Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS

1. Let G be a group, $\mathrm{A}(\mathrm{G})$ be the set of all automorphisms of G , and $\mathrm{I}(\mathrm{G})$ be the set of all inner automorphisms of G.
Prove: (a) $\quad \mathrm{A}(\mathrm{G})$ and $\mathrm{I}(\mathrm{G})$ are groups.
(b) $\quad \mathrm{I}(\mathrm{G}) \cong \mathrm{G} / \mathrm{Z}$ where $\mathrm{Z}=\mathrm{Z}(\mathrm{G})$ is the center of G .
(c) $\quad \mathrm{I}(\mathrm{G})$ is a normal subgroup of $\mathrm{A}(\mathrm{G})$.
2. Let H be a subgroup of a group G and assume $\mathrm{G}=\mathrm{HZ}$ where $\mathrm{Z}=\mathrm{Z}(\mathrm{G})$ is the center of G . Prove: (a) $\quad H \cap Z=Z(H)$ where $Z(H)$ is the center of H.
(b) $\quad \mathrm{G} / \mathrm{Z} \cong \mathrm{H} / \mathrm{Z}(\mathrm{H})$.
3. Let G be an group of order $175\left(=5^{2} 7\right)$. Prove that G is abelian.

RINGS

1. Let R be a commutative ring with identity. Assume $1=\mathrm{e}+\mathrm{f}$ and $0=\mathrm{ef}$. Define $\phi(\mathrm{x})=\mathrm{ex}$.

Prove: (a) $\quad e$ is an idempotent of R [i.e., $e^{2}=e$].
(b) ϕ is a ring homomorphism.
(c) $\quad \mathrm{e}$ is the identity of $\phi(\mathrm{R})$ [the image of $\phi]$.
2. Let R be a commutative ring with identity 1 and let I be an ideal of R.

Prove: (a) I is a maximal ideal iff R / I is a field.
(b) I is a prime ideal iff R / I is an integral domain.
(c) Every maximal ideal of R is prime.
3. A Principal Ideal Ring (PID) is a ring in which every ideal is principal. It is a fact and you may use the fact that since the ring of integers \mathbf{Z} has a Euclidean algorithm, it is PID.
Prove: (a) The homomorphic image of a PID is a PID
(b) The integers modulo $\mathrm{n}, \mathbf{Z}_{\mathrm{n}}$ is a PID
(c) $\quad \mathbf{Z}_{6}[x]$, the polynomials over \mathbf{Z}_{6}, is not a PID.

FIELDS

1. Let E be the splitting field of $x^{3}-5$ over the rationals \mathbf{Q}. Find and describe every element of the corresponding Galois group $G(E / \mathbf{Q})$ and prove your result.
2. Let E be an algebraic extension of a field F . Let $\alpha \in \mathrm{E}$ and set $\mathrm{p}(\mathrm{x})=\operatorname{Irr}(\alpha, \mathrm{x}, \mathrm{F})$, the minimal polynomial of α over F .
Prove: (a) If $\operatorname{deg} p(x)=5$, then $F\left(\alpha^{2}\right)=F(\alpha)$.
(b) If $\beta \in E$ and $[F(\beta): F]=3$, prove that $p(x)=\operatorname{Irr}(\alpha, x, F(\beta))$.
3. Let $E=\mathbf{Q}(\sqrt{ } 3, \sqrt{ } 7)$ and $\alpha=\sqrt{ } 3+\sqrt{ } 7$

Prove: (a) $[\mathrm{E}: \mathbf{Q}]=4$.
(b) $\mathrm{E}=\mathbf{Q}(\alpha)$
(c) Describe the Galois group $G(E / Q)$.

