ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2003
Bishop, Cates, Subramanian*
Answer five questions only. You must answer at least one from each of Groups, Rings and Fields. Please show work to support your answers.

GROUPS

1. Let A, B and C be normal subgroups of a group G with $A \subseteq B$. If $A \cap C=B \cap C$ and $A C=B C$ then prove that $A=B$.
2. Let G be a finite group with identity e, and such that for some fixed integer $n>$ $1,(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. Let $G_{n}=\left\{z \in G: z^{n}=e\right\}$ and $G^{n}=\left\{x^{n}: x \in G\right\}$. Prove that both G_{n}, and G^{n} are normal subgroups of G and that $\left|G^{n}\right|=\left[G: G_{n}\right]$.
3. Prove:
a. A group of order 45 is abelian.
b. A group of order 275 is solvable.

RINGS

1. Let R be a commutative ring with unity and let I be an ideal of R. Define

$$
\sqrt{I}=\left\{x \in R: \exists n \geq 1 \text { such that } x^{n} \in I\right\} .
$$

Prove that
(a) $\sqrt{I} \supseteq I$,
(b) \sqrt{I} is an ideal of R,
(c) $\sqrt{\sqrt{I}}=\sqrt{I}$, and
(d) $\sqrt{A \cap B}=\sqrt{A} \cap \sqrt{B}$ where A and B are ideals of R.
2. Let R be a commutative ring with identity 1 and let M be an ideal of R. Prove that M is a maximal ideal $\Longleftrightarrow \forall r \in R-M, \exists x \in R$ such that $1-r x \in M$.
3. Let D be an Euclidean domain. Let a, b nonzero elements of D and d their GCD. Prove that $d=a x+b y$ for some $x, y \in D$.

FIELDS

1. For some prime p, let $f(x)$ be an irreducible polynomial in $Z_{p}[x]$, the ring of polynomials with coefficients in Z_{p}. Prove that $f(x)$ divides $x^{p^{n}}-x$ for some n.
2. Let Q be the field of rational numbers and let E be the splitting field of $x^{4}-2$ over Q.
(a) Find $[E: Q]$ and explain your answer.
(b) Show that the Galois group Gal (E / Q) is not abelian.
3. Let F be the Galois field with 2^{n} elements. Prove that any $\alpha \in F$ has a square root in F; that is, $x^{2}=\alpha$ is solvable in F.
