
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2010

Brookfield, Krebs, Shaheen*

Directions: Answer 5 questions only. Indicate CLEARLY which five you want us to grade—
if you do more than five problems, we will select five to grade, and they may not be the five
that you want us to grade. You must answer at least one from each of groups, rings, and
fields. Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Sn denotes the symmetric group; Zn denotes the
integers modulo n; Dn denotes the dihedral group.

Groups

1. Let G and H be groups and φ : G→ H be a group homomorphism.

(a) Let H ′ be a subgroup of H. Prove that

φ−1[H ′] = {x ∈ G | φ(x) ∈ H ′}

is a subgroup of G.

Answer: Fraleigh Theorem 13.12(4)

(b) Prove or give a counterexample: If φ is onto and H is cyclic, then G is cyclic.

Answer: Counterexample: Let G = S3, K = A3 and φ : G → G/K the natural
homomorphism. Then G/K has order 2 and so is isomorphic to Z2 and is cyclic.
But S3 is not cyclic.

2. Suppose that G is a simple group of order 168.

(a) Prove that G contains exactly 8 Sylow 7-subgroups.

(b) Prove that G contains exactly 48 elements of order 7.

Answer: By Sylow, n7 ∈ {1, 8}. But if n7 = 1, then G has a unique normal subgroup
of order 7 and is not simple, contrary to hypothesis. Thus G has 8 Sylow subgroups
of order 7. Each of these contains 6 elements of order 7, so there are a total of 48
elements of order 7 in the group.

3. Show that A4 is the smallest subgroup of S4 that contains the 3-cycles (1, 2, 3) and
(2, 3, 4).

Answer: Since (1, 2, 3) and (2, 3, 4) are even, these elements are in A4 and the subgroup
they generate, H = 〈(1, 2, 3), (2, 3, 4)〉, is contained in A4. In particular, the order of H
divides the order of A4 which is 12. But H contains the identity element, (1, 2, 3) and
(2, 3, 4) and the inverse of these element, as well as (1, 2, 3)(2, 3, 4) = (1, 2)(3, 4) and
(2, 3, 4)(1, 2, 3) = (1, 3)(2, 4). Since we have found 7 elements of H so far, the order of
H must be 12 and H = A4.



Rings

1. Let M be the ring of all 2 × 2 matrices with integer entries. Prove that there does
not exist an ideal I of M such that M/I is isomorphic to the ring of integers. Hint:

Consider the matrices

(
0 1
0 0

)
and

(
0 0
1 0

)
.

Answer: There is an ideal I of M such that M/I is isomorphic to Z if and only if I is
the kernel of a surjective homomorphism φ : M → Z. So we suppose that φ : M → Z
is a homomorphism and we show that φ is not surjective.

Let A and B be the matrices above. Since A2 = B2 = 0 in M , we have φ(A)2 =
φ(B)2 = 0 in Z. This implies that φ(A) = φ(B) = 0. Let X ∈M . Then

X =

(
a b
c d

)
for some integers a, b, c, d. An easy calculation gives

X =

(
a b
c d

)
=

(
b 0
d b

)
A+

(
c a
0 c

)
B

Applying φ to both sides of this equation and using the homomorphism properties we
see that φ(X) = 0 for all X ∈M . In particular, φ is not surjective.

Note: The same argument shows that if M is the ring of 2× 2 matrices over a commu-
tative ring with unity, and D is a domain, and φ : M → D is a homomorphism, then
φ is trivial.

2. Prove that any ring (with unity) having three elements is isomorphic to Z3.

Answer: Let R be a ring with 3 elements. By the ring axioms, two of these elements
are 0 and 1. Let’s temporarily call the third element a, so that R = {0, 1, a}. Consider
the element 1 + a ∈ R. The equation 1 + a = a is not possible, since by cancellation
in the group (R,+, 0) it would imply 1 = 0. Similarly, 1 + a = 1 would imply that
a = 0, contrary to our assumptions about a. Thus 1 + a = 0, that is, a = −1, the
(additive) inverse of 1. Similarly 1 + 1 = 1 is impossible since it implies 1 = 0, and
1 + 1 = 0 is impossible since (with 1 + a = 0) it implies 1 = a. Thus 1 + 1 = a, and
equivalently, a = 2. These facts enables us to fill in the addition table for R and to
confirm that addition in R is identical to addition in Z3. (This argument shows that,
up to isomorphism, there is only one group of order 3.)

Most of the multiplication table for R is determined by the ring axiom 1x = x1 = x
for all x ∈ R, and one of the consequences of the axioms, that 0x = x0 = 0 for
all x ∈ R. The only entry left to be determined is 2 · 2. But, by distributivity,
2 · 2 = 2 · (1 + 1) = 2 · 1 + 2 · 1 = 2 + 2 = 1, and so multiplication in R is identical to
multiplication in Z3.
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3. Let c be an element of a finite commutative ring R with unity 1. Show that exactly
one of the following two conditions holds:

(a) bc = 1 for some nonzero b ∈ R.

(b) bc = 0 for some nonzero b ∈ R.

