
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2013

Brookfield*, Krebs, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, only the
first five will be graded. You must answer at least one from each of groups, rings, and
fields. Be sure to show enough work so that your answers are adequately supported.

Groups

(1) Let G be a finite group. Let H be a normal subgroup of G such that |H| and
[G : H] are relatively prime. (Here |H| denotes the order of H, and [G : H]
denotes the index of H in G.) Let f be an automorphism of G, and let
J = f(H). Prove that J = H. Hint 1: Consider the orders of the subgroups
H ∩ J and HJ . OR Hint 2: Consider the order of φ(f(H)) in G/H where
φ : G→ G/H is the natural homomorphism.
Answer: Let m = |H|, d = |H ∩ J |, and n = [G : H]. Then d|m. Also,
|HJ | = m2/d, so m2/d divides |G| = mn. Because m and n are relatively
prime, this forces d = m, which implies that H = J .

OR

Consider the composition φ ◦ f where φ : G → G/H is the natural homo-
morphism. The image of H, φ(f(H)), is isomorphic to a quotient group of
H so its order divides |H|. In addition, φ(f(H)) is a subgroup of G/H so its
order divides |G/H| = [G : H]. Because |H| and [G : H] are relatively prime,
this implies that φ(f(H)) is trivial, and hence f(H) is contained in kerφ = H.
Because f is an automorphism and |f(H)| = |H|, and so f(H) = H.

(2) Prove that Zn with n > 1 is simple if and only if n is a prime.
Answer: Suppose that n is prime. Let H be a nontrivial subgroup of Zn. Let
a ∈ H be nonzero. Since a and n are relatively prime, there are x, y ∈ Z
such that xa + yn = 1. In Zn, this equation becomes xa = 1 and so 1 ∈ H.
Since 1 generates Zn, this implies that H = Zn. We have shown that the only
subgroups of Zn are the trivial one and Zn itself, Zn is simple.

Conversely, suppose that Zn is simple. Let a ∈ Zn be nonzero. Since the
subgroup generated by a is Zn, xa = 1 must hold in Zn for some x ∈ Z.
That means that xa + yn = 1 holds in Z for some y ∈ Z, and so a and n are
relatively prime. Since this holds for all a ∈ Z with 1 ≤ a < n, n is prime.

(3) Prove that any group of order 45 is abelian. Hint: You may use the fact that,
if p is prime, then any group of order p2 is abelian.
Answer: Suppose that the group G has order 45 = 5 ·32. By Sylow, n5 divides
45 and n5 ≡ 1 mod 5. Thus n5 = 1 and G has a unique normal subgroup H
of order 5. Also, n3 divides 45 and n3 ≡ 1 mod 3, so n3 = 1 and G has a
unique normal subgroup K of order 9. By the usual argument H ∩K = {1}
and H×K ∼= HK ≤ G. Since |H×K| = |H| · |K| = |G| we have H×K ∼= G.
Because H and K are abelian, G is abelian.

Rings

(1) Let R be a commutative ring with unity. Show that the set

N = {a ∈ R | an = 0 for some n ≥ 1}
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of all nilpotent elements of R (called the nilradical of R) is an ideal.
Answer: Let a, b ∈ N . Then there are n1, n2 ≥ 1 with an1 = bn2 = 0.
Consider the binomial theorem expansion of (a ± b)n1+n2 . Each summand in
this expansion contains either a sufficiently high power of a or a sufficiently
high power of b so that it is zero. Hence (a ± b)n1+n2 = 0 and a ± b ∈ N .
Finally since R is commutative, (ra)n1 = rn1an1 = 0, and (ar)n1 = an1rn1 = 0.

(2) Let R and R′ be commutative rings with unity. Let φ : R→ R′ be a surjective
(onto) ring homomorphism.
(a) Prove that φ(1) = 1.

Answer: Since φ is surjective, there is some r ∈ R such that φ(r) = 1.
Then

φ(1) = φ(1) · 1 = φ(1)φ(r) = φ(1 · r) = φ(r) = 1.

(b) Let u be a unit in R. Prove that φ(u) is a unit in R′ and that φ(u−1) =
φ(u)−1.
Answer: Since u is a unit we have uu−1 = 1 in R. Applying the homo-
morphism φ we get φ(u)φ(u−1) = φ(uu−1) = φ(1) = 1 and so φ(u) is a
unit of R′ with inverse φ(u−1).

