
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2012

Brookfield, Krebs, Shaheen*, Webster

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: C denotes the complex numbers; Q denotes the rational numbers; Sn denotes the
symmetric group; Zn denotes the integers modulo n; Dn denotes the dihedral group of order
2n.

Groups

1. Let H be a subgroup of a group G. Prove that the following are equivalent:

(a) x−1y−1xy ∈ H for all x, y ∈ G.

(b) H is a normal subgroup of G and G/H is abelian.

Answer: Suppose that x−1y−1xy ∈ H for all x, y ∈ G. Then, in particular, for all
h ∈ H and y ∈ G, we have h−1y−1hy ∈ H, that is, h−1y−1hy = h′ for some h′ ∈ H.
This implies that y−1hy = hh′ ∈ H. Thus we have shown that y−1hy ∈ H for all
h ∈ H, that is, y−1Hy ⊆ H for all y ∈ G. This suffices to show that H is normal.

Now we show that G/H is abelian. If xH, yH ∈ G/H with x, y ∈ G, then

(xH)−1(yH)−1(xH)(yH) = x−1y−1xyH = H.

Multiplying this equation on the left by (xH) and then (yH) gives (xH)(yH) =
(yH)(xH), which shows that G/H is abelian.

Now for the converse. Suppose that H is a normal subgroup and G/H is abelian.
Then for all x, y ∈ G we have (xH)(yH) = (yH)(xH). As above, this equation can be
written as

(xH)−1(yH)−1(xH)(yH) = H,

or x−1y−1xyH = H which implies that x−1y−1xy ∈ H.

2. Let G be a group with center Z. Suppose that G/Z is cyclic with generator aZ for
some a ∈ G.

(a) Show that each element of G can be written in the form anz where n ∈ Z and
z ∈ Z.

Answer: Since G/Z is cyclic with generator aZ, each element of G/Z has the
form (aZ)n = anZ for some n ∈ Z. But each element of G/Z is a coset of Z in
G, and these cosets form a partition of G. Thus each element of G is in anZ for
some n ∈ Z. In particular, each element of G can be written in the form anz with
n ∈ Z and z ∈ Z.



(b) Show that G is abelian.

Answer: Let an1z1 and an2z2 be elements of G with n1, n2 ∈ Z and z1, z2 ∈
Z. Since z1 and z2 are in the center, they commute with all other elements of
G. Hence (an1z1)(a

n2z2) = an1+n2z1z2 = an1+n2z2z1 = (an2z2)(a
n1z1), and G is

abelian.

3. Prove that the (additive) groups Z and Q are not isomorphic.

Answer: Let φ : Z → Q be a homomorphism. We will show that φ is not surjective.
Let φ(1) = a ∈ Q. Then, since φ is a homomorphism, φ(n) = na for all n ∈ Z. If
a = 0, then φ(n) = 0 for all n ∈ Z and φ is not surjective in this case. If a 6= 0, then φ
is not surjective because there is no n ∈ Z such that φ(n) = a/2. (If there was, then
na = φ(n) = a/2 and so n = 1/2 and n is not an integer.)

Rings

1. Let R be a commutative ring with identity 1 and let M be an ideal of R. Prove that
M is a maximal ideal of R if and only if for every r ∈ R \M there is an x ∈ R such
that 1− rx ∈M . [Note: R\M denotes the set of elements of R that are not contained
in M .]

Answer: [See F08] Suppose that M is maximal. If r ∈ R\M , then the ideal containing
M and r is strictly bigger than M so is the whole ring R. Specifically, 〈r〉 + M = R.
In particular, 1 ∈ 〈r〉+M and so there are x ∈ R and m ∈ M such that 1 = rx+m.
Consequently 1− rx = m ∈M .

Conversely, suppose that for every r ∈ R \M there is an x ∈ R such that 1− rx ∈M .
Let I be an ideal such that M ⊆ I ⊆ R. If I = M we are done. Otherwise, I contains
an element r that is not in M . By assumption, there exists x ∈ R and m ∈ M such
that 1 = rx + m. This implies that 1 ∈ 〈r〉 + M and so 〈r〉 + M = R. Because r ∈ I
we also have 〈r〉+M ⊆ I, and so I = R. This shows that M is maximal.

2. Let c be an element of a finite commutative ring R with 1 6= 0. Show that exactly one
(but not both) of the following conditions holds:

(a) bc = 1 for some nonzero b ∈ R.

(b) bc = 0 for some nonzero b ∈ R.

Hint: Consider the function φ : R→ R defined by φ(x) = xc for all x ∈ R.

Answer: If φ(b) = 1 for some b ∈ R, we have bc = 1 and, because b must be nonzero
for this to be true, (a) holds. Otherwise, φ is not surjective, and, because R is finite,
φ is not injective either. This means that there are distinct b1, b2 ∈ R such that
φ(b1) = φ(b2). Hence b1c = b2c and we have bc = 0 with b = b1 − b2 6= 0, and so (b)
holds.

Now suppose that both (a) and (b) hold. Then b1c = 1 and b2c = 0 for nonzero
elements b1, b2 ∈ R. But this implies b2 = b21 = b2b1c = b10 = 0, contradicting b2 6= 0.
Thus (a) and (b) cannot both be true.
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3. The eighth cyclotomic polynomial is f(x) = x4 + 1.

