
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2017

Brookfield, Krebs, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Z is the set of integers; Zn is the set of integers
modulo n; and C is the set of complex numbers.

Groups

(G1) Let H and K be subgroups of a group G. Show that H ∪ K is a subgroup of G if
and only if H ⊆ K or K ⊆ H.
Answer: If H ⊆ K or K ⊆ H, then H ∪K is either K or H, so H ∪K is a subgroup.

Conversely, suppose that H ∪K is a subgroup. If the claim is not true, then there
are h0 ∈ H and k0 ∈ K such that h0 6∈ K and k0 6∈ H. Since h0, k0 ∈ H ∪ K and
H ∪K is a group, we have h0k0 ∈ H ∪K. So h0k0 ∈ H or h0k0 ∈ K. But both of
these conditions lead to contradictions: If h0k0 ∈ H, then h0k0 = h1 for some h1 ∈ H
and then k0 = h−1

0 h1 ∈ H, a contradiction. Similarly, if h0k0 ∈ K, then h0 ∈ K.
Thus the claim must be true.

(G2) Let G be a group such that (i) and (ii) below are true:
(i) For every nontrivial group H, there exists a nontrivial homomorphism from G

to H, and
(ii) If f is a homomorphism from G to G and f ◦ f = f , then either f(x) = x for

all x ∈ G, or else f(x) = e for all x ∈ G. (Here e denotes the identity element
of G.)

(a) Show that there is a surjective homomorphism g from G to Z, where Z is the
group of integers under addition. [Hint: Use (i).]

(b) Using your answer from (a), let p ∈ G such that g(p) = 1. Define h : Z→ G by
h(n) = pn. Prove that h is a homomorphism.

(c) Using your answer from (b), prove that g ◦ h is the identity function on Z.
(d) Prove that G is isomorphic to Z. [Hint: Let f = h ◦ g, and apply (ii). Use your

answer from (c).]
Answer:

(a) By (i), there exists a nontrivial homomorphism j from G to Z. Then j(G) is a
nontrivial subgroup of Z, and j(G) is generated by some positive integer k. Define
g : G → Z by g(x) = j(x)/k for all x ∈ G. It is straightforward to show that g is a
surjective homomorphism.

(b) h(n+m) = pn+m = pnpm = h(n)h(m)
(c) Observe that for all n ∈ Z, we have that g(h(n)) = g(pn) = ng(p) = n · 1 = n.
(d) Note that f is a homomorphism, because it is a composition of homomorphisms.

So f◦f(x) = h(g(h(g(x)))) = h(g(x)) = f(x), using (c). Also, f is nontrivial, because
f(p) = h(g(p)) = h(1) = p. So by (ii), f is the identity function. So h ◦ g is the
identity function. That plus (c) implies that g and h are inverse functions.



(G3) Let G be a group of order 15. Prove that G is abelian.
Answer: See F08 and F11.

Rings

(R1) Let R be the set of all rational numbers of the form a/2k where a is an integer and
k is a nonnegative integer.
(a) Prove that R is a commutative ring with unity, under usual addition and mul-

tiplication.
(b) Prove that R is not a field.
(c) Is Z an ideal of R? Prove that your answer is correct.
Answer: (a) It is easy to show that R is a subring of Q. The only nontrivial part is
to show that R is closed under addition: Suppose that a/2k, b/2m ∈ R. Without loss
of generality we can assume that k ≤ m, then

a

2k
+

b

2m
=
a2m−k + b

2m
∈ R

(b) We show that 3 ∈ R has no inverse in R. Suppose, to the contrary, that
3(a/2k) = 1 for some a, k ∈ Z with k ≥ 0 . Then 3a = 2k, which is impossible
because 3 is prime and not equal to 2.

(c) No, it is not, because 1 ∈ Z, but (1/2)(1) /∈ Z.
(R2) Let R = Z3[x]/I where I = (x2 − 1).

(a) List the elements of R. Show how you got these elements.
Answer: Every element of R has the form a+ bx+ I with a, b ∈ Z3. Hence

R = {0 + I, 1 + I, 2 + I, x+ I, 1 + x+ I, 2 + x+ I, 2x+ I, 1 + 2x+ I, 2 + 2x+ I}.

(b) Is R a field? An integral domain? Prove that your answer is correct.
Answer: Neither. For example, (x− 1 + I)(x− 1 + I) = x2− 1 + I = 0 + I, so R
has zero divisors. OR x2−1 is reducible over Z3, so I is not maximal, and hence
R/I is not a field. Since finite domains are fields, R/I is not a domain either.

(c) Let G be the group of units of R. List the elements of G. Also, find a familiar
group that is isomorphic to G and prove it.
Answer: The group of units of R is {1+I, 2+I, x+I, 2x+I}. Since (2+I)2 = 1+I
and (x + I)2 = x2 + I = x2 − (x2 − 1) + I = 1 + I, this group has at least two
elements of order 2, so must be isomorphic to the Klein group Z2 × Z2.