(3) Let R be a commutative ring with unity. Let I = 〈x + 1〉 be the ideal of
R[x] generated by x + 1. Show that I is a prime ideal of R[x] if and only if
R is an integral domain. (Here R[x] denotes the ring of polynomials in the
indeterminate x with coefficients in R.)
Answer: Consider the ring automorphism x 7→ x+ 1. So I = 〈x+ 1〉 is prime
iff 〈x〉 is prime iff R[x]/〈x〉 ∼= R is an integral domain.

OR

Consider the (surjective) evaluation homomorphism φ : R[x] → R defined
by f(x) 7→ f(−1). The kernel of φ is I and so R[x]/I ∼= R. Now use the fact
that I is prime if and only if R/I is a domain.

Fields

(1) Let E/F be a field extension of degree 3.
(a) Show that E = F (α) for some α ∈ E.
(b) With α as in (a), show that any element β ∈ E can be written in the

form

β =
a+ bα

c+ dα

for suitable a, b, c, d ∈ F . Hint: Can the set {1, α, β, αβ} be linearly
independent over F?

Answer:

(a) Choose α in E but not F . Then F ⊂ F (α) ⊆ E. Since [F (α) : F ] is not
one and divides [E : F ] = 3, we have F (α) = E.

(b) Since [E : F ] = 3, the set {1, α, β, αβ} must be dependent over F , and so
there are constants a, b, c, d, not all zero, such that a+bα+cβ+dβα = 0.
Supposing that c + dα 6= 0, this can be solved for β, giving the claimed
form (with a sign change). So it remains to show that c+ dα 6= 0.



3

Suppose, to the contrary that c + dα = 0. If d 6= 0, this would imply
α ∈ F so we must have d = c = 0. But then a+ bα = 0, which similarly
leads to a = b = 0. But a = b = c = d = 0 contradicts the requirement
that not all of a, b, c, d are zero.

(2) Find the minimal polynomial (over Q) for α = e2πi/8, a primitive eighth root
of unity. Prove your claim.
Answer: Since α4 = −1, α is a root of f(x) = x4 + 1 ∈ Q[x]. This is
the minimal polynomial for α over Q. To prove this, we show that f(x) is
irreducible over Q. Here are two ways:
(a) f(x + 1) = x4 + 4x3 + 6x2 + 4x + 2 is irreducible over Q by Eisenstein

with p = 2. Thus f is also irreducible over Q.
(b) By the rational roots theorem, f has no rational roots and hence no linear

factors in Q[x]. We look for a quadratic factor of form x2 + bx+ c ∈ Z[x].
(We know that, f has a quadratic factor in Q[x] if and only if it has a
monic quadratic factor in Z[x].) To see if x2 + bx + c is a factor of f we
use long division:

f(x) = (x2 + bx+ c)(x2 − bx+ (b2 − c)) + (2bc− b3)x+ (1− c(b2 − c)).
So x2+bx+c divides f if and only if the remainder, (2bc−b3)x+(1−c(b2−
c)) is zero, that is, if and only if 2bc− b3 = 0 and 1− c(b2 − c) = 0. The
second of these equations implies 1 = c(b2−c), and so either c = b2−c = 1
or c = b2 − c = −1. These imply b2 = ±2 and so there are no b, c ∈ Z
such that x2 + bx+ c is a factor of f .
Since we have now shown that f has no linear or quadratic factors in
Q[x], f is irreducible over Q.

(3) Let E/F be a Galois extension, φ ∈ Gal(E/F ) and α ∈ E. Show that φ(α)
and α are conjugate over F .
Answer: Suppose that f(α) = 0 for some f(x) = a0 +a1x+ · · ·+anx

n ∈ F [x].
Applying φ to the equation f(α) = 0, using the fact that φ is an automorphism
of E that fixes all elements of F , we get

0 = φ(f(α))

= φ(a0 + a1α + · · ·+ anα
n)

= a0 + a1φ(α) + · · ·+ anφ(α)n

= f(φ(α)).

Thus any polynomial in F [x] having α is a root, also has φ(α) as a root. The
converse is also true because φ−1 ∈ Gal(E/F ). If this does not correspond to
your definition of conjugate, there’s one more step:

Let m ∈ F [x] be the minimal polynomial of α over F , then from above,
m(φ(α)) = 0 and so m divides the minimal polynomial of φ(α) over F . Simi-
larly, the minimal polynomial of φ(α) over F divides the minimal polynomial
of α over F . Thus the two minimal polynomials are equal, and α and φ(α)
are conjugate over F .


