Answer 5 questions only. You must answer *at least one* from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS

- 1. Let G be a group, A(G) be the set of all automorphisms of G, and I(G) be the set of all inner automorphisms of G.
 - Prove: (a) A(G) and I(G) are groups.
 - (b) $I(G) \cong G / Z$ where Z = Z(G) is the center of G.
 - (c) I(G) is a normal subgroup of A(G).
- 2. Let H be a subgroup of a group G and assume G = HZ where Z = Z(G) is the center of G. Prove: (a) $H \cap Z = Z(H)$ where Z(H) is the center of H.
 - (b) $G / Z \cong H / Z(H).$
- 3. Let G be an group of order 175 (= 5^2 7). Prove that G is abelian.

RINGS

- 1. Let R be a commutative ring with identity. Assume 1 = e + f and 0 = ef. Define $\phi(x) = ex$. Prove: (a) e is an idempotent of R [i.e., $e^2 = e$].
 - (b) ϕ is a ring homomorphism.
 - (c) e is the identity of $\phi(R)$ [the image of ϕ].
- 2. Let R be a commutative ring with identity 1 and let I be an ideal of R.
 - Prove: (a) I is a maximal ideal iff R / I is a field.
 - (b) I is a prime ideal iff R/I is an integral domain.
 - (c) Every maximal ideal of R is prime.
- 3. A Principal Ideal Ring (PID) is a ring in which every ideal is principal. It is a fact and you may use the fact that since the ring of integers **Z** has a Euclidean algorithm, it is PID.
 - Prove: (a) The homomorphic image of a PID is a PID
 - (b) The integers modulo n, \mathbf{Z}_n is a PID
 - (c) $\mathbf{Z}_6[\mathbf{x}]$, the polynomials over \mathbf{Z}_6 , is not a PID.

FIELDS

- 1. Let E be the splitting field of $x^3 5$ over the rationals **Q**. Find and describe every element of the corresponding Galois group $G(E/\mathbf{Q})$ and prove your result.
- 2. Let E be an algebraic extension of a field F. Let $\alpha \in E$ and set $p(x) = Irr(\alpha, x, F)$, the minimal polynomial of α over F.
 - Prove: (a) If deg p(x) = 5, then $F(\alpha^2) = F(\alpha)$.
 - (b) If $\beta \in E$ and $[F(\beta) : F] = 3$, prove that $p(x) = Irr(\alpha, x, F(\beta))$.
- 3. Let $E = Q(\sqrt{3}, \sqrt{7})$ and $\alpha = \sqrt{3} + \sqrt{7}$
 - Prove: (a) [E:Q] = 4.
 - (b) $E = \mathbf{Q}(\alpha)$
 - (c) Describe the Galois group G(E/Q).