(R3) Let R be commutative ring with identity 1 6= 0.
(a) Prove that R is an integral domain if and only if R[x] is an integral domain.
(b) Let R be an integral domain. Prove that the set of units of R[x] is equal to the

units in R.

Answer: Dummit and Foote, Proposition 4, page 235.
Fields

(F1) Let R be a finite integral domain. Prove that R is a field.
Answer: Dummit and Foote, Corollary 3, page 228. See also F07, F08, F10.

Let a ∈ R be nonzero. Consider the function φ : R → R defined by φ(x) = ax
for all x ∈ R. We show that φ is injective: If φ(x) = φ(y) for some x, y ∈ R, then
ax = ay and a(x − y) = 0. Since R is a domain and a 6= 0, this implies x − y = 0 ,
that is x = y.
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Because, R is finite and φ is injective, φ is also surjective. In particular, there is
some b ∈ R such that φ(b) = 1. This means that ab = 1, that is, b = a−1.

Since all nonzero elements of R have inverses, R is a field.
(F2) Let p be prime. Let f ∈ Q[x]. Let ζ = e2πi/p.

(a) Prove that 1, ζ, ζ2, . . . , ζp−1 are linearly independent over Q.
(b) Prove that if f(ζ) = f(ζa) for all a = 1, ..., p − 1 , then f(ζ) in Q. [Hint: First

use your answer in (a) to prove that this statement is true when f is of the form
c1x+ c2x

2 + ...+ cp−1x
p−1.]

Answer: (a) We have that ζ is a root of 1 + x+ x2 + · · ·+ xp−1, which is irreducible.
(b) First assume that f is of the form c1x + c2x

2 + ... + cp−1x
p−1. Because p is

prime, for all j = 1, . . . , p − 1, there exists k such that kj is congruent to 1 mod p.
Then c1ζ + c2ζ

2 + ... + cp−1ζ
p−1 = f(ζ) = f(ζk) = c1ζ

k + c2ζ
2k + ... + cp−1ζ

p−1k.
Comparing coefficients and using (a), we get that c1 = cj. Because j was arbitrary,
we get c1 = · · · = cp−1. So

f(ζ) = c1ζ + c2ζ
2 + ...+ cp−1ζ

p−1 = c1(ζ + · · ·+ ζp−1) = −c1 ∈ Q.
Now take an arbitrary f = c0 + c1x + c2x

2 + ... + cp−1x
p−1 + · · · + cnx

n. Then by
what we proved earlier, f(ζ) = c0 + [c1x + c2x

2 + ... + cp−1x
p−1] + cpζ

p + xp[cp+1x +
cp+2x

2 + ...+ c2p−1x
p−1] + · · ·+ ζbp + xbp[cbp+1x+ cbp+2x

2 + ...+ c(b+1)p−1x
p−1] ∈ Q for

some b.
(F3) Suppose that α, β ∈ C satisfy β3 = 2 and α = β + β2.

(a) Find a0, a1, a2 ∈ Q such that β = a0 + a1α + a2α
2.

Answer: Plugging α = β + β2 into the equation β = a0 + a1α + a2α
2 and

simplifying using β3 = 2 gives

β = (a0 + 4a2) + (a1 + 2a2)β + (a1 + a2)β
2.

Because of the linear independence of {1, β, β2} over Q we get the linear equa-
tions 0 = a0 + 4a2, 1 = a1 + 2a2 and a1 + a2 = 0. This system has the solution
a0 = −4, a1 = −1, a2 = 1, that is, β = −4− α + α2.

(b) Show Q(β) = Q(α).
Answer: We are given α = β + β2 ∈ Q(β) which implies Q(α) ⊆ Q(β). From
(a), β = −4− α + α2 ∈ Q(α), and so Q(β) ⊆ Q(α).

OR
Since β is a root of the polynomial x3− 2 ∈ Q[x], which is irreducible over Q by
Eisenstein, we have [Q(β),Q] = 3. As above α ∈ Q(β) and so [Q(α),Q] = 3 in
which case Q(β) = Q(α), or [Q(α),Q] = 1 in which case α ∈ Q.
But α ∈ Q is not possible since otherwise, β is a root of the degree 2 polynomial
x2 + x− α ∈ Q[x].

(c) Find the minimal polynomial for α over Q.
Answer: Because [Q(α),Q] = 3 we are looking a monic cubic polynomial in Q[x]
with α as a root. Some calculation using β3 = 2 gives α3 = 6 + 6β + 6β2 =
6 + 6α, and so α3 − 6α − 6 = 0. So the minimal polynomial for α over Q is
x3 − 6x− 6 ∈ Q[x].
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