ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2002

Basmaji Bishop* Cates

Answer 5 questions only. You must answer *at least one* from each of Groups, Rings, and Fields. Be sure to show enough work that your answers are adequately supported.

GROUPS

- 1. Let p and q be prime natural numbers with p < q
 - Prove: (a) A group of order p^2 must be abelian.
 - (b) A group of order p^2q must be solvable.
- 2. Characterize all groups of order 8 and justify your answer.
- 3. Let G be a group of order 231. Show that the Sylow 11-subgroup is a subgroup of the center of G.

RINGS

- 1. Let R and S be rings and let $\phi: R \rightarrow S$ be a ring homomorphism. Prove:
 - (a) If R has an identity, then $\phi[S] = Im(\phi)$ has an identity.
 - (b) If R is commutative, then $\phi[S] = Im(\phi)$ is commutative.
 - (c) If ϕ is 1-1 and S is a field, then R is an integral domain.
 - (d) If R is an integral domain and ϕ is onto, decide whether or not S must be an integral domain and prove your result.
- 2. Let R be a commutative ring with identity and *I* an ideal of R.
 - DEF: $\sqrt{I} = \{x: x^n \in I, some n\}$ Prove:
 - a.. \sqrt{I} is an ideal of R.
 - b. If $I \subseteq J$ are ideals then $\sqrt{I} \subset \sqrt{J}$

c.
$$\sqrt{\sqrt{I}} = \sqrt{I}$$

- d. If *I* and *J* are ideals of R then $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$
- 3. Let $\mathbf{R} = \{a/b \in \mathbf{Q} \mid a, b \in \mathbf{Z} \text{ and } 2 \not\mid b\}$ with the usual rational number operations.
 - (a) Prove that R is an integral domain.
 - (b) Find U(R), the group of units (invertible elements) of R.
 - (c) Prove that $R \setminus U(R) = R U(R)$ is the unique maximal ideal in R.

FIELDS

1. Let F be a field and K an extension field of F.

Define $\mathcal{G}(K/F)$, the Galois group of K over F.

Describe explicitly the elements of \sqrt{g} (Q($\sqrt{5} + \sqrt{2}$)/Q) where Q is the field of rationals.

Identify $\mathfrak{G}(\mathbf{Q}(\sqrt{5} + \sqrt{2})/\mathbf{Q})$. up to isomorphism. That is, find a well-known group which is isomorphic to \mathfrak{G} .

- 2. Let K, L, F be fields with $K \supseteq L \supseteq F$, [L:F] = m, [K:L] = n. Prove that [K:F] = mn.
- 3. Let **Q** be the field of rationals and let $p(x) = x^3 + 2x^2 + 6$. Prove that p(x) is irreducible and, if α is a root of p(x), express $1/(3\alpha 2)$ as a linear combination of the set $\{1, \alpha, \alpha^2\}$.