ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2013

Brookfield*, Krebs, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, only the first five will be graded. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work so that your answers are adequately supported.

Groups

(1) Let G be a finite group. Let H be a normal subgroup of G such that $|H|$ and $[G: H]$ are relatively prime. (Here $|H|$ denotes the order of H, and $[G: H]$ denotes the index of H in G.) Let f be an automorphism of G, and let $J=f(H)$. Prove that $J=H$. Hint 1: Consider the orders of the subgroups $H \cap J$ and $H J$. OR Hint 2: Consider the order of $\phi(f(H))$ in G / H where $\phi: G \rightarrow G / H$ is the natural homomorphism.
Answer: Let $m=|H|, d=|H \cap J|$, and $n=[G: H]$. Then $d \mid m$. Also, $|H J|=m^{2} / d$, so m^{2} / d divides $|G|=m n$. Because m and n are relatively prime, this forces $d=m$, which implies that $H=J$.

OR

Consider the composition $\phi \circ f$ where $\phi: G \rightarrow G / H$ is the natural homomorphism. The image of $H, \phi(f(H))$, is isomorphic to a quotient group of H so its order divides $|H|$. In addition, $\phi(f(H))$ is a subgroup of G / H so its order divides $|G / H|=[G: H]$. Because $|H|$ and $[G: H]$ are relatively prime, this implies that $\phi(f(H))$ is trivial, and hence $f(H)$ is contained in $\operatorname{ker} \phi=H$. Because f is an automorphism and $|f(H)|=|H|$, and so $f(H)=H$.
(2) Prove that \mathbb{Z}_{n} with $n>1$ is simple if and only if n is a prime.

Answer: Suppose that n is prime. Let H be a nontrivial subgroup of \mathbb{Z}_{n}. Let $a \in H$ be nonzero. Since a and n are relatively prime, there are $x, y \in \mathbb{Z}$ such that $x a+y n=1$. In \mathbb{Z}_{n}, this equation becomes $x a=1$ and so $1 \in H$. Since 1 generates \mathbb{Z}_{n}, this implies that $H=\mathbb{Z}_{n}$. We have shown that the only subgroups of \mathbb{Z}_{n} are the trivial one and \mathbb{Z}_{n} itself, \mathbb{Z}_{n} is simple.

Conversely, suppose that \mathbb{Z}_{n} is simple. Let $a \in \mathbb{Z}_{n}$ be nonzero. Since the subgroup generated by a is \mathbb{Z}_{n}, xa $=1$ must hold in \mathbb{Z}_{n} for some $x \in \mathbb{Z}$. That means that $x a+y n=1$ holds in \mathbb{Z} for some $y \in \mathbb{Z}$, and so a and n are relatively prime. Since this holds for all $a \in \mathbb{Z}$ with $1 \leq a<n, n$ is prime.
(3) Prove that any group of order 45 is abelian. Hint: You may use the fact that, if p is prime, then any group of order p^{2} is abelian.
Answer: Suppose that the group G has order $45=5 \cdot 3^{2}$. By Sylow, n_{5} divides 45 and $n_{5} \equiv 1 \bmod 5$. Thus $n_{5}=1$ and G has a unique normal subgroup H of order 5. Also, n_{3} divides 45 and $n_{3} \equiv 1 \bmod 3$, so $n_{3}=1$ and G has a unique normal subgroup K of order 9. By the usual argument $H \cap K=\{1\}$ and $H \times K \cong H K \leq G$. Since $|H \times K|=|H| \cdot|K|=|G|$ we have $H \times K \cong G$. Because H and K are abelian, G is abelian.

Rings

(1) Let R be a commutative ring with unity. Show that the set

$$
N=\left\{a \in R \mid a^{n}=0 \text { for some } n \geq 1\right\}
$$

of all nilpotent elements of R (called the nilradical of R) is an ideal.
Answer: Let $a, b \in N$. Then there are $n_{1}, n_{2} \geq 1$ with $a^{n_{1}}=b^{n_{2}}=0$. Consider the binomial theorem expansion of $(a \pm b)^{n_{1}+n_{2}}$. Each summand in this expansion contains either a sufficiently high power of a or a sufficiently high power of b so that it is zero. Hence $(a \pm b)^{n_{1}+n_{2}}=0$ and $a \pm b \in N$. Finally since R is commutative, $(r a)^{n_{1}}=r^{n_{1}} a^{n_{1}}=0$, and $(a r)^{n_{1}}=a^{n_{1}} r^{n_{1}}=0$.
(2) Let R and R^{\prime} be commutative rings with unity. Let $\phi: R \rightarrow R^{\prime}$ be a surjective (onto) ring homomorphism.
(a) Prove that $\phi(1)=1$.

Answer: Since ϕ is surjective, there is some $r \in R$ such that $\phi(r)=1$. Then

$$
\phi(1)=\phi(1) \cdot 1=\phi(1) \phi(r)=\phi(1 \cdot r)=\phi(r)=1 .
$$

(b) Let u be a unit in R. Prove that $\phi(u)$ is a unit in R^{\prime} and that $\phi\left(u^{-1}\right)=$ $\phi(u)^{-1}$.
Answer: Since u is a unit we have $u u^{-1}=1$ in R. Applying the homomorphism ϕ we get $\phi(u) \phi\left(u^{-1}\right)=\phi\left(u u^{-1}\right)=\phi(1)=1$ and so $\phi(u)$ is a unit of R^{\prime} with inverse $\phi\left(u^{-1}\right)$.
(3) Let R be a commutative ring with unity. Let $I=\langle x+1\rangle$ be the ideal of $R[x]$ generated by $x+1$. Show that I is a prime ideal of $R[x]$ if and only if R is an integral domain. (Here $R[x]$ denotes the ring of polynomials in the indeterminate x with coefficients in R.)
Answer: Consider the ring automorphism $x \mapsto x+1$. So $I=\langle x+1\rangle$ is prime iff $\langle x\rangle$ is prime iff $R[x] /\langle x\rangle \cong R$ is an integral domain.