[Hint: Consider the function φc defined by φc(x) = xc for x ∈ R.]

Answer: If φc(b) = 1 for some b ∈ R, we have bc = 1 and, because b must be nonzero
(a) holds. Otherwise, φc is not surjective, and, because R is finite, φc is not injective
either. This means that there are distinct b1, b2 ∈ R such that φc(b1) = φc(b2). Hence
b1c = b2c and we have bc = 0 with b = b1 − b2 6= 0, and so (b) holds.

Now suppose that both (a) and (b) hold. Then b1c = 1 and b2c = 0 for nonzero
elements b1, b2 ∈ R. But this implies b2 = b21 = b2b1c = b10 = 0, contradicting b2 6= 0.
Thus (a) and (b) cannot both be true.

Fields

1. Let E be the splitting field of f(x) = x3 − 5 over Q. Is Gal(E/Q) abelian? Find a
familiar group (like Zn, Sn, Dn, . . .) that is isomorphic to Gal(E/Q).

Answer: The roots of x3 − 5 are 3
√

5, ω 3
√

5 and ω2 3
√

5 where ω = e2πi/3. So E =
Q( 3
√

5, ω 3
√

5, ω2 3
√

5). Since ω = (ω 3
√

5)/ 3
√

5 ∈ E, it follows that E = Q(ω, 3
√

5). Con-
sider

Q ⊆ Q( 3
√

5) ⊆ Q(ω, 3
√

5) = E

3 2

6

By Eisenstein, x3− 5 is irreducible over Q, so [Q( 3
√

3) : Q] = 3. Because, ω is a root of
x2 + x+ 1 ∈ Q( 3

√
5)[x], the degree of ω over Q( 3

√
5) is at most 2. But Q( 3

√
5) ⊆ R and

ω 6∈ R, so ω has degree 2 over Q( 3
√

5). This implies [E : Q( 3
√

5)] = 2 and [E : Q] = 6.

Since E is a splitting field, Gal(E,Q) is a group of order 6 and is isomorphic to Z6

or S3. Each automorphism in Gal(E,Q) sends 3
√

5 to one of its three conjugates
3
√

5, ω 3
√

5, ω2 3
√

5, and sends ω to one of its two conjugates ω, ω2. Moreover, since 3
√

5
and ω generate E over Q, each automorphism is determined by where it sends these
generators. Hence Gal(E,Q) = {φ0, φ1, φ2, φ3, φ4, φ5} where

x 3
√

5 ω 3
√

5 ω 3
√

5 ω2 3
√

5

φ0(x) 3
√

5 ω 3
√

5 ω 3
√

5 ω2 3
√

5

φ1(x) ω 3
√

5 ω ω 3
√

5 ω2 3
√

5 3
√

5

φ2(x) ω2 3
√

5 ω ω2 3
√

5 3
√

5 ω 3
√

5

φ3(x) 3
√

5 ω2 3
√

5 ω2 3
√

5 ω 3
√

5

φ4(x) ω 3
√

5 ω2 ω 3
√

5 3
√

5 ω2 3
√

5

φ5(x) ω2 3
√

5 ω2 ω2 3
√

5 ω 3
√

5 3
√

5
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This group is isomorphic to S3, for example, because it is not abelian: φ1(φ3(
3
√

5)) =
φ1(

3
√

5) = ω 3
√

5, whereas, φ3(φ1(
3
√

5) = φ3(ω
3
√

5)) = ω2 3
√

5. In addition, from the table
we see that the Galois group acts as the set of all permutations of { 3

√
5, ω 3
√

5, ω2 3
√

5},
which shows explicitly that Gal(E : Q) ∼= S3.

2. Let p be a prime number, and let F be a field with pa elements for some positive integer
a. How many elements x of F are there such that xp−1 = 1? Prove that your answer
is correct.

Answer: The multiplicative group F ∗ is cyclic of order pa−1 (Fraleigh Theorem 33.5).
So F ∗ has a unique subgroup of order d for each d ∈ N that divides pa − 1 (Fraleigh
Theorem 6.14). Since

pa − 1 = (p− 1)(pa−1 + pa−2 + · · ·+ p+ 1),

p − 1 divides pa − 1, and F ∗ has a unique subgroup of order p − 1. By Lagrange, all
of the p − 1 elements of this group are solutions of xp−1 = 1. There can be no other
solutions since a degree n− 1 polynomial over a field can have at most n− 1 zeros.

3. Let F ⊆ E be fields and α ∈ E. Show that α2 is algebraic over F if and only if α3 is
algebraic over F .

Answer: Suppose that α2 is algebraic over F . Then α2 is the root of a nonzero poly-
nomial f ∈ F [x]. Then α is a root of f(x2) ∈ F [x] and α is algebraic over F . This
implies, [F (α) : F ] = deg(α, F ) is finite. Since α3 ∈ F (α), a finite extension of F , α3

is the root of a nonzero polynomial in F [x], and so α3 is algebraic over F .

The converse can be proved by similarly by interchanging 2 and 3.
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