(a) Factor f into irreducible polynomials over C. It may be convenient to express
your answer in terms of powers of α = e2πi/8 = (1+ i)/

√
2, an eighth root of unity.

Answer: f = (x− α)(x− α3)(x− α5)(x− α7)

(b) Factor f into irreducible polynomials over R.

Answer: Since α and α7 are complex congugates, (x−α)(x−α7) = x2−
√

2x+1 ∈
R[x]. Similarly, (x− α3)(x− α5) = x2 +

√
2x+ 1 ∈ R[x], and so

f = (x2 −
√

2x+ 1)(x2 +
√

2x+ 1).

These quadratic polynomials are irreducible over R because they have no zeros in
R

(c) Factor f into irreducible polynomials over Q. Hint: Show f is irreducible over Q.

Answer: By the Rational Zeros Theorem, the only possible rational zeros of f
are ±1. Since these numbers are not zeros, f has not degree 1 factor in Q. That
leaves degree 2 factors to consider.

Suppose f(x) = (x2 + ax+ b)(x2 + cx+ d) with a, b, c, d ∈ Q. Because of Gauss’s
Lemma, can assume a, b, c, d ∈ Z. Multiplying this out and matching coefficients
we get a + c = 0, b + d + ac = 0, bc + ad = 0 and bd = 1. The last of these
equations has two solutions: If b = d = 1, then we get a2 = c2 = 2, with no
solutions in Z. If b = d = −1, then we get a2 = c2 = −2, with no solutions in Z.
Thus f does not factor over Q.

OR

Any factorization of f over Q is, in particular, a factorization of f over R. But,
from above, the only factorization over R is f = (x2 −

√
2x+ 1)(x2 +

√
2x+ 1),

and this is is not a factorization over Q since
√

2 6∈ Q. Thus f is irreducible over
Q.

(d) Factor f into irreducible polynomials over Z3.

Answer: In Z3, x
4 ∈ {0, 1} for any x, and so f has no zeros in Z3. To look for a

factorization into two quadratic polynomials, we suppose f(x) = (x2+ax+b)(x2+
cx+ d) with a, b, c, d ∈ Z3. Then just as in (c), we get a+ c = 0, b+ d+ ac = 0,
bc+ad = 0 and bd = 1. The last of these equations has two solutions in Z3: either
b = d = 1 or b = d = −1 = 2. If b = d = 1, then we get a2 = c2 = 2, with no
solutions in Z3. If b = d = −1, then we get a2 = c2 = −2 = 1, which has solutions
in Z3. Since a = −c, we get the factorization f(x) = (x2 + x − 1)(x2 − x − 1)
in Z3[x]. The two quadratic polynomials in this factorization must be irreducible
since they can’t have any zeros (otherwise f would have zeros).

Fields
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1. Let K be a field extension of a field F of degree n and let f(x) ∈ F [x] be an irreducible
polynomial of degree m > 1. Show that if gcd(m,n) = 1, then f has no root in K.

Answer: If α is root of f and is contained in K, then F ⊆ F (α) ⊆ K with [F (α) :
F ] = m > 1 and [K : F ] = n. This would imply that m divides n, contrary to
gcd(m,n) = 1.

2. The polynomial x5 − 1 ∈ Q[x] factors into irreducible polynomials over Q as follows:

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1).

Let σ = e2πi/5 and E = Q(σ), the splitting field of x5 − 1. Since the degree of σ over
Q is 4, elements of E can be written uniquely in the form

α = a+ bσ + cσ2 + dσ3

with a, b, c, d ∈ Q. Let G = Gal(E,Q) be the Galois group of E over Q and φ ∈ G be
such that φ(σ) = σ4. Which elements of the form α = a + bσ + cσ2 + dσ3 are in the
fixed field of φ?

Answer: Applying the automorphism to α we get

φ(α) = φ(a+ bσ + cσ2 + dσ3)

= a+ bφ(σ) + c(φ(σ))2 + d(φ(σ))3

= a+ bσ4 + cσ3 + dσ2

= (a− b) + (−b)σ + (d− b)σ2 + (c− b)σ3,

using σ4 = −1− σ − σ2 − σ3. So φ(α) = α if and only if a = a− b, b = −b, c = d− b
and d = c− b. These equations imply b = 0 and c = d. So α is fixed by φ if and only
if α = a+ c(σ2 + σ3) for some a, c ∈ Q.

3. Let F ⊆ E be fields. Let α, β ∈ E be the zeros of a quadratic polynomial in F [x].
Show that F (α) = F (β).

Answer: If α = β, then the claim is obvious. Otherwise, the quadratic polynomial
must be a(x− α)(x− β) = ax2 − a(α + β)x + aαβ ∈ F [x]. Since a 6= 0 and a(α + β)
are both in F , we have r = α + β ∈ F .

Since r, α ∈ F (α), β = r − α is also in F (α) and so F (β) ⊆ F (α). Similarly, F (α) ⊆
F (β).

OR

Let f ∈ F [x] be the quadratic polynomial with roots α and β. Since f ∈ F (α)[x] and
α is a root of f , f(x) = (x − α)g(x) for some polynomial g ∈ F (α)[x] with degree 1.
Since β is a root of f , either it is a root of x− α or of g(x), either way, β has degree 1
over F (α) and hence β ∈ F (α) and F (β) ⊆ F (α). Similarly, F (α) ⊆ F (β).
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