OR

Consider the (surjective) evaluation homomorphism $\phi: R[x] \rightarrow R$ defined by $f(x) \mapsto f(-1)$. The kernel of ϕ is I and so $R[x] / I \cong R$. Now use the fact that I is prime if and only if R / I is a domain.

Fields

(1) Let E / F be a field extension of degree 3 .
(a) Show that $E=F(\alpha)$ for some $\alpha \in E$.
(b) With α as in (a), show that any element $\beta \in E$ can be written in the form

$$
\beta=\frac{a+b \alpha}{c+d \alpha}
$$

for suitable $a, b, c, d \in F$. Hint: Can the set $\{1, \alpha, \beta, \alpha \beta\}$ be linearly independent over F ?
Answer:
(a) Choose α in E but not F. Then $F \subset F(\alpha) \subseteq E$. Since $[F(\alpha): F]$ is not one and divides $[E: F]=3$, we have $F(\alpha)=E$.
(b) Since $[E: F]=3$, the set $\{1, \alpha, \beta, \alpha \beta\}$ must be dependent over F, and so there are constants a, b, c, d, not all zero, such that $a+b \alpha+c \beta+d \beta \alpha=0$. Supposing that $c+d \alpha \neq 0$, this can be solved for β, giving the claimed form (with a sign change). So it remains to show that $c+d \alpha \neq 0$.

Suppose, to the contrary that $c+d \alpha=0$. If $d \neq 0$, this would imply $\alpha \in F$ so we must have $d=c=0$. But then $a+b \alpha=0$, which similarly leads to $a=b=0$. But $a=b=c=d=0$ contradicts the requirement that not all of a, b, c, d are zero.
(2) Find the minimal polynomial (over \mathbb{Q}) for $\alpha=e^{2 \pi i / 8}$, a primitive eighth root of unity. Prove your claim.
Answer: Since $\alpha^{4}=-1, \alpha$ is a root of $f(x)=x^{4}+1 \in \mathbb{Q}[x]$. This is the minimal polynomial for α over \mathbb{Q}. To prove this, we show that $f(x)$ is irreducible over \mathbb{Q}. Here are two ways:
(a) $f(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$ is irreducible over \mathbb{Q} by Eisenstein with $p=2$. Thus f is also irreducible over \mathbb{Q}.
(b) By the rational roots theorem, f has no rational roots and hence no linear factors in $\mathbb{Q}[x]$. We look for a quadratic factor of form $x^{2}+b x+c \in \mathbb{Z}[x]$. (We know that, f has a quadratic factor in $\mathbb{Q}[x]$ if and only if it has a monic quadratic factor in $\mathbb{Z}[x]$.) To see if $x^{2}+b x+c$ is a factor of f we use long division:
$f(x)=\left(x^{2}+b x+c\right)\left(x^{2}-b x+\left(b^{2}-c\right)\right)+\left(2 b c-b^{3}\right) x+\left(1-c\left(b^{2}-c\right)\right)$. So $x^{2}+b x+c$ divides f if and only if the remainder, $\left(2 b c-b^{3}\right) x+\left(1-c\left(b^{2}-\right.\right.$ $c)$) is zero, that is, if and only if $2 b c-b^{3}=0$ and $1-c\left(b^{2}-c\right)=0$. The second of these equations implies $1=c\left(b^{2}-c\right)$, and so either $c=b^{2}-c=1$ or $c=b^{2}-c=-1$. These imply $b^{2}= \pm 2$ and so there are no $b, c \in \mathbb{Z}$ such that $x^{2}+b x+c$ is a factor of f.
Since we have now shown that f has no linear or quadratic factors in $\mathbb{Q}[x], f$ is irreducible over \mathbb{Q}.
(3) Let E / F be a Galois extension, $\phi \in \operatorname{Gal}(E / F)$ and $\alpha \in E$. Show that $\phi(\alpha)$ and α are conjugate over F.
Answer: Suppose that $f(\alpha)=0$ for some $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$. Applying ϕ to the equation $f(\alpha)=0$, using the fact that ϕ is an automorphism of E that fixes all elements of F, we get

$$
\begin{aligned}
0 & =\phi(f(\alpha)) \\
& =\phi\left(a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}\right) \\
& =a_{0}+a_{1} \phi(\alpha)+\cdots+a_{n} \phi(\alpha)^{n} \\
& =f(\phi(\alpha)) .
\end{aligned}
$$

Thus any polynomial in $F[x]$ having α is a root, also has $\phi(\alpha)$ as a root. The converse is also true because $\phi^{-1} \in \operatorname{Gal}(E / F)$. If this does not correspond to your definition of conjugate, there's one more step:

Let $m \in F[x]$ be the minimal polynomial of α over F, then from above, $m(\phi(\alpha))=0$ and so m divides the minimal polynomial of $\phi(\alpha)$ over F. Similarly, the minimal polynomial of $\phi(\alpha)$ over F divides the minimal polynomial of α over F. Thus the two minimal polynomials are equal, and α and $\phi(\alpha)$ are conjugate over F.

