ALGEBRA COMPREHENSIVE EXAMINATION SPRING 2001

Subramanian Bishop* Chabot

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields.

Please show work to support your answers.

GROUPS

- 1. Let p be a prime and G be a finite p-group with center Z(G).
 - (a) Show that $Z(G) \neq \{e\}$
 - (b) If N is a normal subgroup with |N| = p, prove that $N \subseteq Z(G)$.
- 2. Prove that any group of order 255 is cyclic.
- 3. Let G be an group of order 405 (= $3^4 \cdot 5$). Prove that G is solvable.

RINGS

- 1. Let R be a commutative ring with identity and let I be an ideal of R. Define $\alpha(I) = \{x \in \mathbb{R} \mid \exists n \ge 1, \text{ with } x^n \in I\}$ and prove that:
 - (a) $\alpha(I) \supseteq I$,
 - (b) $\alpha(I)$ is an ideal of R, and
 - (c) $\alpha(\alpha(I)) = \alpha(I).$
- 2. Let R be a ring with identity and assume that $x \in R$ has a right inverse. Prove that the following are equivalent:
 - (a) x has more than one right inverse,
 - (b) x ix not a unit, and
 - (c) x is a left zero-divisor.

3. Let $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in R \right\}$

Where R is the set of real numbers with the usual matrix operations.

- (a) Prove that M is not a field.
- (b) Prove that an element A of M is a zero-divisor $\Leftrightarrow \det A \neq 0$

FIELDS

- 1. Let E be the splitting field of x^6 3 over the rationals **Q**.
 - (a) Find $[E: \mathbf{Q}]$, and explain.
 - (b) Show that the Galois group Gal(E/Q) is not abelian.
- 2. Prove that "algebraicness" is transitive; i.e., if E, F, and K is a tower of fields with F algebraic over E and K algebraic over F, then K is algebraic over E.
- 3. Let $E = \mathbf{Q}(\sqrt{3}, \sqrt{5})$ and $\alpha = \sqrt{3} + \sqrt{5}$
 - Prove: (a) $[E:\mathbf{Q}] = 4.$
 - (b) $E = \mathbf{Q}(\alpha)$
 - (c) Describe the Galois group G(E/Q).