
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2019

Brookfield, Demeke, Krebs, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: R denotes the set of real numbers; Q denotes the set of rational numbers; Z is the
set of integers; Zn is the set of integers modulo n; and C is the set of complex numbers. All
of these should be thought of as groups under ordinary addition, and as rings under ordinary
addition and multiplication.
Groups

(G1) Let G be a group of order 99. Show that G is isomorphic to either Z99 or Z33 × Z3.
(Note: You can quote, without proof, your favorite theorem about groups of order
p2 where p is prime.)
Answer: This is the same as G1 from Spring 08 and G3 from Fall 13 with the prime
5 replaced by the prime 11. See also Fall 08 and Fall 11 exams regarding groups of
order 15.

By Sylow, n3 ≡ 1 mod 3 and n3 divides 11, so n3 = 1 and G has a unique normal
subgroup K of order 9. Also, n11 ≡ 1 mod 11 and n11 divides 3, so n11 = 1 and G
has a unique normal subgroup H of order 11.

By the usual argument, H ∩K = {1} and H ×K ∼= HK ≤ G. Since |H ×K| =
|H||K| = |G| we have H ×K ∼= G.

We know that all groups of prime order and prime square order are abelian, and
we know that direct products of abelian groups are abelian, so H×K ∼= G is abelian.
Because H and K are abelian, G is abelian.

By the Classification Theorem of Finite Abelian Groups, G is isomorphic to either
Z99 or Z33 × Z3.

(G2) Let R be the set of real numbers, and let Z2 be the set of integers mod 2. Define an
operation ∗ on R× Z2 by

(x, n) ∗ (y,m) := (x+ (−1)ny, n+m).

(You may assume without proof that ∗ is a well-defined operation.)
(a) Prove that R× Z2 is a group under ∗.
(b) Is this group abelian? Prove that your answer is correct.
Answer: (a) Associativity: A direct calculation shows that ((x, n) ∗ (y,m)) ∗ (z, k)
and (x, n) ∗ ((y,m) ∗ (z, k)) are equal to

(x+ (−1)ny + (−1)m+nz,m+ n+ k).

Identity: (0, 0) is a left and right identity for R× Z2.
Existence of inverses: The inverse of (x, 0) is (−x, 0). The inverse of (x, 1) is (x, 1).
(b) This group is not abelian since, for example, (1, 1) ∗ (0, 1) = (1, 0) and (0, 1) ∗

(1, 1) = (−1, 0).
(G3) Let G be a finite group. Provide a proof or a counterexample for the following

statements:



(a) The number of elements of order 3 in G is even.
Answer: If a has order 3, then a−1 also has order 3 and is not a. Since (a−1)−1 =
a, elements of order 3 come in disjoint pairs of the form {a, a−1}. Hence there
must be an even number of elements of order 3.

(b) If a, b ∈ G such that |a| = |b| = 3, then |ab| = 3.
Answer: Counterexample: Let a be an element of order 3 and b = a−1. Then
|b| = 3 and |ab| = |e| = 1.
(Here |x| means the order of x.)

Rings

(R1) Let R be a ring and let X and Y be ideals of R. Prove that

X + Y = {a+ b | a ∈ X, b ∈ Y }

is an ideal of R.
Answer: See Fraleigh, Chapter 27, Exercise 34

(R2) Let B = {a0+a1x+a2x
2+ · · ·+anx

n | n ≥ 0, n ∈ Z, a0, . . . , an ∈ R, a1 = 0}. In other
words, B is the set of all polynomials with real coefficients such that the coefficient
of x is 0.
(a) Prove that B is a subring of R[x].
(b) Let I = {a2x2 + · · · + anx

n | n ≥ 0, n ∈ Z, a2, . . . , an ∈ R}. Prove that I is an
ideal of B.

(c) Prove that I is not a principal ideal. Hint: x2 and x3 are both elements of I.
(d) Prove that B is not a Euclidean domain. Hint: Use the other parts of this

problem.
Answer: (a) It is straightforward to check that B is closed under subtraction and
multiplication. Compare Fraleigh Exercise 48, Section 18.

(b) It is straightforward to check that I is closed under subtraction and multipli-
cation by elements of B. Compare Fraleigh Definition 26.10, Section 26.

(c) Suppose to the contrary that I = (f) for some nonzero f ∈ I. Since x2, x3 ∈ I,
there is some nonzero g, h ∈ B such that x2 = gf and x3 = hf . In particular this
implies deg f + deg g = 2 and deg f + deg h = 3. Since there are no nonzero elements
of I with degree 0 or 1, the first of these equations implies deg f = 2. Then the
second equation implies that deg h = 1. This is a contradiction since B contains no
elements of degree 1.

(d) By Fraleigh, Theorem 46.4, all Euclidean domains are PIDs. Because of (c),
B is not a PID, so it can’t be a Euclidean domain either.

(R3) Let R be a commutative ring with identity 1R. Prove that an ideal M 6= R is maximal
if and only if for every r ∈ R with r /∈M , there exists x ∈ R such that 1R− xr ∈M.
Answer: See Fall 08 and Fall 12.

Fields

(F1) Let K be a field and F be a subfield of K. Prove that if [K : F ] = n and F has q
elements, then K has qn elements.
Answer: Fraleigh, Theorem 33.1

(F2) Suppose that E is the splitting field of a separable polynomial in Q[x] with [E : Q] =
6. Show that there exists α ∈ E such that the minimal polynomial of α over Q has
degree 3.

2



Answer: E is a Galois extension of Q of degree 6, so the Galois group Gal(E,Q) has
order 6. This group could be isomorphic to Z6 or to S3. Either way, Gal(E,Q) has a
subgroup of index 3. By the Galois theorems, there is an intermediate field K such
that Q ⊆ K ⊆ E and [K : Q] = 3. Let α be in K but not in Q. Since the degree of α
over Q divides [K : Q] and can’t be 1 (since otherwise α ∈ Q), we have degQ α = 3,
that is, the minimal polynomial of α over Q has degree 3.

(F3) Let F be a finite field of order n. Prove that the polynomial x2 + x+ 1 has a root in
F if and only if n− 1 is divisible by 3. Hint: (x2 + x+ 1)(x− 1) = x3 − 1.

Correction: For this claim to be true we have to assume that the characteristic of
F is not 3.
Answer: For a finite field F of order n, the group of units F ∗ has order n− 1.

If 3 divides n − 1 then, by Cauchy’s Theorem, F ∗ contains an element a of order
3. This means a3 = 1 but a 6= 1. Equivalently, a is a root of x3 − 1 but not of
x − 1. Because of the factorization, (x2 + x + 1)(x − 1) = x3 − 1, a must be a root
of x2 + x+ 1.

Conversely, if a is a root of x2 + x+ 1, then a is a root of x3− 1 and a3 = 1. If the
characteristic of F is not 3 then 12 + 1 + 1 = 3 6= 0 so 1 is not a root of x2 + x + 1.
Hence a 6= 1 and so a has order 3 in F ∗. By Lagrange, 3 divides the order of F ∗.

Example: In the field Z3, 1 is a root of x2 + x+ 1, even though 3 does not divide
|Z3| − 1 = 2.
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