has order $p$, then $G$ contains no more than $p^{n-1}+p-1$ conjugacy classes.

## Rings

(1) Let $R$ be a ring with identity 1 and $a, b \in R$ such that $a b=1$. Let $X=\{x \in R \mid a x=1\}$. Show the following:
a. If $x \in X$, then $b+1-x a \in X$.
b. If $\phi: X \rightarrow X$ is defined by $\phi(x)=b+1-x a$ for $x \in X$, then $\phi$ is injective (one-to-one).
c. $X$ contains either exactly one element or infinitely many elements. Hint: Recall the Pigeonhole Principle - an injective (one-to-one) function from a finite set to itself is surjective (onto).
(2) Let $F$ be a field and let $p \in F[x]$ such that $p \neq 0$. Show that the ideal $(p)$ is maximal in $F[x]$ iff $p$ is irreducible over $F$.
(3) Let $\mathbb{Z}[x]$ be the ring of polynomials in $x$ with integer coefficients. Prove that $\mathbb{Z}[x]$ is not a Euclidean domain. (Hint: Consider the ideal $I$ of all polynomials in $\mathbb{Z}[x]$ whose constant terms are even.)

## Fields

(1) Let $\mathbb{F}_{q}$ be a finite field with $q$ elements, where $q=p^{r}$ for some odd prime number $p$ and some positive integer $r$. Show that $a \in \mathbb{F}_{q}^{*}$ has a square root in $\mathbb{F}_{q}^{*}$ (that is, $x^{2}=a$ has a solution in $\mathbb{F}_{q}^{*}$ ) iff $a^{\frac{q-1}{2}}=1$. (Here $\mathbb{F}_{q}^{*}$ denotes the multiplicative group of nonzero elements in $\mathbb{F}_{q}$.)
(2) Let $\sigma=e^{2 \pi i / 7} \in \mathbb{C}$, and let $F=\mathbb{Q}(\sigma)$. Describe the Galois group of $F$ over $\mathbb{Q}$. Explain what theorems you are using. (Here $\mathbb{C}$ denotes the field of complex numbers, and $\mathbb{Q}$ denotes the field of rational numbers.)
(3) Let $K$ be an extension field of $F$ and $\alpha \in K$. Show that if $F(\alpha)=F\left(\alpha^{2}\right)$, then $\alpha$ is algebraic over $F$.

